Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Online Surveys
2.3.1. Demographic Questions
2.3.2. MEDI-Lite Questionnaire
2.3.3. Health and Taste Attitude Scale
2.4. The EATMED Web Application
2.5. Data Analysis
3. Results
3.1. Participants Data
3.2. Attrition Analysis
3.3. EATMED’s Effect on Adherence to the MD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GLM | Generalized Linear Model |
HTAS | Health and Taste Attitude Scale |
LMM | Linear Mixed Model |
MD | Mediterranean Diet |
NCD | Non-Communicable Diseases |
References
- Lauria, F.; Dello Russo, M.; Formisano, A.; De Henauw, S.; Hebestreit, A.; Hunsberger, M.; Krogh, V.; Intemann, T.; Lissner, L.; Molnar, D.; et al. Ultra-Processed Foods Consumption and Diet Quality of European Children, Adolescents and Adults: Results from the I.Family Study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Prevalence of Overweight Among Adults, BMI ≥ 25 (Age-Standardized Estimate) (%); Appears in: Body Mass Index Among Adults. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi--25-(age-standardized-estimate)-(-) (accessed on 7 April 2025).
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef]
- Hildebrand, S.; Pfeifer, A. The obesity pandemic and its impact on non-communicable disease burden. Pflug. Arch. Eur. J. Physiol. 2025, 477, 657–668. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Nagi, M.A.; Ahmed, H.; Rezq, M.A.; Sangroongruangsri, S.; Chaikledkaew, U.; Almalki, Z.; Thavorncharoensap, M. Economic costs of obesity: A systematic review. Int. J. Obes. 2023, 48, 33–43. [Google Scholar] [CrossRef]
- SIO-ADI. Standard Italiani per la Cura dell’Obesità SIO-ADI.pdf. Available online: https://www.sio-obesita.org/wp-content/uploads/2017/09/STANDARD-OBESITA-SIO-ADI.pdf (accessed on 11 April 2025).
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-Related Disorders: What Is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Hingle, M.; Patrick, H. There Are Thousands of Apps for That: Navigating Mobile Technology for Nutrition Education and Behavior. J. Nutr. Educ. Behav. 2016, 48, 213–218.e1. [Google Scholar] [CrossRef] [PubMed]
- Villinger, K.; Wahl, D.R.; Boeing, H.; Schupp, H.T.; Renner, B. The Effectiveness of App-Based Mobile Interventions on Nutrition Behaviours and Nutrition-Related Health Outcomes: A Systematic Review and Meta-Analysis. Obes. Rev. 2019, 20, 1465–1484. [Google Scholar] [CrossRef]
- Benajiba, N.; Dodge, E.; Khaled, M.B.; Chavarria, E.A.; Sammartino, C.J.; Aboul-Enein, B.H. Technology-based nutrition interventions using the Mediterranean diet: A systematic review. Nutr. Rev. 2022, 80, 1419–1433. [Google Scholar] [CrossRef]
- Young, C.; Campolonghi, S.; Ponsonby, S.; Dawson, S.L.; O’NEil, A.; Kay-Lambkin, F.; McNaughton, S.A.; Berk, M.; Jacka, F.N. Supporting Engagement, Adherence, and Behavior Change in Online Dietary Interventions. J. Nutr. Educ. Behav. 2019, 51, 719–739. [Google Scholar] [CrossRef]
- Murimi, M.; Nguyen, B.; Moyeda-Carabaza, A.F.; Lee, H.; Park, O.H. Factors That Contribute to Effective Online Nutrition Education Interventions: A Systematic Review. Nutr. Rev. 2019, 77, 663–690. [Google Scholar] [CrossRef]
- Eysenbach, G. The Law of Attrition. J. Med. Internet Res. 2005, 7, e11. [Google Scholar] [CrossRef]
- Wang, J.; Mahe, J.; Huo, Y.; Huang, W.; Liu, X.; Zhao, Y.; Huang, J.; Shi, F.; Li, Z.; Jiang, D.; et al. Framework Development for Reducing Attrition in Digital Dietary Interventions: Systematic Review and Thematic Synthesis. J. Med. Internet Res. 2024, 26, e58735. [Google Scholar] [CrossRef]
- Béjar, L.M.; Mesa-Rodríguez, P.; Quintero-Flórez, A.; Ramírez-Alvarado, M.d.M.; García-Perea, M.D. Effectiveness of a Smartphone App (e-12HR) in Improving Adherence to the Mediterranean Diet in Spanish University Students by Age, Gender, Field of Study, and Body Mass Index: A Randomized Controlled Trial. Nutrients 2023, 15, 1688. [Google Scholar] [CrossRef]
- Geraghty, A.W.; Torres, L.D.; Leykin, Y.; Pérez-Stable, E.J.; Muñoz, R.F. Understanding attrition from international Internet health interventions: A step towards global eHealth. Health Promot. Int. 2013, 28, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Roininen, K.; Lähteenmäki, L.; Tuorila, H. Quantification of consumer attitudes to health and hedonic characteristics of foods. Appetite 1999, 33, 71–88. [Google Scholar] [CrossRef]
- Zandstra, E.H.; Graaf, C.D.; Van Staveren, W.A. Influence of health and taste attitudes on consumption of low and high fat foods. Food Qual. Prefer. 2001, 12, 75–82. [Google Scholar] [CrossRef]
- Saba, A.; Sinesio, F.; Moneta, E.; Dinnella, C.; Laureati, M.; Torri, L.; Peparaio, M.; Saggia Civitelli, E.; Endrizzi, I.; Gasperi, F.; et al. Measuring Consumers Attitudes towards Health and Taste and Their Association with Food-Related Life-Styles and Preferences. Food Qual. Prefer. 2019, 73, 25–37. [Google Scholar] [CrossRef]
- Devecchi, A.; Bo, S.; De Carli, L.; Breda, E.; Ponzo, V.; Pezzana, A. Improve Adherence to the Mediterranean Diet through an Innovative App: A Pilot Study. Nutr. Food Sci. 2022, 53, 138–147. [Google Scholar] [CrossRef]
- Webb, T.; Joseph, J.; Yardley, L.; Michie, S. Using the Internet to Promote Health Behavior Change: A Systematic Review and Meta-Analysis of the Impact of Theoretical Basis, Use of Behavior Change Techniques, and Mode of Delivery on Efficacy. J. Med. Internet Res. 2010, 12, e1376. [Google Scholar] [CrossRef]
- Milne-Ives, M.; Homer, S.R.; Andrade, J.; Meinert, E. Potential Associations between Behavior Change Techniques and Engagement with Mobile Health Apps: A Systematic Review. Front. Psychol 2023, 14, 1227443. [Google Scholar] [CrossRef]
- Appelhans, B.M.; French, S.A.; Tangney, C.C.; Powell, L.M.; Wang, Y. To What Extent Do Food Purchases Reflect Shoppers’ Diet Quality and Nutrient Intake? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 46. [Google Scholar] [CrossRef]
- Thiele, S.; Peltner, J.; Richter, A.; Mensink, G.B.M. Food Purchase Patterns: Empirical Identification and Analysis of Their Association with Diet Quality, Socio-Economic Factors, and Attitudes. Nutr. J. 2017, 16, 69. [Google Scholar] [CrossRef]
- Colizzi, C.; Stuber, J.M.; van der Schouw, Y.T.; Beulens, J.W.J. Are Food and Beverage Purchases Reflective of Dietary Intake? Validity of Supermarket Purchases as Indicator of Diet Quality in the Supreme Nudge Trial. Br. J. Nutr. 2024, 132, 1394–1402. [Google Scholar] [CrossRef]
- Steen, D.L.; Helsley, R.N.; Bhatt, D.L.; King, E.C.; Summer, S.S.; Fenchel, M.; Saelens, B.E.; Eckman, M.H.; Couch, S.C. Efficacy of Supermarket and Web-Based Interventions for Improving Dietary Quality: A Randomized, Controlled Trial. Nat. Med. 2022, 28, 2530–2536. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.; Reeves, A.; McKee, M.; Galea, G.; Stuckler, D. Unhealthy Diets, Obesity and Time Discounting: A Systematic Literature Review and Network Analysis. Obes. Rev. 2016, 17, 810–819. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 2 February 2025).
- Piochi, M.; Fontefrancesco, M.F.; Torri, L. Understanding Italian Consumers’ Perception of Safety in Animal Food Products. Foods 2022, 11, 3739. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health Status: An Updated Meta-Analysis and a Proposal for a Literature-Based Adherence Score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Chiriacò, M.; Tubili, C.; Bo, S.; Parillo, M.; Vetrani, C.; Mazzotti, A.; Pistis, D.; Marelli, G.; Grandone, I.; Natali, A. Critical Evaluation of the Questionnaires Assessing Adherence to the Mediterranean Diet That Are Based on Servings. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 724–736. [Google Scholar] [CrossRef]
- Petersson, T.; Secondi, L.; Magnani, A.; Antonelli, M.; Dembska, K.; Valentini, R.; Varotto, A.; Castaldi, S. A Multilevel Carbon and Water Footprint Dataset of Food Commodities. Sci. Data 2021, 8, 127. [Google Scholar] [CrossRef]
- Bausell, R.B.; Li, Y.-F. Power Analysis for Experimental Research: A Practical Guide for the Biological, Medical and Social Sciences; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-521-02456-3. [Google Scholar]
- Hastie, T.J.; Pregibon, D. Generalized Linear Models. In Statistical Models in S; Routledge: Abingdon, UK, 1992. [Google Scholar]
- Therneau, T. A Package for Survival Analysis in R. R Package Version 3.8-3. Available online: https://CRAN.R-project.org/package=survival (accessed on 2 February 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.10.7. 2025. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 2 February 2025).
- Schwarzer, R.; Fleig, L.; Warner, L.M.; Gholami, M.; Serra-Majem, L.; Ngo, J.; Roman-Viñas, B.; Ribas-Barba, L.; Distante, A.; Ntzani, E.; et al. Who benefits from a dietary online intervention? Evidence from Italy, Spain and Greece. Public Health Nutr. 2017, 20, 938–947. [Google Scholar] [CrossRef]
- Young, C.L.; Mohebbi, M.; Staudacher, H.; Berk, M.; Jacka, F.N.; O’Neil, A. Assessing the feasibility of an m-Health intervention for changing diet quality and mood in individuals with depression: The My Food & Mood program. Int. Rev. Psychiatry 2021, 33, 266–279. [Google Scholar] [CrossRef]
- Van der Mispel, C.; Poppe, L.; Crombez, G.; Verloigne, M.; De Bourdeaudhuij, I. A Self-Regulation-Based eHealth Intervention to Promote a Healthy Lifestyle: Investigating User and Website Characteristics Related to Attrition. J. Med. Internet Res. 2017, 19, e241. [Google Scholar] [CrossRef]
- Plaete, J.; Crombez, G.; Van der Mispel, C.; Verloigne, M.; Van Stappen, V.; De Bourdeaudhuij, I. Effect of the Web-Based Intervention MyPlan 1.0 on Self-Reported Fruit and Vegetable Intake in Adults Who Visit General Practice: A Quasi-Experimental Trial. J. Med. Internet Res. 2016, 18, e47. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Cuberos, R.; Zurita-Ortega, F.; Martínez-Martínez, A.; Olmedo-Moreno, E.M.; Castro-Sánchez, M. Adherence to the Mediterranean Diet Is Related to Healthy Habits, Learning Processes, and Academic Achievement in Adolescents: A Cross-Sectional Study. Nutrients 2018, 10, 1566. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Lonnie, M.; Wadolowska, L.; Czarnocinska, J.; Jezewska-Zychowicz, M.; Babicz-Zielinska, E. Health- and Taste-Related Attitudes Associated with Dietary Patterns in a Representative Sample of Polish Girls and Young Women: A Cross-Sectional Study (GEBaHealth Project). Nutrients 2018, 10, 254. [Google Scholar] [CrossRef]
- Roininen, K.; Tuorila, H.; Zandstra, E.H.; de Graaf, C.; Vehkalahti, K.; Stubenitsky, K.; Mela, D.J. Differences in Health and Taste Attitudes and Reported Behaviour among Finnish, Dutch and British Consumers: A Cross-National Validation of the Health and Taste Attitude Scales (HTAS). Appetite 2001, 37, 33–45. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Lotti, S.; Giangrandi, I.; Colombini, B.; Sofi, F. Adherence to Mediterranean Diet Measured through Medi-Lite Score and Obesity: A Retrospective Study. Nutrients 2021, 13, 2007. [Google Scholar] [CrossRef]
- Zappalà, G.; Buscemi, S.; Mulè, S.; La Verde, M.; D’Urso, M.; Corleo, D.; Marranzano, M. High Adherence to Mediterranean Diet, but Not Individual Foods or Nutrients, Is Associated with Lower Likelihood of Being Obese in a Mediterranean Cohort. Eat. Weight Disord. 2018, 23, 605–614. [Google Scholar] [CrossRef]
- Cervo, M.M.C.; Scott, D.; Seibel, M.J.; Cumming, R.G.; Naganathan, V.; Blyth, F.M.; Le Couteur, D.G.; Handelsman, D.J.; Ribeiro, R.V.; Waite, L.M.; et al. Adherence to Mediterranean Diet and Its Associations with Circulating Cytokines, Musculoskeletal Health and Incident Falls in Community-Dwelling Older Men: The Concord Health and Ageing in Men Project. Clin. Nutr. 2021, 40, 5753–5763. [Google Scholar] [CrossRef]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Baudry, J.; Neves, F.; Lairon, D.; Allès, B.; Langevin, B.; Brunin, J.; Berthy, F.; Danquah, I.; Touvier, M.; Hercberg, S.; et al. Sustainability Analysis of the Mediterranean Diet: Results from the French NutriNet-Santé Study. Br. J. Nutr. 2023, 130, 2182–2197. [Google Scholar] [CrossRef]
- Yassıbaş, E.; Bölükbaşı, H. Evaluation of Adherence to the Mediterranean Diet with Sustainable Nutrition Knowledge and Environmentally Responsible Food Choices. Front. Nutr. 2023, 10, 1158155. [Google Scholar] [CrossRef]
Food Category | Points per Unit | Weekly Uploading Limit |
---|---|---|
Other foods | 0 | 100 |
MEAT (red meat, poultry) | 5 | 1 |
CEREALS (bread, pasta, rice, rusk, flour, etc.) | 15 | 2 |
FRUIT (fresh fruit, fruit in syrup, canned fruit, etc.). | 15 | 3 |
DRIED FRUIT (walnuts, hazelnuts, almonds, pistachios, cashews, peanuts, etc.). | 15 | 2 |
Dairy products (milk, yogurt, and kefir) | 10 | 2 |
CHEESE and BUTTER | 10 | 1 |
LEGUMES (peas, chickpeas, lentils, beans, broad beans, soybeans, etc.) | 15 | 2 |
EXTRA-VIRGIN OLIVE OIL | 15 | 1 every two weeks |
FISH (fresh fish, frozen fish, canned fish, etc.) | 10 | 2 |
VEGETABLES (fresh, frozen vegetables, minestrone, tomato puree, creamed vegetables, etc.) | 20 | 3 |
EGGS | 10 | 1 |
Socio-Demographic Characteristics | Levels | Test Cohort | Control Cohort | ||
---|---|---|---|---|---|
Total | Active | Not Active | Total | ||
Gender (p-value Test vs. Control: 0.0916) | Female | 37 (59.7%) | 13 (54.2%) | 24 (63.2%) | 57 (62.0%) |
Male | 25 (40.3%) | 11 (45.8%) | 14 (36.8%) | 35 (38.0%) | |
BMI * (p-value Test vs. Control: 0.4039) | 22.9 ± 2.9 | 22.9 ± 2.9 | 23.2 ± 2.8 | 23.0 ± 3.8 | |
Age * (p-value Test vs. Control: 0.3273) | 41.9 ± 8.1 | 43.2 ± 7.6 | 41.1 ± 7.6 | 42.8 ± 15.1 | |
Nationality (p-value Test vs. Control: 1) | Italian | 57 (91.9%) | 22 (91.7%) | 35 (92.1%) | 90 (97.8%) |
Non-Italian | 5 (8.1%) | 2 (8.3%) | 3 (7.9%) | 2 (2.2%) | |
Diet (p-value Test vs. Control: 0.2381) | Omnivore | 50 (80.6%) | 17 (70.8%) | 33 (86.8%) | 71 (77.2%) |
Flexitarian | 8 (12.9%) | 3 (12.5%) | 5 (13.2%) | 16 (17.4%) | |
Vegetarian | 2 (3.2%) | 2 (8.3%) | 0 (0%) | 4 (4.3%) | |
Vegan | 2 (3.2%) | 2 (8.3%) | 0 (0%) | 1 (1.1%) | |
Social Context (p-value Test vs. Control: 0.1991) | Big town (More than 70,000 inhabitants) | 28 (45.2%) | 9 (37.5%) | 19 (50.0%) | 43 (46.7%) |
Medium town (More than 10,000 and less than 70,000 inhabitants) | 19 (30.6%) | 7 (29.2%) | 12 (31.6%) | 35 (38.0%) | |
Small town (Less than 10,000 inhabitants) | 15 (24.2%) | 8 (33.3%) | 7 (18.4%) | 14 (15.3%) | |
Total | 62 | 24 (38.7%) | 38 (61.3%) | 88 |
Coefficient | Estimate | Std. Error | Z Value | p-Value |
---|---|---|---|---|
(Intercept) | 1.43 | 3.14 | 0.455 | 0.6492 |
HTAS food as reward | −1.06 | 0.36 | −2.984 | 0.0028 ** |
Age | 0.07 | 0.04 | 1.728 | 0.0840 # |
MEDI-lite score | 0.32 | 0.16 | 1.973 | 0.0485 * |
HTAS general health interest | −0.72 | 0.44 | −1.625 | 0.1042 |
Characteristic | HR | 95% CI | p-Value |
---|---|---|---|
Gender | |||
Female | — | — | |
Male | 0.15 | 0.03–0.68 | 0.0144 * |
Age | 0.93 | 0.85–1.03 | 0.1553 |
BMI | 1.31 | 1.01–1.69 | 0.0206 * |
HTAS | |||
Craving for sweets | 0.67 | 0.37–1.21 | 0.1178 |
Food as a reward | 0.3 | 0.11–0.76 | 0.0169 * |
General health interest | 0.37 | 0.11–1.26 | 0.0688 # |
Pleasure | 1.96 | 0.85–4.52 | 0.1637 |
Light product interest | 1.03 | 0.67–1.59 | 0.9679 |
Natural product interest | 1.89 | 0.93–3.83 | 0.0755 # |
Factor | F | Df | Df.res | p-Value |
---|---|---|---|---|
(Intercept) | 2666.79 | 1 | 200.56 | <0.0001 *** |
Time | 1.02 | 1 | 93.12 | 0.3147 |
Cohort | 29.50 | 1 | 201.21 | <0.0001 *** |
Time:Cohort | 13.95 | 1 | 101.76 | 0.0003 |
Comparison | Estimate | SE | Df | t. Ratio | p-Value |
---|---|---|---|---|---|
T0 Control–T1 Control | −0.29 | 0.28 | 93.12 | −1.01 | 0.7434 |
T0 Control–T0 Test | 1.96 | 0.36 | 201.21 | 5.43 | >0.0001 *** |
T0 Control–T1 Test | −0.34 | 0.51 | 219.09 | −0.67 | 0.9101 |
T1 Control–T0 Test | 2.24 | 0.40 | 228.88 | 5.54 | >0.0001 *** |
T1 Control–T1 Test | −0.06 | 0.55 | 210.86 | −0.10 | 0.9996 |
T0 Test–T1 Test | −2.30 | 0.46 | 105.28 | −5.01 | >0.0001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, M.; Devecchi, A.; Migliavada, R.; Piochi, M.; Torri, L. Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study. Int. J. Environ. Res. Public Health 2025, 22, 1095. https://doi.org/10.3390/ijerph22071095
Ricci M, Devecchi A, Migliavada R, Piochi M, Torri L. Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study. International Journal of Environmental Research and Public Health. 2025; 22(7):1095. https://doi.org/10.3390/ijerph22071095
Chicago/Turabian StyleRicci, Michele, Andrea Devecchi, Riccardo Migliavada, Maria Piochi, and Luisa Torri. 2025. "Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study" International Journal of Environmental Research and Public Health 22, no. 7: 1095. https://doi.org/10.3390/ijerph22071095
APA StyleRicci, M., Devecchi, A., Migliavada, R., Piochi, M., & Torri, L. (2025). Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study. International Journal of Environmental Research and Public Health, 22(7), 1095. https://doi.org/10.3390/ijerph22071095