Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions
Abstract
1. Introduction
2. The Principles of Compositional Data Analysis in Time-Use Epidemiology
3. Applications of 24-h CoDA in Understanding Health Outcomes
4. Clinical Potential and Implications of CoDA
5. Challenges, Limitations, and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CoDA | Compositional Data Analysis |
BMI | Body Mass Index |
HDI | Human Development Index |
CLR | Centered Log-Ratio |
ALR | Additive Log-Ratio |
ILR | Isometric Log-Ratio |
MVPA | Moder-to-Vigorous Physical Activity |
References
- Tremblay, M.S.; Rollo, S.; Saunders, T.J. Sedentary Behavior Research Network Members Support New Canadian 24-Hour Movement Guideline Recommendations. J. Sport Health Sci. 2020, 9, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Latimer-Cheung, A.E.; Copeland, J.L.; Fowles, J.; Zehr, L.; Duggan, M.; Tremblay, M.S. The Canadian 24-Hour Movement Guidelines for Children and Youth: Implications for Practitioners, Professionals, and Organizations. Appl. Physiol. Nutr. Metab. 2016, 41, S328–S335. [Google Scholar] [CrossRef]
- Dumuid, D.; Pedišić, Ž.; Palarea-Albaladejo, J.; Martín-Fernández, J.A.; Hron, K.; Olds, T. Compositional Data Analysis in Time-Use Epidemiology: What, Why, How. Int. J. Environ. Res. Public Health 2020, 17, 2220. [Google Scholar] [CrossRef]
- Janssen, I.; Clarke, A.E.; Carson, V.; Chaput, J.-P.; Giangregorio, L.M.; Kho, M.E.; Poitras, V.J.; Ross, R.; Saunders, T.J.; Ross-White, A.; et al. A Systematic Review of Compositional Data Analysis Studies Examining Associations Between Sleep, Sedentary Behaviour, and Physical Activity with Health Outcomes in Adults. Appl. Physiol. Nutr. Metab. 2020, 45, S248–S257. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.M.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef]
- Dumuid, D.; Stanford, T.E.; Martin-Fernández, J.-A.; Pedišić, Ž.; Maher, C.A.; Lewis, L.K.; Hron, K.; Katzmarzyk, P.T.; Chaput, J.-P.; Fogelholm, M.; et al. Compositional Data Analysis for Physical Activity, Sedentary Time and Sleep Research. Stat. Methods Med. Res. 2018, 27, 3726–3738. [Google Scholar] [CrossRef]
- Clarke, A.E.; Janssen, I. A Compositional Analysis of Time Spent in Sleep, Sedentary Behaviour and Physical Activity with All-Cause Mortality Risk. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Fazeli, F.; Wilkinson, K.; Clark, C.C.T. Physical Behaviors and Fundamental Movement Skills in British and Iranian Children: An Isotemporal Substitution Analysis. Scand. J. Med. Sci. Sports 2021, 31, 398–404. [Google Scholar] [CrossRef]
- Estevan, I.; Clark, C.; Molina-García, J.; Menescardi, C.; Barton, V.; Queralt, A. Longitudinal Association of Movement Behaviour and Motor Competence in Childhood: A Structural Equation Model, Compositional, and Isotemporal Substitution Analysis. J. Sci. Med. Sport 2022, 25, 661–666. [Google Scholar] [CrossRef]
- Lemos, L.; Clark, C.; Brand, C.; Pessoa, M.L.; Gaya, A.; Mota, J.; Duncan, M.; Martins, C. 24-Hour Movement Behaviors and Fitness in Preschoolers: A Compositional and Isotemporal Reallocation Analysis. Scand. J. Med. Sci. Sports 2021, 31, 1371–1379. [Google Scholar] [CrossRef]
- Pessoa, M.L.; Clark, C.; Souza, A.; Nakamura, F.; Brasileiro-Santos, M.d.S.; Ribeiro, A.; Cristofaro, D.; Martins, C. The 24-h Movement Behaviours Composition Is Associated with Parasympathetic Modulation in Preschoolers. Child. Care Health Dev. 2024, 50, e13263. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Society. Ser. B Methodol. 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Bezerra, T.A.; Clark, C.C.T.; De Souza Filho, A.N.; Fortes, L.D.S.; Mota, J.A.P.S.; Duncan, M.J.; Martins, C.M.D.L. 24-Hour Movement Behaviour and Executive Function in Preschoolers: A Compositional and Isotemporal Reallocation Analysis. Eur. J. Sport Sci. 2021, 21, 1064–1072. [Google Scholar] [CrossRef]
- de Lucena Martins, C.M.; Clark, C.C.T.; Tassitano, R.M.; Filho, A.N.d.S.; Gaya, A.R.; Duncan, M.J. School-Time Movement Behaviors and Fundamental Movement Skills in Preschoolers: An Isotemporal Reallocation Analysis. Percept. Mot. Ski. 2021, 128, 1317–1336. [Google Scholar] [CrossRef]
- Dumuid, D.; Pedišić, Ž.; Stanford, T.E.; Martín-Fernández, J.-A.; Hron, K.; Maher, C.A.; Lewis, L.K.; Olds, T. The Compositional Isotemporal Substitution Model: A Method for Estimating Changes in a Health Outcome for Reallocation of Time Between Sleep, Physical Activity and Sedentary Behaviour. Stat. Methods Med. Res. 2019, 28, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Ribeiro Bandeira, P.F.; Filho, A.S.; Bezerra, T.; Clark, C.; Webster, E.K.; Mota, J.; Duncan, M. The Combination of Three Movement Behaviours Is Associated with Object Control Skills, but Not Locomotor Skills, in Preschoolers. Eur. J. Pediatr. 2021, 180, 1505–1512. [Google Scholar] [CrossRef]
- de Souza, A.A.; Clark, C.C.T.; Mota, J.; Tassitano, R.M.; Duncan, M.J.; Martins, C.M.d.L. Movement Behaviors in Short versus Adequate Nocturnal Sleepers: A Compositional Analysis of Preschoolers. Am. J. Hum. Biol. 2022, 34, e23694. [Google Scholar] [CrossRef] [PubMed]
- Le, F.; Yap, Y.; Tung, N.Y.C.; Bei, B.; Wiley, J.F. The Associations Between Daily Activities and Affect: A Compositional Isotemporal Substitution Analysis. Int. J. Behav. Med. 2022, 29, 456–468. [Google Scholar] [CrossRef]
- Galmes-Panades, A.M.; Varela-Mato, V.; Konieczna, J.; Wärnberg, J.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Schröder, H.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Isotemporal Substitution of Inactive Time with Physical Activity and Time in Bed: Cross-Sectional Associations with Cardiometabolic Health in the PREDIMED-Plus Study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 137. [Google Scholar] [CrossRef]
- Tan, S.Y.X.; Padmapriya, N.; Bernard, J.Y.; Toh, J.Y.; Wee, H.-L.; Tan, K.H.; Yap, F.K.P.; Lee, Y.S.; Chong, Y.-S.; Godfrey, K.; et al. Cross-Sectional and Prospective Associations between Children’s 24-h Time Use and Their Health-Related Quality of Life: A Compositional Isotemporal Substitution Approach. Lancet Reg. Health West. Pac. 2023, 41, 100918. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Li, Q.; Zhou, Y.; Xu, Y.; Wan, Y.; Tao, F.; Sun, Y. Personal 24-Hour Light Exposure Pattern with Obesity and Adiposity-Related Parameters in School-Aged Children: A Cross-Sectional Study Based on Compositional Data Analysis. Environ. Res. 2025, 275, 121422. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Colley, R.C.; Aubert, S.; Carson, V.; Janssen, I.; Roberts, K.C.; Tremblay, M.S. Proportion of Preschool-Aged Children Meeting the Canadian 24-Hour Movement Guidelines and Associations with Adiposity: Results from the Canadian Health Measures Survey. BMC Public Health 2017, 17, 829. [Google Scholar] [CrossRef]
- Wong, J.E.; Palarea-Albaladejo, J.; Lee, S.T.; Koh, D.; Khouw, I.; Poh, B.K. Association Between 24-Hour Movement Behaviors and Adiposity in Malaysian Schoolchildren: A Compositional Isotemporal Substitution Analysis. J. Phys. Act. Health 2025, 22, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Burns, R.D.; Lee, D.-C.; Welk, G.J. Associations of Movement Behaviors and Body Mass Index: Comparison between a Report-Based and Monitor-Based Method Using Compositional Data Analysis. Int. J. Obes. 2021, 45, 266–275. [Google Scholar] [CrossRef]
- Verswijveren, S.J.J.M.; Lamb, K.E.; Martín-Fernández, J.A.; Winkler, E.; Leech, R.M.; Timperio, A.; Salmon, J.; Daly, R.M.; Cerin, E.; Dunstan, D.W.; et al. Using Compositional Data Analysis to Explore Accumulation of Sedentary Behavior, Physical Activity and Youth Health. J. Sport Health Sci. 2021, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Matricciani, L.; Dumuid, D.; Paquet, C.; Fraysse, F.; Wang, Y.; Baur, L.A.; Juonala, M.; Ranganathan, S.; Lycett, K.; Kerr, J.A.; et al. Sleep and Cardiometabolic Health in Children and Adults: Examining Sleep as a Component of the 24-h Day. Sleep Med. 2021, 78, 63–74. [Google Scholar] [CrossRef]
- Dalene, K.E.; Anderssen, S.A.; Andersen, L.B.; Steene-Johannessen, J.; Ekelund, U.; Hansen, B.H.; Kolle, E. Cross-Sectional and Prospective Associations Between Physical Activity, Body Mass Index and Waist Circumference in Children and Adolescents. Obes. Sci. Pr. 2017, 3, 249. [Google Scholar] [CrossRef]
- Dumuid, D.; Olds, T.; Lange, K.; Edwards, B.; Lycett, K.; Burgner, D.P.; Simm, P.; Dwyer, T.; Le, H.; Wake, M. Goldilocks Days: Optimising Children’s Time Use for Health and Well-Being. J. Epidemiol. Community Health 2022, 76, 301–308. [Google Scholar] [CrossRef]
- Niemelä, M.; Kiviniemi, A.; Ikäheimo, T.M.; Tulppo, M.; Korpelainen, R.; Jämsä, T.; Farrahi, V. Compositional Association of 24-h Movement Behavior with Incident Major Adverse Cardiac Events and All-Cause Mortality. Scand. J. Med. Sci. Sports 2023, 33, 641–650. [Google Scholar] [CrossRef]
- Chastin, S.; McGregor, D.; Palarea-Albaladejo, J.; Diaz, K.M.; Hagströmer, M.; Hallal, P.C.; van Hees, V.T.; Hooker, S.; Howard, V.J.; Lee, I.M.; et al. Joint association between accelerometry-measured daily combination of time spent in physical activity, sedentary behaviour and sleep and all-cause mortality: A pooled analysis of six prospective cohorts using compositional analysis. Br. J. Sports Med. 2021, 55, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- von Rosen, P.; Dohrn, I.M.; Hagströmer, M. Association between Physical Activity and All-Cause Mortality: A 15-Year Follow-up Using a Compositional Data Analysis. Scand. J. Med. Sci. Sports 2020, 30, 100–107. [Google Scholar] [CrossRef]
- McGregor, D.E.; Palarea-Albaladejo, J.; Dall, P.M.; Del Pozo Cruz, B.; Chastin, S.F.M. Compositional analysis of the association between mortality and 24-hour movement behaviour from NHANES. Eur. J. Prev. Cardiol. 2021, 28, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lau, P.W.; Wang, J.; Zhou, P.; Shi, L. Prospective Association Between 24-Hour Movement Behaviors and Fundamental Movement Skills in Chinese Preschoolers During the COVID-19 Pandemic: A Compositional and Reallocation Analysis. J. Phys. Act. Health 2024, 21, 1167–1173. [Google Scholar] [CrossRef]
- Mota, J.G.; Clark, C.C.T.; Bezerra, T.A.; Lemos, L.; Reuter, C.P.; Mota, J.A.P.S.; Duncan, M.J.; Martins, C.M.D.L. Twenty-Four-Hour Movement Behaviours and Fundamental Movement Skills in Preschool Children: A Compositional and Isotemporal Substitution Analysis. J. Sports Sci. 2020, 38, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Huang, Z.; Lou, J.; Li, R.; Zhou, Y. Associations between 24-Hour Activity Behaviours and Emotional and Behavioural Problems of Left-Behind Children: A Component Analysis of Data from a Cross-Sectional Study. BMJ Open 2024, 14, e084749. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, W.; Song, H.; Su, N.; Zhou, L.; Duan, Y.; Rhodes, R.E.; Liu, H.; De Yang, Y.; Lau, W.C.P.; et al. Prospective Association between 24-Hour Movement Behaviors and Mental Health among Overweight/Obese College Students: A Compositional Data Analysis Approach. Front. Public Health 2023, 11, 1203840. [Google Scholar] [CrossRef]
- Kitano, N.; Kai, Y.; Jindo, T.; Tsunoda, K.; Arao, T. Compositional Data Analysis of 24-Hour Movement Behaviors and Mental Health in Workers. Prev. Med. Rep. 2020, 20, 101213. [Google Scholar] [CrossRef]
- Padmapriya, N.; Bernard, J.Y.; Tan, S.Y.X.; Chu, A.H.Y.; Goh, C.M.J.L.; Tan, S.L.; Shek, L.P.; Chong, Y.S.; Tan, K.H.; Chan, S.-Y.; et al. The Prospective Associations of 24-Hour Movement Behaviors and Domain-Specific Activities with Executive Function and Academic Achievement Among School-Aged Children in Singapore. Front. Public Health 2024, 12, 1412634. [Google Scholar] [CrossRef]
- Olds, T.; Singh, B.; Miatke, A.; Eglitis, E.; Maher, C.; Dumuid, D. The Association Between Socioeconomic Status and Use of Time in Australian Children and Adolescents. J. Adolesc. Health 2023, 73, 1068–1076. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, W.; He, Y.; Duan, Y.; Rhodes, R.E.; Liu, H.; Liang, H.; Shi, X.; Zhang, J.; Cheng, Y.; et al. Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 8586. [Google Scholar] [CrossRef]
- Hyunshik, K.; Jiameng, M.; Sunkyoung, L.; Ying, G. Change in Japanese Children’s 24-Hour Movement Guidelines and Mental Health During the COVID-19 Pandemic. Sci. Rep. 2021, 11, 22972. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Associations between 24-Hour Movement Behaviors and Health-Related Quality of Life in China, Japan and South Korea Children. Preprint 2024. [Google Scholar] [CrossRef]
- Xiong, X.; Dalziel, K.; Carvalho, N.; Xu, R.; Huang, L. Association between 24-Hour Movement Behaviors and Health-Related Quality of Life in Children. Qual. Life Res. 2022, 31, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liang, C.; Zang, W.; Bao, R.; Yan, J.; Zhou, L.; Wang, L. 24-Hour Movement Behaviours and Self-Rated Health in Chinese Adolescents: A Questionnaire-Based Survey in Eastern China. PeerJ 2023, 11, e16174. [Google Scholar] [CrossRef]
- Quah, P.L.; Loo, B.K.G.; Mettananda, S.; Dassanayake, S.; Chia, M.Y.H.; Chua, T.B.K.; Tan, T.S.Z.; Chan, P.C.; But, B.W.M.; Fu, A.C.C.; et al. 24 h Activity Guidelines in Children and Adolescents: A Prevalence Survey in Asia-Pacific Cities. Int. J. Environ. Res. Public Health 2023, 20, 6403. [Google Scholar] [CrossRef]
- Tomaz, S.A.; Hinkley, T.; Jones, R.A.; Watson, E.D.; Twine, R.; Kahn, K.; Norris, S.A.; Draper, C.E. Screen Time and Sleep of Rural and Urban South African Preschool Children. Int. J. Environ. Res. Public Health 2020, 17, 5449. [Google Scholar] [CrossRef]
- Mindell, J.A.; Sadeh, A.; Wiegand, B.; How, T.H.; Goh, D.Y.T. Cross-Cultural Differences in Infant and Toddler Sleep. Sleep. Med. 2010, 11, 274–280. [Google Scholar] [CrossRef]
- Mekary, R.A.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal Substitution Paradigm for Physical Activity Epidemiology and Weight Change. Am. J. Epidemiol. 2009, 170, 519–527. [Google Scholar] [CrossRef]
- Bennett, A.R.; Lundstrøm, J.; Chatterjee, S.; Thaysen-Andersen, M.; Bojar, D. Compositional Data Analysis Enables Statistical Rigor in Comparative Glycomics. Nat. Commun. 2025, 16, 795. [Google Scholar] [CrossRef]
- Ž Pedišić, D.D.T.O. Integrating Sleep, Sedentary Behaviour, and Physical Activity Research in the Emerging Field of Time-Use Epidemiology: Definitions, Concepts, Statistical Methods, Theoretical Framework, and Future Directions. Kinesiology 2017, 49, 252–269. [Google Scholar]
- Rollo, S.; Antsygina, O.; Tremblay, M.S. The Whole Day Matters: Understanding 24-Hour Movement Guideline Adherence and Relationships with Health Indicators across the Lifespan. J. Sport Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Maher, C.; Lewis, L.K.; Stanford, T.E.; Martín Fernández, J.A.; Ratcliffe, J.; Katzmarzyk, P.T.; Barreira, T.V.; Chaput, J.P.; Fogelholm, M.; et al. Human Development Index, Children’s Health-Related Quality of Life and Movement Behaviors: A Compositional Data Analysis. Qual. Life Res. 2018, 27, 1473–1482. [Google Scholar] [CrossRef]
- Quinn, T.P.; Erb, I.; Richardson, M.F.; Crowley, T.M. Understanding Sequencing Data as Compositions: An Outlook and Review. Bioinformatics 2018, 34, 2870–2878. [Google Scholar] [CrossRef]
- Lehmann, R.; Vogt, B. Improving Likert Scale Big Data Analysis in Psychometric Health Economics: Reliability of the New Compositional Data Approach. Brain Inf. 2024, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Corrêa Leite, M.L. Compositional Data Analysis as an Alternative Paradigm for Nutritional Studies. Clin. Nutr. ESPEN 2019, 33, 207–212. [Google Scholar] [CrossRef]
- Leite, M.L.C. Applying Compositional Data Methodology to Nutritional Epidemiology. Stat. Methods Med. Res. 2016, 25, 3057–3065. [Google Scholar] [CrossRef]
- Ahola, A.J.; Harjutsalo, V.; Thorn, L.M.; Freese, R.; Forsblom, C.; Mäkimattila, S.; Groop, P.H. The Association between Macronutrient Intake and the Metabolic Syndrome and Its Components in Type 1 Diabetes. Br. J. Nutr. 2017, 117, 450–456. [Google Scholar] [CrossRef]
- Gloor, G.B.; Reid, G. Compositional Analysis: A Valid Approach to Analyze Microbiome High-Throughput Sequencing Data. Can. J. Microbiol. 2016, 62, 692–703. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 180861. [Google Scholar] [CrossRef]
- Quinn, T.P.; Erb, I.; Gloor, G.; Notredame, C.; Richardson, M.F.; Crowley, T.M. A Field Guide for the Compositional Analysis of Any-Omics Data. Gigascience 2019, 8, giz107. [Google Scholar] [CrossRef]
- Martín-Fernández, J.A.; Barceló-Vidal, C.; Pawlowsky-Glahn, V. Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation. Math. Geol. 2003, 35, 253–278. [Google Scholar] [CrossRef]
- Ortiz-Velez, A.; Kelley, S.T. Data-Driven Mathematical and Visualization Approaches for Removing Rare Features for Compositional Data Analysis (CoDA). NAR Genom. Bioinform. 2024, 6, lqad110. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.C.T.; Nobre, G.C.; Fernandes, J.F.T.; Moran, J.; Drury, B.; Mannini, A.; Gronek, P.; Podstawski, R. Physical Activity Characterization: Does One Site Fit All? Physiol. Meas. 2018, 39, 09TR02. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.C.T.; Barnes, C.M.; Stratton, G.; McNarry, M.A.; Mackintosh, K.A.; Summers, H.D. A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans. Sports Med. 2017, 47, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Katzmarzyk, P.T.; Barreira, T.; Broyles, S.T.; Chaput, J.-P.; Fogelholm, M.; Hu, G.; et al. Health-Related Quality of Life and Lifestyle Behavior Clusters in School-Aged Children from 12 Countries. J. Pediatr. 2017, 183, 178–183.e2. [Google Scholar] [CrossRef]
- Tsilimigras, M.C.; Fodor, A. A Compositional data analysis of the microbiome: Fundamentals, tools, and challenges. Ann. Epidemiol. 2016, 26, 330–335. [Google Scholar] [CrossRef]
- Miatke, A.; Olds, T.; Maher, C.; Fraysse, F.; Mellow, M.L.; Smith, A.E.; Pedisic, Z.; Grgic, J.; Dumuid, D. The Association between Reallocations of Time and Health Using Compositional Data Analysis: A Systematic Scoping Review with an Interactive Data Exploration Interface. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 127. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Roscoe, C.M.P.; Duncan, M.J.; Clark, C.C.T. The 24-h Movement Compositions in Weekday, Weekend Day or Four-Day Periods Differentially Associate with Fundamental Movement Skills. Children 2021, 8, 828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, C.C.T.; Martins, C.M.d.L. Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions. Int. J. Environ. Res. Public Health 2025, 22, 1002. https://doi.org/10.3390/ijerph22071002
Clark CCT, Martins CMdL. Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions. International Journal of Environmental Research and Public Health. 2025; 22(7):1002. https://doi.org/10.3390/ijerph22071002
Chicago/Turabian StyleClark, Cain Craig Truman, and Clarice Maria de Lucena Martins. 2025. "Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions" International Journal of Environmental Research and Public Health 22, no. 7: 1002. https://doi.org/10.3390/ijerph22071002
APA StyleClark, C. C. T., & Martins, C. M. d. L. (2025). Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions. International Journal of Environmental Research and Public Health, 22(7), 1002. https://doi.org/10.3390/ijerph22071002