Residential Segregation and Epigenetic Age Acceleration Among Older-Age Black and White Americans
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Measures
2.3. Analytic Strategies
3. Results
3.1. Descriptive Statistics
3.2. Multilevel Regressions of GrimAge Acceleration
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, E.; Xu, J. National Vital Statistics Reports Volume 70, Number 19 March 22, 2022. Natl. Vital Stat. Rep. 2022, 70, 1–58. [Google Scholar] [PubMed]
- Hummer, R.A.; Hamilton, E.R. Population Health in America; University Of California Press: Oakland, CA, USA, 2019. [Google Scholar]
- Crimmins, E.M.; Saito, Y. Trends in healthy life expectancy in the United States, 1970–1990: Gender, racial, and educational differences. Soc. Sci. Med. 2001, 52, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Collins, C. Racial Residential Segregation: A Fundamental Cause of Racial Disparities in Health. Public Health Rep. 2001, 116, 13. [Google Scholar] [CrossRef]
- Phelan, J.C.; Link, B.G. Is Racism a Fundamental Cause of Inequalities in Health? Annu. Rev. Sociol. 2015, 41, 311–330. [Google Scholar] [CrossRef]
- Massey, D.S.; Wagner, B. Segregation, Stigma, and Stratification: A Biosocial Model. In The Oxford Handbook of Stigma, Discrimination, and Health; Major, B., Dovidio, J.F., Link, B.G., Eds.; Oxford University Press: Oxford, UK, 2017; Volume 1, pp. 147–162. [Google Scholar]
- Massey, D.S. Still the Linchpin: Segregation and Stratification in the USA. Race Soc. Probl. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Rothstein, R. The Color of Law: A Forgotten History of How Our Government Segregated America; Liveright Publishing: New York, NY, USA, 2017. [Google Scholar]
- Chetty, R.; Hendren, N.; Jones, M.R.; Porter, S.R. Race and Economic Opportunity in the United States: An Intergenerational Perspective. Q. J. Econ. 2020, 135, 711–783. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.-H. Epigenetic regulation of aging: Implications for interventions of aging and diseases. Sig Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef]
- Palma-Gudiel, H.; Fañanás, L.; Horvath, S.; Zannas, A.S. Psychosocial Stress and Epigenetic Aging. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 150, pp. 107–128. ISBN 978-0-12-816752-6. [Google Scholar]
- Zannas, A.S.; Arloth, J.; Carrillo-Roa, T.; Iurato, S.; Röh, S.; Ressler, K.J.; Nemeroff, C.B.; Smith, A.K.; Bradley, B.; Heim, C.; et al. Lifetime stress accelerates epigenetic aging in an urban, african american cohort: Relevance of glucocorticoid signaling. Genome Biol. 2015, 16, 266. [Google Scholar] [CrossRef]
- Boen, C.E.; Yang, Y.C.; Aiello, A.E.; Dennis, A.C.; Harris, K.M.; Kwon, D.; Belsky, D.W. Patterns and Life Course Determinants of Black–White Disparities in Biological Age Acceleration: A Decomposition Analysis. Demography 2023, 60, 1815–1841. [Google Scholar] [CrossRef]
- Bakulski, K.M.; Fallin, M.D. Epigenetic Epidemiology: Promises for Public Health Research. Environ. Mol. Mutagen. 2014, 55, 171–183. [Google Scholar] [CrossRef]
- Geronimus, A.T.; Pearson, J.A.; Linnenbringer, E.; Schulz, A.J.; Reyes, A.G.; Epel, E.S.; Lin, J.; Blackburn, E.H. Race-Ethnicity, Poverty, Urban Stressors, and Telomere Length in a Detroit Community-Based Sample. J. Health Soc. Behav. 2015, 56, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.; Kempf, M.-C.; Goodin, B.R.; Hidalgo, B.A.; Aroke, E.N. Neighborhood Environment and Epigenetic Age: A Scoping Review. West. J. Nurs. Res. 2023, 45, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Hicken, M.T.; Dou, J.; Kershaw, K.N.; Liu, Y.; Hajat, A.; Bakulski, K.M. Racial and Ethnic Residential Segregation and Monocyte DNA Methylation Age Acceleration. JAMA Netw. Open 2023, 6, e2344722. [Google Scholar] [CrossRef]
- Hummer, R.A.; Hernandez, E.M. The Effect of Educational Attainment on Adult Mortality in the United States. Popul. Bull. 2013, 68, 1–16. [Google Scholar] [PubMed]
- Graetz, N.; Gershenson, C.; Porter, S.R.; Sandler, D.H.; Lemmerman, E.; Desmond, M. The Impacts of Rent Burden and Eviction on Mortality in the United States, 2000–2019. Soc. Sci. Med. 2024, 340, 116398. [Google Scholar] [CrossRef]
- Kong, A.Y.; Lee, J.G.L.; Halvorson-Fried, S.M.; Sewell, K.B.; Golden, S.D.; Henriksen, L.; Herbert, L.; Ribisl, K.M. Neighbourhood inequities in the availability of retailers selling tobacco products: A systematic review. Tob Control 2024, 34, 350–360. [Google Scholar] [CrossRef]
- Goldmann, E.; Aiello, A.; Uddin, M.; Delva, J.; Koenen, K.; Gant, L.M.; Galea, S. Pervasive exposure to violence and posttraumatic stress disorder in a predominantly african American Urban Community: The Detroit neighborhood health study: Exposure to Violence and PTSD. J. Traum. Stress. 2011, 24, 747–751. [Google Scholar] [CrossRef]
- Choi, E.Y.; Ailshire, J.A. Neighborhood Stressors and Epigenetic Age Acceleration Among Older Americans. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2024, 79, gbae176. [Google Scholar] [CrossRef]
- Hicken, M. Americans’ Changing Lives: Wave VI; Inter-university Consortium for Political and Social Research (ICPSR): Ann Arbor, MI, USA, 2019. [Google Scholar]
- House, J.S. Americans’ Changing Lives: Waves I and II, 1986 and 1989; Inter-university Consortium for Political and Social Research (ICPSR): Ann Arbor, MI, USA, 1986. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- McGowan, C.; Nanni, A.; Rydland, K.; McCoy, E.; Mullen, H.; Kershaw, K. National Getis-Ord GI* Statistics for Select Populations; 1990–2019. 2022. Available online: https://www.openicpsr.org/openicpsr/project/170541/version/V3/view;jsessionid=B7D12270CE346D3B1E7359B1C282B873?path=/openicpsr/170541/fcr:versions/V3/gstat_00queen_051222.csv&type=file (accessed on 22 May 2025).
- Kershaw, K.N.; Osypuk, T.L.; Do, D.P.; De Chavez, P.J. Diez Roux Neighborhood-Level Racial/Ethnic Residential Segregation and Incident Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. J. Emerg. Med. 2015, 49, 120. [Google Scholar] [CrossRef]
- Kershaw, K.N.; Robinson, W.R.; Gordon-Larsen, P.; Hicken, M.T.; Goff, D.C.; Carnethon, M.R.; Kiefe, C.I.; Sidney, S.; Diez Roux, A.V. Association of Changes in Neighborhood-Level Racial Residential Segregation With Changes in Blood Pressure Among Black Adults: The CARDIA Study. JAMA Intern. Med. 2017, 177, 996. [Google Scholar] [CrossRef]
- Moran, S.; Arribas, C.; Esteller, M. Validation of a DNA Methylation Microarray for 850,000 CpG Sites of the Human Genome Enriched in Enhancer Sequences. Epigenomics 2016, 8, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Heiss, J.A.; Just, A.C. Improved filtering of dna methylation microarray data by detection p values and its impact on downstream analyses. Clin. Epigenet. 2019, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina Methylationepic Beadchip microarray for whole-genome Dna methylation profiling. Genome. Biol. 2016, 17, 208. [Google Scholar] [CrossRef]
- Triche, T.J.; Weisenberger, D.J.; Van Den Berg, D.; Laird, P.W.; Siegmund, K.D. Low-Level processing of illumina infinium DNA methylation beadarrays. Nucleic Acids Res. 2013, 41, e90. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation grimage strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; Whitsel, E.A.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Horvath, S.; Oshima, J.; Martin, G.M.; Lu, A.T.; Quach, A.; Cohen, H.; Felton, S.; Matsuyama, M.; Lowe, D.; Kabacik, S.; et al. Epigenetic Clock for Skin and Blood Cells Applied to Hutchinson Gilford Progeria Syndrome and Ex Vivo Studies. Aging 2018, 10, 1758–1775. [Google Scholar] [CrossRef]
- Salas, L.A.; Koestler, D.C.; Butler, R.A.; Hansen, H.M.; Wiencke, J.K.; Kelsey, K.T.; Christensen, B.C. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina Humanmethylationepic Beadarray. Genome Biol. 2018, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- McCrory, C.; Fiorito, G.; Hernandez, B.; Polidoro, S.; O’Halloran, A.M.; Hever, A.; Ni Cheallaigh, C.; Lu, A.T.; Horvath, S.; Vineis, P.; et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. Ser. A 2021, 76, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Boen, C.; Keister, L.; Aronson, B. Beyond Net Worth: Racial Differences in Wealth Portfolios and Black–White Health Inequality across the Life Course. J. Health Soc. Behav. 2020, 61, 153–169. [Google Scholar] [CrossRef]
- Golden, S.D.; Kuo, T.-M.; Combs, T.; Kong, A.Y.; Ribisl, K.M.; Baggett, C.D. Supply and demand effects between tobacco retailer density and smoking prevalence. Tob. Control 2024, tc-2024-058739. [Google Scholar] [CrossRef]
- Brown, T.H.; Lee, H.E.; Hicken, M.T.; Bonilla-Silva, E.; Homan, P. Conceptualizing and Measuring Systemic Racism. Annu. Rev. Public Health 2025, 46, 69–90. [Google Scholar] [CrossRef]
- Gee, G.C.; Hicken, M.T. Commentary—Structural Racism: The Rules and Relations of Inequity. Ethn. Dis. 2021, 31, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Hicken, M.T.; Kravitz-Wirtz, N.; Durkee, M.; Jackson, J.S. Racial Inequalities in Health: Framing Future Research. Soc. Sci. Med. 2018, 199, 11–18. [Google Scholar] [CrossRef]
- Anderson, E. The White Space. Sociol. Race Ethn. 2015, 1, 10–21. [Google Scholar] [CrossRef]
- Hicken, M.T.; Lee, H.; Ailshire, J.; Burgard, S.A.; Williams, D.R. “Every Shut Eye, Ain’t Sleep”: The Role of Racism-Related Vigilance in Racial/Ethnic Disparities in Sleep Difficulty. Race Soc. Probl. 2013, 5, 100–112. [Google Scholar] [CrossRef]
- DeAngelis, R.T. Moving on Up? Neighborhood Status and Racism-Related Distress among Black Americans. Soc. Forces 2022, 100, 1503–1532. [Google Scholar] [CrossRef]
- DeAngelis, R.T.; Hargrove, T.W.; Hummer, R.A. Skin Tone and the Health Returns to Higher Status. Demography 2022, 59, 1791–1819. [Google Scholar] [CrossRef] [PubMed]
- Geronimus, A.T. The Weathering Hypothesis and the Health of African-American Women and Infants: Evidence and Speculations. Ethn. Dis. 1992, 2, 207–221. [Google Scholar] [PubMed]
- Kane, J.B.; Harris, K.M.; Morgan, S.P.; Guilkey, D.K. Pathways of Health and Human Capital from Adolescence into Young Adulthood. Soc. Forces 2018, 96, 949–976. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Bowers, J.; Rubenson, D.; Fredrickson, M.; Rundlett, A. Maps in People’s Heads: Assessing a New Measure of Context. In Political Science Research and Methods; Cambridge University Press: Cambridge, UK, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Nilforoshan, H.; Looi, W.; Pierson, E.; Villanueva, B.; Fishman, N.; Chen, Y.; Sholar, J.; Redbird, B.; Grusky, D.; Leskovec, J. Human mobility networks reveal increased segregation in large cities. Nature 2023, 624, 586–592. [Google Scholar] [CrossRef]
- Agénor, M.; Perkins, C.; Stamoulis, C.; Hall, R.D.; Samnaliev, M.; Berland, S.; Bryn Austin, S. Developing a Database of Structural Racism–Related State Laws for Health Equity Research and Practice in the United States. Public Health Rep. 2021, 136, 428–440. [Google Scholar] [CrossRef]
Black | White | Total | |||
---|---|---|---|---|---|
High Clustering a | No Clustering a | High Clustering a | No Clustering a | ||
Chronological Age (years) | 69.26 (6.40) | 70.63 (8.19) | 69.86 (9.83) | 71.22 (9.23) | 70.68 (9.03) |
GrimAge Acceleration (years) | 1.54 (5.65) | 2.27 (5.19) | −0.19 (5.15) | −0.69 (4.46) | −0.06 (4.90) |
College Degree (Wave 1) | |||||
Yes | 3 (11.1%) | 3 (10.0%) | 20 (31.7%) | 56 (33.3%) | 82 (28.5%) |
No | 24 (88.9%) | 27 (90.0%) | 43 (68.3%) | 112 (66.7%) | 206 (71.5%) |
Homeowner Status | |||||
Owns home | 16 (59.3%) | 20 (66.7%) | 54 (85.7%) | 141 (83.9%) | 231 (80.2%) |
Does not own home | 11 (40.7%) | 10 (33.3%) | 9 (14.3%) | 27 (16.1%) | 57 (19.8%) |
Smoker Status | |||||
Never smoked | 8 (29.6%) | 13 (43.3%) | 31 (49.2%) | 77 (45.8%) | 129 (44.8%) |
Current/former smoker | 19 (70.4%) | 17 (56.7%) | 32 (50.8%) | 91 (54.2%) | 159 (55.2%) |
Major Life Stressors | |||||
0 | 6 (22.2%) | 14 (46.7%) | 16 (25.4%) | 55 (32.7%) | 91 (31.6%) |
1 | 11 (40.7%) | 12 (40.0%) | 38 (60.3%) | 70 (41.7%) | 131 (45.5%) |
2 | 9 (33.3%) | 4 (13.3%) | 9 (14.3%) | 36 (21.4%) | 58 (20.1%) |
3+ | 1 (3.7%) | 0 (0.0%) | 0 (0.0%) | 7 (4.2%) | 8 (2.8%) |
Respondent Sex | |||||
Male | 10 (37.0%) | 15 (50.0%) | 32 (50.8%) | 81 (48.2%) | 138 (47.9%) |
Female | 17 (63.0%) | 15 (50.0%) | 31 (49.2%) | 87 (51.8%) | 150 (52.1%) |
Total | 27 (9.4%) | 30 (10.4%) | 63 (21.9%) | 168 (58.3%) | 288 (100.0%) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Respondent Race/Residential Segregation (ref. = White/high clustering) a | ||||||||||||
Black/high clustering | 3.131 | ** | 2.720 | ** | 2.349 | * | 2.366 | ** | 2.879 | ** | 1.301 | |
[1.219, 5.044] | [0.844, 4.595] | [0.474, 4.224] | [0.580, 4.152] | [0.969, 4.788] | [−0.435, 3.038] | |||||||
Black/no clustering | 3.095 | ** | 2.591 | ** | 2.487 | ** | 2.872 | ** | 3.088 | ** | 2.051 | * |
[1.198, 4.992] | [0.739, 4.442] | [0.625, 4.349] | [1.109, 4.636] | [1.202, 4.974] | [0.344, 3.757] | |||||||
White/no clustering | −0.638 | −0.593 | −0.620 | −0.724 | −0.864 | −0.888 | ||||||
[−1.854, 0.579] | [−1.772, 0.587] | [−1.799, 0.559] | [−1.853, 0.405] | [−2.079, 0.351] | [−1.968, 0.193] | |||||||
No college degree (vs. college degree) | -- | 2.274 | ** | -- | -- | -- | 1.355 | ** | ||||
[1.172, 3.377] | [0.342, 2.368] | |||||||||||
Does not own home (vs. owns home) | -- | -- | 2.749 | ** | -- | -- | 2.329 | ** | ||||
[1.551, 3.947] | [1.234, 3.424] | |||||||||||
Current/former smoker (vs. never smoked) | -- | -- | -- | 3.186 | ** | -- | 2.816 | ** | ||||
[2.274, 4.098] | [1.940, 3.692] | |||||||||||
Major life stressors (ref. = none) | ||||||||||||
1 | -- | -- | -- | −0.096 | −0.187 | |||||||
[−1.204, 1.013] | [−1.172, 0.798] | |||||||||||
2 | -- | -- | -- | 0.290 | 0.283 | |||||||
[−1.087, 1.667] | [−0.945, 1.511] | |||||||||||
3+ | -- | -- | -- | 4.404 | ** | 3.572 | ** | |||||
[1.409, 7.399] | [0.906, 6.238] | |||||||||||
Female (vs. male) | −3.028 | ** | −3.630 | ** | −3.228 | ** | −2.812 | ** | −2.872 | ** | −3.237 | ** |
[−4.008, −2.049] | [−4.629, −2.632] | [−4.178, −2.278] | [−3.722, −1.901] | [−3.849, −1.894] | [−4.151, −2.323] | |||||||
Intercept | 1.246 | * | −0.002 | 0.937 | −0.471 | 1.174 | −1.272 | |||||
[0.069, 2.423] | [−1.276, 1.272] | [−0.230, 2.104] | [−1.674, 0.731] | [−0.242, 2.590] | [−2.697, 0.152] |
PhenoAge Acceleration | SkinBloodAge Acceleration | HannumAge Acceleration | HorvathAge Acceleration | ||
---|---|---|---|---|---|
Respondent Race/Residential Segregation a (ref. = White/high clustering) | |||||
Black/high clustering | 0.532 | −0.077 | −1.976 | −0.994 | |
[−2.196, 3.260] | [−1.755, 1.600] | [−3.955, 0.004] | [−3.070, 1.083] | ||
Black/no clustering | 1.180 | −0.328 | −1.543 | 0.690 | |
[−1.480, 3.839] | [−1.964, 1.308] | [−3.473, 0.387] | [−1.351, 2.732] | ||
White/no clustering | −1.022 | −0.278 | −0.898 | 0.376 | |
[−2.740, 0.697] | [−1.335, 0.779] | [−2.145, 0.349] | [−0.938, 1.690] | ||
Intercept | 0.508 | 0.617 | 1.365 | * | 0.239 |
[−1.108, 2.123] | [−0.376, 1.611] | [0.193, 2.537] | [−1.012, 1.490] |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Respondent Race/Residential Segregation a (ref. = White/high clustering) | ||||||||||||
Black/high clustering | 2.669 | * | 2.224 | * | 1.958 | 2.215 | * | 2.534 | * | 1.248 | ||
[0.414, 4.923] | [0.017, 4.431] | [−0.241, 4.157] | [0.118, 4.312] | [0.285, 4.783] | [−0.784, 3.280] | |||||||
Black/no clustering | 3.108 | ** | 2.674 | ** | 2.583 | ** | 2.869 | ** | 2.948 | ** | 2.038 | * |
[1.125, 5.092] | [0.745, 4.603] | [0.641, 4.525] | [1.022, 4.716] | [0.985, 4.910] | [0.267, 3.810] | |||||||
White/no clustering | −0.769 | −0.700 | −0.645 | −0.653 | −1.001 | −0.730 | ||||||
[−2.265, 0.727] | [−2.148, 0.748] | [−2.099, 0.809] | [−2.044, 0.739] | [−2.486, 0.484] | [−2.055, 0.596] | |||||||
Intercept | 1.395 | 0.126 | 0.999 | −0.454 | 1.309 | −1.341 | ||||||
[−0.034, 2.823] | [−1.370, 1.622] | [−0.415, 2.413] | [−1.890, 0.982] | [−0.279, 2.898] | [−2.920, 0.238] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeAngelis, R.; Fisher, V.; Dou, J.; Bakulski, K.; Rigby, D.; Hicken, M. Residential Segregation and Epigenetic Age Acceleration Among Older-Age Black and White Americans. Int. J. Environ. Res. Public Health 2025, 22, 837. https://doi.org/10.3390/ijerph22060837
DeAngelis R, Fisher V, Dou J, Bakulski K, Rigby D, Hicken M. Residential Segregation and Epigenetic Age Acceleration Among Older-Age Black and White Americans. International Journal of Environmental Research and Public Health. 2025; 22(6):837. https://doi.org/10.3390/ijerph22060837
Chicago/Turabian StyleDeAngelis, Reed, Victoria Fisher, John Dou, Kelly Bakulski, David Rigby, and Margaret Hicken. 2025. "Residential Segregation and Epigenetic Age Acceleration Among Older-Age Black and White Americans" International Journal of Environmental Research and Public Health 22, no. 6: 837. https://doi.org/10.3390/ijerph22060837
APA StyleDeAngelis, R., Fisher, V., Dou, J., Bakulski, K., Rigby, D., & Hicken, M. (2025). Residential Segregation and Epigenetic Age Acceleration Among Older-Age Black and White Americans. International Journal of Environmental Research and Public Health, 22(6), 837. https://doi.org/10.3390/ijerph22060837