Association Between Area-Level Deprivation and Cardio-Metabolic Risk Factors Among the Adult Population in Russia
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Individual-Level Variables
2.3. Cardio-Metabolic Risk Factors
2.4. Area-Level Deprivation Index
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association of General Deprivation with HTN, Elevated Blood Pressure, Obesity, DM, Prediabetes, HUA, and CKD
3.3. Association of Social Deprivation with HTN, Elevated Blood Pressure, Obesity, DM, Prediabetes, HUA, and CKD
3.4. Association of Economic Deprivation with HTN, Elevated Blood Pressure, Obesity, DM, Prediabetes, HUA, and CKD
3.5. Association of Environmental Deprivation with HTN, Elevated Blood Pressure, Obesity, DM, Prediabetes, HUA, and CKD
3.6. Association of General Deprivation with Blood Pressure, Creatinine, Fasting Glucose, Uric Acid Levels, and BMI
3.7. Association of Social Deprivation with Blood Pressure, Creatinine, Fasting Glucose, Uric Acid Levels, and BMI
3.8. Association of Economic Deprivation with Blood Pressure, Creatinine, Fasting Glucose, Uric Acid Levels, and BMI
3.9. Association of Environmental Deprivation with Blood Pressure, Creatinine, Fasting Glucose, Uric Acid Levels, and BMI
4. Discussion
4.1. Limitations of This Study
4.2. Implications for Practice and Policy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVD | Cardiovascular diseases |
HTN | Hypertension |
DM | Diabetes mellitus |
HUA | Hyperuricemia |
ESSE-RF | The Epidemiology of Cardiovascular Risk Factors and Diseases in Regions of the Russian Federation |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
CKD | Chronic kidney disease |
SUA | Serum uric acid |
BMI | Body mass index |
OR | Odds ratio |
GFR | Glomerular filtration rate |
GDP | Gross domestic product |
RR | Rate ratio |
HR | Hazard ratio |
CI | Confidence interval |
Q | Quartile |
RDI | Russian deprivation index |
References
- The Russian Federation Ministry of Health, Passport of the Federal Project “Fight Against Cardiovascular Diseases”. Available online: https://mednet.ru/images/materials/KC/FP_Borba_s_serdechno-sosudistymi_zabolevaniyami.pdf (accessed on 9 April 2025). (In Russian).
- The Russian Federal State Statistics Service. Russian Statistical Yearbook. Available online: https://rosstat.gov.ru/folder/210/document/12994 (accessed on 10 March 2023).
- Egan, B.M.; Lackland, D.T.; Jones, D.W. Prehypertension: An opportunity for a new public health paradigm. Cardiol. Clin. 2010, 28, 561–569. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 9221. [Google Scholar] [CrossRef]
- Chrysant, S.G. Association of hyperuricemia with cardiovascular diseases: Current evidence. Hosp. Pract. (1995) 2023, 51, 54–63. [Google Scholar] [CrossRef]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef]
- Katta, N.; Loethen, T.; Lavie, C.J.; Alpert, M.A. Obesity and Coronary Heart Disease: Epidemiology, Pathology, and Coronary Artery Imaging. Curr. Probl. Cardiol. 2021, 46, 100655. [Google Scholar] [CrossRef]
- Tanner, L.; Kenny, R.; Still, M.; Ling, J.; Pearson, F.; Thompson, K.; Bhardwaj-Gosling, R. NHS Health Check programme: A rapid review update. BMJ Open 2022, 12, e052832. [Google Scholar] [CrossRef]
- Deborde, T.; Chatignoux, E.; Quintin, C.; Beltzer, N.; Hamers, F.F.; Rogel, A. Breast cancer screening programme participation and socioeconomic deprivation in France. Prev. Med. 2018, 115, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Boyce, K.; White, C.; Hunt, P.; Abel, N.; James, Z.; Micic, T.; Gomez, K.F. Inequalities in health? An update on the effect of social deprivation for patients with breast cancer in South East Wales. Surgeon 2019, 17, 88–96. [Google Scholar] [CrossRef]
- Garner-Purkis, A.; Alageel, S.; Burgess, C.; Gulliford, M. A community-based, sport-led programme to increase physical activity in an area of deprivation: A qualitative case study. BMC Public Health 2020, 20, 1018. [Google Scholar] [CrossRef] [PubMed]
- Malyutina, S.; Bobak, M.; Simonova, G.; Gafarov, V.; Nikitin, Y.; Marmot, M. Education, marital status, and total and cardiovascular mortality in Novosibirsk, Russia: A prospective cohort study. Ann. Epidemiol. 2004, 14, 244–249. [Google Scholar] [CrossRef]
- Sidorenkov, O.; Nilssen, O.; Grjibovski, A.M. Determinants of cardiovascular and all-cause mortality in northwest Russia: A 10-year follow-up study. Ann. Epidemiol. 2012, 22, 57–65. [Google Scholar] [CrossRef]
- Petersen, J.; Kontsevaya, A.; McKee, M.; Richardson, E.; Cook, S.; Malyutina, S.; Kudryavtsev, A.V.; Leon, D.A. Primary care use and cardiovascular disease risk in Russian 40-69 year olds: A cross-sectional study. J. Epidemiol. Community Health 2020, 74, 692–967. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Balanova, Y.A.; Shalnova, S.A.; Muromtseva, G.A.; Kapustina, A.V.; Drapkina, O.M. Regional living conditions and the prevalence, awareness, treatment, control of hypertension at the individual level in Russia. BMC Public Health 2022, 22, 202. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Kotova, M.B.; Gomanova, L.I.; Shalnova, S.A.; Balanova, Y.A.; Evstifeeva, S.E.; Drapkina, O.M. Mental Health of the Russian Federation Population versus Regional Living Conditions and Individual Income. Int. J. Environ. Res. Public Health 2023, 20, 5973. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Karamnova, N.S.; Shalnova, S.A.; Muromtseva, G.A.; Kapustina, A.V.; Drapkina, O.M. Regional Living Conditions and Individual Dietary Characteristics of the Russian Population. Nutrients 2023, 15, 396. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Shalnova, S.A.; Muromtseva, G.A.; Balanova, Y.A.; Evstifeeva, S.E.; Kapustina, A.V.; Drapkina, O.M. Individual alcohol consumption by the population of Russia versus regional living conditions. Glob. Health J. 2024, 8, 24–31. [Google Scholar] [CrossRef]
- Boitsov, S.A.; Chazov, E.I.; Shlyakhto, E.V.; Shalnova, S.A.; Konradi, A.O.; Karpov, Y.A. Scientific and Organizing Committee of the Russian Federation essay. Epidemiology of cardiovascular diseases in different regions of Russia (ESSE-RF). The rationale for and design of the study. Russ. J. Prevenfive Med. Public Health 2013, 16, 25–34. (In Russian) [Google Scholar]
- Honaker, J.; King, G.; Blackwell, M. Amelia II. A Program for Missing Data. J. Stat. Softw. 2011, 45, 1–47. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- The Russian Federal State Statistics Service. The All-Russian Census of Population for 2010. Available online: https://rosstat.gov.ru/free_doc/new_site/m-sotrudn/eng_site/sensus.html (accessed on 21 March 2022).
- Zelenina, A. Russian subject-level index of multidimensional deprivation and its association with all-cause and infant mortality. J. Prev. Med. Hyg. 2022, 63, E533–E540. [Google Scholar] [CrossRef]
- Hubbard, A.E.; Ahern, J.; Fleischer, N.L.; Van der Laan, M.; Lippman, S.A.; Jewell, N.; Bruckner, T.; Satariano, W.A. To GEE or not to GEE: Comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology 2010, 21, 467–474. [Google Scholar] [CrossRef]
- Lucumi, D.I.; Schulz, A.J.; Roux, A.V.D.; Grogan-Kaylor, A. Income inequality and high blood pressure in Colombia: A multilevel analysis. Cad. Saude Publica 2017, 33, e00172316. [Google Scholar] [CrossRef]
- Diez-Roux, A.V.; Link, B.G.; Northridge, M.E. A multilevel analysis of income inequality and cardiovascular disease risk factors. Soc. Sci. Med. 2000, 50, 673–687. [Google Scholar] [CrossRef]
- Pichora, E.; Polsky, J.Y.; Catley, C.; Perumal, N.; Jin, J.; Allin, S. Comparing individual and area-based income measures: Impact on analysis of inequality in smoking, obesity, and diabetes rates in Canadians 2003-2013. Can. J. Public Health 2018, 109, 410–418. [Google Scholar] [CrossRef]
- Tang, K.; Wang, H.; Liu, Y.; Tan, S.H. Interplay of regional economic development, income, gender and type 2 diabetes: Evidence from half a million Chinese. J. Epidemiol. Community Health 2019, 73, 867–873. [Google Scholar] [CrossRef]
- Tang, K.; Zhang, Y.; Wang, H.; Tan, S.H.; Bai, L.; Liu, Y. Regional economic development, household income, gender and hypertension: Evidence from half a million Chinese. BMC Public Health 2020, 20, 901. [Google Scholar] [CrossRef]
- Volkova, N.; McClellan, W.; Klein, M.; Flanders, D.; Kleinbaum, D.; Soucie, J.M.; Presley, R. Neighborhood poverty and racial differences in ESRD incidence. J. Am. Soc. Nephrol. 2008, 19, 356–364. [Google Scholar] [CrossRef]
- Crews, D.C.; Gutiérrez, O.M.; Fedewa, S.A.; Luthi, J.C.; Shoham, D.; Judd, S.E.; Powe, N.R.; McClellan, W.M. Low income, community poverty and risk of end stage renal disease. BMC Nephrol. 2014, 15, 192. [Google Scholar] [CrossRef]
- Krieger, J.; Higgins, D.L. Housing and health: Time again for public health action. Am. J. Public Health 2002, 92, 758–768. [Google Scholar] [CrossRef]
- Almeida, W.D.S.; Szwarcwald, C.L.; Souza Júnior, P.R.B. Housing conditions and coverage of the Family Health Strategy in Brazil: A comparison of the results of the National Health Survey 2013 and 2019. Rev. Bras. Epidemiol. 2021, 24, e210005. [Google Scholar] [CrossRef]
- WHO Housing and Health Guidelines; World Health Organization: Geneva, Switzerland, 2018.
- Riva, A.; Rebecchi, A.; Capolongo, S.; Gola, M. Can Homes Affect Well-Being? A Scoping Review among Housing Conditions, Indoor Environmental Quality, and Mental Health Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 15975. [Google Scholar] [CrossRef]
- Rautio, N.; Filatova, S.; Lehtiniemi, H.; Miettunen, J. Living environment and its relationship to depressive mood: A systematic review. Int. J. Soc. Psychiatry 2018, 64, 92–103. [Google Scholar] [CrossRef]
- Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- Krittanawong, C.; Maitra, N.S.; Qadeer, Y.K.; Wang, Z.; Fogg, S.; Storch, E.A.; Celano, C.M.; Huffman, J.C.; Jha, M.; Charney, D.S.; et al. Association of Depression and Cardiovascular Disease. Am. J. Med. 2023, 136, 881–895. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Yang, H.; Zhang, Y.; Xu, F.; Cao, Z.; Ma, Y.; Hou, Y.; Borne, Y.; Wang, Y. Association of comprehensive mental health with incident cardiovascular disease: A prospective cohort study. J. Affect. Disord. 2022, 298, 388–395. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Caterino, A.L.; Bianco, F.; Caputi, C.G.; Salerni, S.; Sciomer, S.; Maffei, S.; Gallina, S. Depression and cardiovascular disease: The deep blue sea of women’s heart. Trends Cardiovasc. Med. 2020, 30, 170–176. [Google Scholar] [CrossRef]
- Gu, K.D.; Faulkner, K.C.; Thorndike, A.N. Housing instability and cardiometabolic health in the United States: A narrative review of the literature. BMC Public Health 2023, 23, 931. [Google Scholar] [CrossRef]
- Yang, B.Y.; Qian, Z.; Howard, S.W.; Vaughn, M.G.; Fan, S.J.; Liu, K.K.; Dong, G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018, 235, 576–588. [Google Scholar] [CrossRef]
- Mei, Y.; Zhao, J.; Zhou, Q.; Zhao, M.; Xu, J.; Li, Y.; Li, K.; Xu, Q. Residential greenness attenuated association of long-term air pollution exposure with elevated blood pressure: Findings from polluted areas in Northern China. Front. Public Health 2022, 10, 1019965. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Xin, C.; Duan, Z.; Wei, J.; Zhang, X.; Han, S.; Niu, Z. Associations of long-term exposure to air pollution, physical activity with blood pressure and prevalence of hypertension: The China Health and Retirement Longitudinal Study. Front. Public Health 2023, 11, 1137118. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.; Zhai, G. Association between air pollution and hospital admissions for hypertension in Lanzhou, China. Environ Sci. Pollut. Res. Int. 2022, 29, 11976–11989. [Google Scholar] [CrossRef]
- Howell, N.A.; Tu, J.V.; Moineddin, R.; Chen, H.; Chu, A.; Hystad, P.; Booth, G.L. Interaction between neighborhood walkability and traffic-related air pollution on hypertension and diabetes: The CANHEART cohort. Environ. Int. 2019, 132, 104799. [Google Scholar] [CrossRef]
- Yang, B.Y.; Qian, Z.M.; Vaughn, M.G.; Howard, S.W.; Pemberton, J.P.; Ma, H.; Chen, D.H.; Hu, L.W.; Zeng, X.W.; Zhang, C.; et al. Overweight modifies the association between long-term ambient air pollution and prehypertension in Chinese adults: The 33 Communities Chinese Health Study. Environ. Health 2018, 17, 57. [Google Scholar] [CrossRef]
- Yang, B.Y.; Qian, Z.M.; Vaughn, M.G.; Nelson, E.J.; Dharmage, S.C.; Heinrich, J.; Lin, S.; Lawrence, W.R.; Ma, H.; Chen, D.H.; et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. Environ. Pollut. 2017, 229, 696–704. [Google Scholar] [CrossRef]
- Feizi, A.; Shahraki, P.K.; Najafabadi, A.M.; Iraj, B.; Abyar, M.; Amini, M.; Meamar, R.; Aminorroaya, A. The association of exposure to air pollution with changes in plasma glucose indices, and incidence of diabetes and prediabetes: A prospective cohort of first-degree relatives of patients with type 2 diabetes. J. Res. Med. Sci. 2023, 28, 21. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; Li, S.; Williams, G.; Kan, H.; Marks, G.B.; Morawska, L.; Abramson, M.J.; Chen, S.; Yao, T.; et al. Air pollution and fasting blood glucose: A longitudinal study in China. Sci. Total Environ. 2016, 541, 750–755. [Google Scholar] [CrossRef]
- Yitshak-Sade, M.; Kloog, I.; Liberty, I.F.; Katra, I.; Novack, L.; Novack, V. Air Pollution and Serum Glucose Levels: A Population-Based Study. Medicine 2015, 94, e1093. [Google Scholar] [CrossRef]
- Lucht, S.A.; Hennig, F.; Matthiessen, C.; Ohlwein, S.; Icks, A.; Moebus, S.; Jöckel, K.H.; Jakobs, H.; Hoffmann, B. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study. Environ. Health Perspect. 2018, 126, 047001. [Google Scholar] [CrossRef]
- Tang, Y.X.; Bloom, M.S.; Qian, Z.M.; Liu, E.; Jansson, D.R.; Vaughn, M.G.; Lin, H.L.; Xiao, L.W.; Duan, C.W.; Yang, L.; et al. Association between ambient air pollution and hyperuricemia in traffic police officers in China: A cohort study. Int. J. Environ. Health Res. 2021, 31, 54–62. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, M.; Cao, Y.; Du, Y.; Chen, M.; Xue, R.; Shen, M.; Luo, D.; Xiao, S.; Duan, Y. Exposure to ambient air pollutants is associated with an increased incidence of hyperuricemia: A longitudinal cohort study among Chinese government employees. Environ. Res. 2023, 235, 116631. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.H.; Qian, Z.M.; Xaverius, P.K.; Trevathan, E.; Maalouf, S.; Parker, J.; Yang, L.; Liu, M.M.; Wang, D.; Ren, W.H.; et al. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension 2013, 61, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, S.; Liu, H.; Cui, Z.; Hou, F.; Feng, S.; Zhang, Y.; Liu, H.; Lu, C.; Yu, P. Risk Analysis of Air Pollution and Meteorological Factors Affecting the Incidence of Diabetes in the Elderly Population in Northern China. J. Diabetes Res. 2020, 2020, 3673980. [Google Scholar] [CrossRef] [PubMed]
- Eze, I.C.; Hemkens, L.G.; Bucher, H.C.; Hoffmann, B.; Schindler, C.; Künzli, N.; Schikowski, T.; Probst-Hensch, N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: Systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 381–389. [Google Scholar] [CrossRef]
- Sohn, D.; Oh, H. Gender-dependent Differences in the Relationship between Diabetes Mellitus and Ambient Air Pollution among Adults in South Korean Cities. Iran. J. Public Health 2017, 46, 293–300. [Google Scholar]
- Sanidas, E.; Papadopoulos, D.P.; Grassos, H.; Velliou, M.; Tsioufis, K.; Barbetseas, J.; Papademetriou, V. Air pollution and arterial hypertension. A new risk factor is in the air. J. Am. Soc. Hypertens. 2017, 11, 709–715. [Google Scholar] [CrossRef]
- Langrish, J.P.; Bosson, J.; Unosson, J.; Muala, A.; Newby, D.E.; Mills, N.L.; Blomberg, A.; Sandström, T. Cardiovascular effects of particulate air pollution exposure: Time course and underlying mechanisms. J. Intern. Med. 2012, 272, 224–239. [Google Scholar] [CrossRef]
- Bourdrel, T.; Bind, M.A.; Béjot, Y.; Morel, O.; Argacha, J.F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef]
- Mei, Y.; Li, A.; Zhao, J.; Zhou, Q.; Zhao, M.; Xu, J.; Li, R.; Li, Y.; Li, K.; Ge, X.; et al. Association of long-term air pollution exposure with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway to preventive strategies. Environ. Res. 2023, 216, 114472. [Google Scholar] [CrossRef]
- Sun, Q.; Yue, P.; Deiuliis, J.A.; Lumeng, C.N.; Kampfrath, T.; Mikolaj, M.B.; Cai, Y.; Ostrowski, M.C.; Lu, B.; Parthasarathy, S.; et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 2009, 119, 538–546. [Google Scholar] [CrossRef]
- Mann, J.K.; Lutzker, L.; Holm, S.M.; Margolis, H.G.; Neophytou, A.M.; Eisen, E.A.; Costello, S.; Tyner, T.; Holland, N.; Tidula, G.; et al. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. Environ. Res. 2021, 195, 110870. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, L.J.; Wittkopp, S.; Long, C.; Aleman, J.O.; Newman, J.D. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front. Endocrinol. (Lausanne) 2024, 15, 1321323. [Google Scholar] [CrossRef]
- Wu, Z.D.; Yang, X.K.; He, Y.S.; Ni, J.; Wang, J.; Yin, K.J.; Huang, J.X.; Chen, Y.; Feng, Y.T.; Wang, P.; et al. Environmental factors and risk of gout. Environ. Res. 2022, 212, 113377. [Google Scholar] [CrossRef] [PubMed]
- Heaney, A.; Stowell, J.D.; Liu, J.C.; Basu, R.; Marlier, M.; Kinney, P. Impacts of Fine Particulate Matter From Wildfire Smoke on Respiratory and Cardiovascular Health in California. Geohealth 2022, 6, e2021GH000578. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.B.; Kuiper, G.; O’Dell, K.; Fischer, E.V.; Magzamen, S. Wildfire Smoke Is Associated With an Increased Risk of Cardiorespiratory Emergency Department Visits in Alaska. Geohealth 2021, 5, e2020GH000349. [Google Scholar] [CrossRef]
- Conklin, D.J. Acute cardiopulmonary toxicity of inhaled aldehydes: Role of TRPA1. Ann. N. Y Acad. Sci. 2016, 1374, 59–67. [Google Scholar] [CrossRef]
- Gomez, H.M.; Haw, T.J.; Ilic, D.; Robinson, P.; Donovan, C.; Croft, A.J.; Vanka, K.S.; Small, E.; Carroll, O.R.; Kim, R.Y.; et al. Landscape fire smoke airway exposure impairs respiratory and cardiac function and worsens experimental asthma. J. Allergy Clin. Immunol. 2024, 154, 209–221.e6. [Google Scholar] [CrossRef]
- Fujita, M.; Sato, Y.; Nagashima, K.; Takahashi, S.; Hata, A. Income Related Inequality of Health Care Access in Japan: A Retrospective Cohort Study. PLoS ONE 2016, 11, e0151690. [Google Scholar] [CrossRef]
- Chu, C.L.; Lawana, N. Decomposition of income-related inequality in health check-ups services participation among elderly individuals across the 2008 financial crisis in Taiwan. PLoS ONE 2021, 16, e0252942. [Google Scholar] [CrossRef]
- Dryden, R.; Williams, B.; McCowan, C.; Themessl-Huber, M. What do we know about who does and does not attend general health checks? Findings from a narrative scoping review. BMC Public Health 2012, 12, 723. [Google Scholar] [CrossRef]
- Kherad, O.; Carneiro, A.V. Choosing wisely working group of the European Federation of Internal Medicine. General health check-ups: To check or not to check? A question of choosing wisely. Eur. J. Intern. Med. 2023, 109, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; Oh, J.; Choi, J.; Rozek, L.S.; Park, H.; Sim, J.; Kim, Y.; Lee, J.; Yoon, J.H. Socioeconomic Disparities in the Association Between All-Cause Mortality and Health Check-Up Participation Among Healthy Middle-Aged Workers: A Nationwide Study. J. Korean Med. Sci. 2023, 38, e384. [Google Scholar] [CrossRef]
- Liss, D.T.; Uchida, T.; Wilkes, C.L.; Radakrishnan, A.; Linder, J.A. General Health Checks in Adult Primary Care: A Review. JAMA 2021, 325, 2294–2306. [Google Scholar] [CrossRef]
- Neff Warner, L.; Pinero Walkinshaw, L.; Oddo, V.M.; Knox, M.A.; Hurvitz, P.M.; Rocha, A.; Chan, N.; Saelens, B.E.; Jones-Smith, J.C. The Availability and Price of Healthy Food in Seattle by Neighborhood Sociodemographic Characteristics. Prev. Chronic Dis. 2022, 19, E77. [Google Scholar] [CrossRef]
- Krukowski, R.A.; West, D.S.; Harvey-Berino, J.; Elaine Prewitt, T. Neighborhood impact on healthy food availability and pricing in food stores. J. Community Health 2010, 35, 315–320. [Google Scholar] [CrossRef] [PubMed]
- French, S.A.; Tangney, C.C.; Crane, M.M.; Wang, Y.; Appelhans, B.M. Nutrition quality of food purchases varies by household income: The SHoPPER study. BMC Public Health 2019, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Jennings, V.; Gaither, C.J. Approaching environmental health disparities and green spaces: An ecosystem services perspective. Int. J. Environ. Res. Public Health 2015, 12, 1952–1968. [Google Scholar] [CrossRef]
- Piantadosi, S.; Byar, D.P.; Green, S.B. The ecological fallacy. Am. J. Epidemiol. 1988, 127, 893–904. [Google Scholar] [CrossRef]
- Spatial Aggregation and the Ecological Fallacy. Chapman Hall. CRC Handb. Mod. Stat. Methods 2010, 2010, 541–558. [CrossRef]
- Antczak, R.; Quashie, N.T.; Mair, C.A.; Arpino, B. Less Is (Often) More: Number of Children and Health Among Older Adults in 24 Countries. J. Gerontol. B Psychol. Sci. Soc. Sci. 2023, 78, 1892–1902. [Google Scholar] [CrossRef]
Dependent Variables | Level of Deprivation *** | Total Population | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | ||
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Hypertension | Q1 | REF | REF | REF | ||||||
Q2 | 1.05 (0.36–3.03) | 0.97 (0.36–2.60) | 0.97 (0.36–2.60) | 0.90 (0.32–2.49) | 0.84 (0.32–2.23) | 0.87 (0.32–2.38) | 1.16 (0.39–3.49) | 1.07 (0.41–2.81) | 1.07 (0.41–2.81) | |
Q3 | 1.04 (0.80–1.34) | 1.09 (0.80–1.47) | 1.09 (0.80–1.48) | 1.22 (1.18–1.27) * | 1.18 (1.05–1.34) * | 1.21 (1.07–1.37) * | 0.92 (0.61–1.38) | 1.01 (0.68–1.52) | 1.02 (0.68–1.53) | |
Q4 | 1.12 (0.84–1.51) | 1.08 (0.78–1.50) | 1.08 (0.77–1.50) | 1.18 (0.99–1.42) | 1.10 (0.87–1.38) | 1.15 (0.93–1.43) | 1.09 (0.70–1.70) | 1.05 (0.69–1.60) | 1.05 (0.69–1.62) | |
Elevated blood pressure | Q1 | REF | REF | REF | ||||||
Q2 | 0.41 (0.21–0.80) * | 0.41 (0.22–0.74) * | 0.41 (0.22–0.75) * | 0.36 (0.17–0.77) * | 0.37 (0.19–0.74) * | 0.38 (0.19–0.73) * | 0.43 (0.23–0.81) * | 0.45 (0.25–0.81) * | 0.46 (0.25–0.83) * | |
Q3 | 1.01 (0.55–1.85) | 0.98 (0.56–1.71) | 0.98 (0.56–1.71) | 0.85 (0.48–1.51) | 0.87 (0.51–1.48) | 0.87 (0.53–1.45) | 1.12 (0.59–2.14) | 1.10 (0.59–2.05) | 1.11 (0.60–2.04) | |
Q4 | 0.85 (0.46–1.55) | 0.87 (0.49–1.54) | 0.88 (0.50–1.56) | 0.77 (0.43–1.37) | 0.81 (0.48–1.39) | 0.81 (0.48–1.36) | 0.93 (0.49–1.75) | 0.95 (0.51–1.76) | 0.96 (0.52–1.79) | |
Obesity | Q1 | REF | REF | REF | ||||||
Q2 | 1.11 (0.53–2.29) | 1.08 (0.61–1.90) | 1.07 (0.61–1.91) | 0.91 (0.54–1.54) | 0.96 (0.60–1.54) | 0.96 (0.60–1.54) | 1.26 (0.56–2.84) | 1.20 (0.66–2.18) | 1.18 (0.65–2.15) | |
Q3 | 0.95 (0.73–1.23) | 0.99 (0.78–1.25) | 0.99 (0.78–1.26) | 0.96 (0.79–1.18) | 0.96 (0.76–1.22) | 0.97 (0.76–1.23) | 0.97 (0.71–1.31) | 1.00 (0.79–1.26) | 1.00 (0.78–1.29) | |
Q4 | 1.18 (0.88–1.57) | 1.12 (0.86–1.46) | 1.12 (0.86–1.47) | 1.01 (0.83–1.23) | 1.04 (0.81–1.33) | 1.04 (0.81–1.35) | 1.26 (0.90–1.78) | 1.21 (0.94–1.56) | 1.20 (0.92–1.57) | |
Diabetes mellitus | Q1 | REF | REF | REF | ||||||
Q2 | 1.60 (0.88–2.89) | 1.44 (1.01–2.04) * | 1.44 (1.02–2.04) * | 1.49 (0.82–2.72) | 1.40 (0.90–2.19) | 1.41 (0.92–2.16) | 1.68 (0.95–2.99) | 1.49 (1.09–2.03) * | 1.47 (1.09–1.99) * | |
Q3 | 1.14 (0.85–1.53) | 1.15 (0.90–1.49) | 1.12 (0.85–1.48) | 1.21 (0.90–1.61) | 1.13 (0.91–1.40) | 1.09 (0.87–1.37) | 1.12 (0.78–1.60) | 1.23 (0.88–1.71) | 1.21 (0.83–1.77) | |
Q4 | 1.15 (0.96–1.38) | 1.02 (0.83–1.25) | 1.02 (0.84–1.25) | 1.35 (1.00–1.82) * | 1.16 (0.94–1.44) | 1.14 (0.94–1.38) | 1.05 (0.85–1.30) | 0.99 (0.76–1.30) | 1.00 (0.77–1.28) | |
Prediabetes | Q1 | REF | REF | REF | ||||||
Q2 | 1.38 (0.39–4.94) | 1.35 (0.40–4.60) | 1.37 (0.40–4.69) | 1.18 (0.32–4.27) | 1.16 (0.34–3.91) | 1.21 (0.36–4.13) | 1.53 (0.42–5.55) | 1.57 (0.48–5.13) | 1.57 (0.48–5.10) | |
Q3 | 1.17 (0.85–1.60) | 1.18 (0.85–1.64) | 1.19 (0.86–1.66) | 1.14 (0.82–1.59) | 1.15 (0.80–1.66) | 1.19 (0.82–1.73) | 1.12 (0.77–1.62) | 1.19 (0.83–1.69) | 1.19 (0.83–1.72) | |
Q4 | 0.94 (0.57–1.55) | 0.94 (0.57–1.54) | 0.96 (0.58–1.57) | 1.01 (0.62–1.64) | 0.99 (0.59–1.66) | 1.02 (0.60–1.73) | 0.89 (0.49–1.60) | 0.93 (0.55–1.57) | 0.94 (0.55–1.59) | |
Chronic kidney disease | Q1 | REF | REF | REF | ||||||
Q2 | 1.35 (0.47–3.91) | 1.22 (0.48–3.08) | 1.22 (0.48–3.08) | 1.09 (0.51–2.33) | 1.12 (0.52–2.44) | 1.06 (0.49–2.31) | 1.56 (0.44–5.53) | 1.47 (0.43–5.07) | 1.34 (0.46–3.91) | |
Q3 | 1.08 (0.45–2.61) | 1.06 (0.47–2.38) | 1.06 (0.47–2.36) | 0.92 (0.37–2.29) | 0.91 (0.37–2.27) | 0.89 (0.37–2.15) | 1.21 (0.49–3.00) | 1.17 (0.48–2.86) | 1.15 (0.51–2.60) | |
Q4 | 1.54 (0.66–3.60) | 1.38 (0.63–2.99) | 1.37 (0.64–2.96) | 1.06 (0.53–2.11) | 1.02 (0.49–2.11) | 0.95 (0.44–2.07) | 1.90 (0.72–5.04) | 1.78 (0.69–4.60) | 1.63 (0.71–3.77) | |
Hyperuricemia | Q1 | REF | REF | REF | ||||||
Q2 | 0.76 (0.46–1.24) | 0.79 (0.49–1.28) | 0.79 (0.49–1.27) | 0.51 (0.32–0.82) * | 0.58 (0.37–0.93) * | 0.59 (0.36–0.94) * | 1.00 (0.60–1.68) | 0.96 (0.63–1.46) | 0.97 (0.64–1.46) | |
Q3 | 1.17 (0.84–1.64) | 1.21 (0.82–1.79) | 1.21 (0.83–1.78) | 1.08 (0.66–1.77) | 1.14 (0.69–1.89) | 1.14 (0.69–1.90) | 1.16 (0.90–1.50) | 1.24 (0.95–1.61) | 1.23 (0.94–1.62) | |
Q4 | 0.87 (0.59–1.28) | 0.92 (0.60–1.43) | 0.92 (0.60–1.43) | 0.73 (0.54–1.00) * | 0.84 (0.60–1.19) | 0.83 (0.58–1.20) | 1.00 (0.63–1.58) | 1.01 (0.61–1.68) | 1.02 (0.61–1.70) |
Dependent Variables | Level of Deprivation *** | Total Population | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | ||
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Hypertension | Q1 | REF | REF | REF | ||||||
Q2 | 0.60 (0.30–1.22) | 0.63 (0.32–1.23) | 0.63 (0.32–1.23) | 0.64 (0.29–1.40) | 0.63 (0.30–1.33) | 0.63 (0.29–1.37) | 0.58 (0.30–1.14) | 0.64 (0.35–1.18) | 0.64 (0.35–1.18) | |
Q3 | 0.78 (0.49–1.22) | 0.84 (0.56–1.25) | 0.84 (0.56–1.25) | 0.93 (0.62–1.39) | 0.93 (0.66–1.32) | 0.94 (0.65–1.36) | 0.69 (0.41–1.15) | 0.79 (0.51–1.23) | 0.80 (0.51–1.24) | |
Q4 | 0.97 (0.59–1.60) | 0.92 (0.59–1.41) | 0.92 (0.59–1.41) | 1.00 (0.65–1.52) | 0.91 (0.59–1.40) | 0.93 (0.61–1.43) | 0.96 (0.53–1.74) | 0.90 (0.56–1.46) | 0.91 (0.56–1.46) | |
Elevated blood pressure | Q1 | REF | REF | REF | ||||||
Q2 | 0.91 (0.42–1.97) | 0.85 (0.41–1.79) | 0.86 (0.41–1.80) | 0.87 (0.38–1.98) | 0.86 (0.39–1.90) | 0.89 (0.42–1.89) | 0.88 (0.41–1.90) | 0.82 (0.41–1.66) | 0.84 (0.42–1.66) | |
Q3 | 1.22 (0.59–2.53) | 1.17 (0.59–2.31) | 1.18 (0.60–2.33) | 1.10 (0.50–2.43) | 1.09 (0.52–2.29) | 1.10 (0.53–2.25) | 1.30 (0.65–2.60) | 1.25 (0.65–2.41) | 1.26 (0.66–2.41) | |
Q4 | 1.14 (0.55–2.36) | 1.19 (0.60–2.35) | 1.20 (0.61–2.37) | 1.12 (0.50–2.52) | 1.19 (0.57–2.49) | 1.20 (0.58–2.47) | 1.18 (0.60–2.33) | 1.20 (0.63–2.28) | 1.22 (0.64–2.29) | |
Obesity | Q1 | REF | REF | REF | ||||||
Q2 | 0.69 (0.44–1.07) | 0.74 (0.53–1.04) | 0.74 (0.53–1.04) | 0.79 (0.53–1.17) | 0.81 (0.58–1.13) | 0.81 (0.58–1.14) | 0.65 (0.40–1.06) | 0.70 (0.50–0.99) * | 0.70 (0.50–0.98) * | |
Q3 | 0.79 (0.56–1.11) | 0.85 (0.64–1.14) | 0.85 (0.64–1.14) | 0.81 (0.66–0.99) * | 0.84 (0.66–1.06) | 0.84 (0.66–1.07) | 0.80 (0.52–1.22) | 0.88 (0.63–1.24) | 0.89 (0.63–1.25) | |
Q4 | 1.13 (0.80–1.60) | 1.08 (0.82–1.41) | 1.08 (0.82–1.41) | 1.04 (0.86–1.27) | 1.03 (0.80–1.32) | 1.04 (0.81–1.33) | 1.17 (0.76–1.80) | 1.11 (0.81–1.52) | 1.11 (0.81–1.51) | |
Diabetes mellitus | Q1 | REF | REF | REF | ||||||
Q2 | 0.81 (0.49–1.35) | 0.90 (0.64–1.27) | 0.88 (0.63–1.23) | 0.91 (0.52–1.60) | 0.92 (0.61–1.39) | 0.91 (0.61–1.36) | 0.76 (0.46–1.25) | 0.89 (0.64–1.25) | 0.89 (0.65–1.21) | |
Q3 | 0.82 (0.47–1.42) | 0.90 (0.60–1.35) | 0.90 (0.60–1.35) | 0.84 (0.50–1.40) | 0.84 (0.55–1.27) | 0.81 (0.55–1.20) | 0.82 (0.45–1.47) | 0.98 (0.64–1.50) | 0.99 (0.65–1.50) | |
Q4 | 0.80 (0.48–1.33) | 0.72 (0.52–1.00) * | 0.72 (0.52–0.99) * | 1.06 (0.56–1.98) | 0.89 (0.60–1.33) | 0.87 (0.58–1.31) | 0.69 (0.42–1.12) | 0.66 (0.47–0.93) * | 0.66 (0.48–0.91) * | |
Prediabetes | Q1 | REF | REF | REF | ||||||
Q2 | 0.47 (0.19–1.15) | 0.48 (0.20–1.12) | 0.48 (0.20–1.13) | 0.43 (0.19–0.96) * | 0.44 (0.21–0.94) * | 0.46 (0.21–0.97) * | 0.49 (0.18–1.30) | 0.51 (0.21–1.26) | 0.52 (0.21–1.25) | |
Q3 | 0.86 (0.45–1.64) | 0.89 (0.49–1.62) | 0.90 (0.49–1.64) | 0.98 (0.54–1.79) | 1.01 (0.57–1.79) | 1.03 (0.58–1.82) | 0.74 (0.37–1.47) | 0.81 (0.42–1.54) | 0.81 (0.42–1.55) | |
Q4 | 0.44 (0.21–0.93) * | 0.44 (0.22–0.86) * | 0.44 (0.22–0.87) * | 0.44 (0.25–0.78) * | 0.43 (0.25–0.74) * | 0.44 (0.25–0.76) * | 0.44 (0.16–1.24) | 0.45 (0.18–1.09) | 0.45 (0.18–1.10) | |
Chronic kidney disease | Q1 | REF | REF | REF | ||||||
Q2 | 0.80 (0.38–1.69) | 0.79 (0.40–1.58) | 0.79 (0.40–1.58) | 0.86 (0.53–1.40) | 0.90 (0.55–1.46) | 0.89 (0.55–1.44) | 0.75 (0.28–2.01) | 0.72 (0.27–1.88) | 0.73 (0.30–1.79) | |
Q3 | 0.88 (0.36–2.14) | 0.89 (0.41–1.92) | 0.88 (0.41–1.91) | 0.70 (0.36–1.36) | 0.69 (0.36–1.34) | 0.66 (0.34–1.29) | 1.01 (0.32–3.14) | 0.98 (0.34–2.85) | 1.01 (0.39–2.61) | |
Q4 | 1.23 (0.68–2.23) | 1.13 (0.66–1.95) | 1.13 (0.66–1.94) | 1.13 (0.66–1.91) | 1.08 (0.64–1.81) | 1.07 (0.62–1.85) | 1.29 (0.66–2.53) | 1.20 (0.62–2.34) | 1.14 (0.63–2.05) | |
Hyperuricemia | Q1 | REF | REF | REF | ||||||
Q2 | 1.04 (0.53–2.02) | 1.09 (0.57–2.09) | 1.09 (0.57–2.09) | 1.09 (0.43–2.81) | 1.16 (0.49–2.72) | 1.15 (0.49–2.69) | 0.92 (0.57–1.46) | 1.00 (0.64–1.54) | 0.99 (0.64–1.53) | |
Q3 | 1.02 (0.72–1.43) | 1.07 (0.74–1.55) | 1.08 (0.74–1.56) | 0.89 (0.62–1.28) | 0.97 (0.69–1.37) | 0.96 (0.67–1.39) | 1.09 (0.72–1.67) | 1.20 (0.78–1.86) | 1.21 (0.78–1.87) | |
Q4 | 0.71 (0.56–0.92) * | 0.74 (0.58–0.95) * | 0.74 (0.58–0.95) * | 0.74 (0.58–0.94) * | 0.80 (0.64–0.99) * | 0.79 (0.64–0.98) * | 0.71 (0.46–1.08) | 0.71 (0.51–1.00) * | 0.72 (0.51–1.01) |
Dependent Variables | Level of Deprivation *** | Total Population | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | ||
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Hypertension | Q1 | REF | REF | REF | ||||||
Q2 | 1.52 (1.00–2.30) | 1.54 (1.09–2.18) * | 1.55 (1.10–2.18) * | 1.52 (0.92–2.52) | 1.63 (1.04–2.55) * | 1.62 (1.03–2.55) * | 1.51 (0.98–2.33) | 1.48 (1.09–2.00) * | 1.49 (1.10–2.00) * | |
Q3 | 1.40 (0.99–2.00) | 1.62 (1.20–2.19) * | 1.62 (1.20–2.19) * | 1.61 (1.01–2.56) * | 1.78 (1.18–2.68) * | 1.76 (1.14–2.72) * | 1.28 (0.91–1.80) | 1.53 (1.22–1.93) * | 1.54 (1.22–1.94) * | |
Q4 | 2.99 (2.12–4.23) * | 2.83 (2.09–3.82) * | 2.82 (2.10–3.79) * | 2.72 (1.73–4.26) * | 2.80 (1.89–4.13) * | 2.90 (1.91–4.40) * | 3.17 (2.33–4.31) * | 2.78 (2.22–3.47) * | 2.77 (2.22–3.45) * | |
Elevated blood pressure | Q1 | REF | REF | REF | ||||||
Q2 | 1.43 (1.06–1.92) * | 1.41 (0.98–2.03) | 1.42 (0.98–2.07) | 1.36 (1.01–1.84) * | 1.32 (0.94–1.87) | 1.33 (0.93–1.91) | 1.49 (1.04–2.12) * | 1.48 (0.99–2.20) | 1.47 (0.98–2.21) | |
Q3 | 1.78 (1.40–2.27) * | 1.70 (1.27–2.27) * | 1.70 (1.26–2.28) * | 1.56 (1.17–2.08) * | 1.50 (1.09–2.05) * | 1.50 (1.13–2.00) * | 1.93 (1.44–2.60) * | 1.87 (1.35–2.59) * | 1.84 (1.32–2.57) * | |
Q4 | 0.51 (0.43–0.60) * | 0.53 (0.41–0.68) * | 0.53 (0.41–0.68) * | 0.37 (0.30–0.44) * | 0.38 (0.29–0.48) * | 0.37 (0.30–0.47) * | 0.65 (0.50–0.83) * | 0.68 (0.51–0.91) * | 0.68 (0.50–0.92) * | |
Obesity | Q1 | REF | REF | REF | ||||||
Q2 | 1.17 (0.75–1.82) | 1.11 (0.78–1.57) | 1.55 (1.10–2.18) * | 1.04 (0.71–1.51) | - | 1.03 (0.74–1.45) | 1.24 (0.77–1.98) | 1.13 (0.79–1.61) | 1.14 (0.79–1.64) | |
Q3 | 1.06 (0.71–1.59) | 1.12 (0.82–1.52) | 1.62 (1.20–2.19) * | 1.10 (0.77–1.57) | - | 1.09 (0.78–1.51) | 1.06 (0.70–1.61) | 1.11 (0.81–1.52) | 1.13 (0.83–1.54) | |
Q4 | 1.83 (1.23–2.71) * | 1.61 (1.20–2.16) * | 2.82 (2.10–3.79) * | 1.45 (1.03–2.04) * | - | 1.42 (1.05–1.92) * | 2.08 (1.39–3.11) * | 1.71 (1.28–2.30) * | 1.71 (1.28–2.28) * | |
Diabetes mellitus | Q1 | REF | REF | REF | ||||||
Q2 | 1.01 (0.73–1.40) | 1.04 (0.79–1.36) | 1.05 (0.80–1.37) | 0.81 (0.48–1.37) | 0.88 (0.62–1.24) | 0.86 (0.63–1.17) | 1.15 (0.86–1.53) | 1.19 (0.84–1.68) | 1.18 (0.85–1.65) | |
Q3 | 0.98 (0.75–1.28) | 1.16 (1.00–1.35) * | 1.14 (0.97–1.36) | 0.86 (0.52–1.43) | 1.01 (0.75–1.36) | 0.97 (0.73–1.29) | 1.07 (0.84–1.36) | 1.30 (1.03–1.64) * | 1.29 (1.00–1.66) | |
Q4 | 2.08 (1.73–2.50) * | 1.80 (1.71–1.89) * | 1.80 (1.70–1.90) * | 1.62 (1.02–2.57) * | 1.63 (1.27–2.08) * | 1.61 (1.28–2.04) * | 2.42 (2.37–2.46) * | 1.95 (1.69–2.25) * | 1.92 (1.67–2.19) * | |
Prediabetes | Q1 | REF | REF | REF | ||||||
Q2 | 1.96 (1.18–3.26) * | 1.89 (1.18–3.04) * | 1.89 (1.16–3.07) * | 1.49 (0.76–2.93) | 1.46 (0.75–2.84) | 1.45 (0.77–2.72) | 2.57 (1.29–5.13) * | 2.39 (1.29–4.44) * | 2.41 (1.31–4.44) * | |
Q3 | 2.62 (1.68–4.09) * | 2.66 (1.73–4.08) * | 2.64 (1.71–4.10) * | 2.08 (1.32–3.29) * | 2.10 (1.35–3.24) * | 2.13 (1.39–3.28) * | 3.21 (1.64–6.28) * | 3.23 (1.72–6.06) * | 3.24 (1.73–6.05) * | |
Q4 | 5.96 (3.95–8.99) * | 5.49 (3.73–8.09) * | 5.51 (3.74–8.13) * | 4.49 (3.02–6.68) * | 4.18 (2.90–6.02) * | 4.27 (3.01–6.06) * | 7.93 (4.12–15.25) * | 6.89 (3.79–12.53) * | 6.90 (3.80–12.52) * | |
Chronic kidney disease | Q1 | REF | REF | REF | ||||||
Q2 | 2.20 (1.08–4.49) * | 2.19 (1.22–3.92) * | 2.18 (1.23–3.84) * | 1.68 (1.17–2.41) * | 1.66 (1.16–2.36) * | 1.60 (1.07–2.40) * | 2.52 (0.93–6.78) | 2.51 (1.04–6.06) * | 2.47 (1.11–5.51) * | |
Q3 | 1.31 (0.68–2.53) | 1.40 (0.81–2.41) | 1.40 (0.81–2.40) | 1.36 (0.83–2.23) | 1.35 (0.80–2.29) | 1.38 (0.83–2.30) | 1.28 (0.54–3.01) | 1.33 (0.60–2.93) | 1.38 (0.70–2.73) | |
Q4 | 2.51 (1.44–4.37) * | 2.32 (1.56–3.44) * | 2.31 (1.56–3.42) * | 2.01 (1.60–2.52) * | 1.97 (1.47–2.65) * | 1.90 (1.48–2.45) * | 2.80 (1.27–6.20) * | 2.83 (1.41–5.68) * | 2.55 (1.41–4.60) * | |
Hyperuricemia | Q1 | REF | REF | REF | ||||||
Q2 | 1.24 (0.98–1.56) | 1.27 (1.04–1.54) * | 1.27 (1.04–1.55) * | 1.06 (0.72- 1.55) | 1.11 (0.80–1.53) | 1.10 (0.80–1.53) | 1.41 (1.09–1.82) * | 1.38 (1.07–1.77) * | 1.39 (1.09–1.77) * | |
Q3 | 2.00 (1.47–2.74) * | 2.07 (1.52–2.84) * | 2.07 (1.51–2.85) * | 1.86 (1.16–2.98) * | 1.84 (1.16–2.91) * | 1.87 (1.18–2.94) * | 2.06 (1.45–2.92) * | 2.24 (1.49–3.37) * | 2.24 (1.49–3.36) * | |
Q4 | 1.60 (1.28–2.01) * | 1.57 (1.31–1.88) * | 1.56 (1.30–1.88) * | 1.16 (0.80–1.68) | 1.20 (0.87–1.65) | 1.22 (0.89–1.67) | 2.05 (1.63–2.57) * | 1.77 (1.40–2.25) * | 1.78 (1.41–2.25) * |
Dependent Variables | Level of Deprivation *** | Total Population | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | Model 0 | Model 1 | Model 2 | ||
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Hypertension | Q1 | REF | REF | REF | ||||||
Q2 | 1.27 (1.10–1.47) * | 1.46 (1.35–1.58) * | 1.47 (1.35–1.59) * | 0.99 (0.97–1.01) | 1.24 (1.14–1.35) * | 1.17 (1.10–1.24) * | 1.47 (1.19–1.81) * | 1.64 (1.43–1.88) * | 1.65 (1.42–1.90) * | |
Q3 | 1.13 (0.66–1.95) | 1.17 (0.71–1.90) | 1.17 (0.72–1.91) | 1.00 (0.57–1.76) | 1.09 (0.64–1.86) | 1.05 (0.61–1.81) | 1.21 (0.69–2.11) | 1.25 (0.78–1.98) | 1.25 (0.79–1.99) | |
Q4 | 1.21 (0.98–1.50) | 1.37 (1.19–1.57) * | 1.37 (1.20–1.56) * | 1.23 (1.06–1.42) * | 1.38 (1.19–1.61) * | 1.36 (1.20–1.53) * | 1.18 (0.86–1.63) | 1.37 (1.14–1.65) * | 1.37 (1.14–1.65) * | |
Elevated blood pressure | Q1 | REF | REF | REF | ||||||
Q2 | 2.15 (1.84–2.52) * | 2.00 (1.59–2.53) * | 1.99 (1.57–2.53) * | 2.13 (1.88–2.42) * | 1.89 (1.49–2.40) * | 1.93 (1.52–2.45) * | 2.10 (1.68–2.63) * | 2.01 (1.56–2.60) * | 1.97 (1.50–2.61) * | |
Q3 | 0.92 (0.56–1.51) | 0.86 (0.52–1.44) | 0.86 (0.51–1.45) | 0.77 (0.50–1.19) | 0.72 (0.46–1.15) | 0.73 (0.46–1.16) | 1.01 (0.57–1.80) | 0.99 (0.56–1.76) | 0.99 (0.56–1.77) | |
Q4 | 1.50 (1.24–1.80) * | 1.39 (1.08–1.78) * | 1.39 (1.07–1.80) * | 1.31 (1.09–1.57) * | 1.22 (0.94–1.59) | 1.26 (0.98–1.62) | 1.57 (1.22–2.00) * | 1.49 (1.13–1.97) * | 1.47 (1.10–1.98) * | |
Obesity | Q1 | REF | REF | REF | ||||||
Q2 | 1.04 (0.73–1.49) | 1.09 (0.83–1.44) | 1.09 (0.83–1.44) | 1.01 (0.79–1.28) | 1.06 (0.77–1.45) | 1.06 (0.77–1.45) | 1.08 (0.73–1.60) | 1.05 (0.79–1.40) | 1.08 (0.80–1.44) | |
Q3 | 0.90 (0.54–1.51) | 0.91 (0.60–1.39) | 0.91 (0.60–1.39) | 0.82 (0.56–1.20) | 0.84 (0.56–1.26) | 0.84 (0.56–1.26) | 0.98 (0.55–1.73) | 0.95 (0.61–1.48) | 0.95 (0.61–1.48) | |
Q4 | 0.96 (0.66–1.41) | 1.03 (0.77–1.38) | 1.03 (0.77–1.38) | 0.91 (0.70–1.18) | 0.92 (0.67–1.27) | 0.93 (0.67–1.27) | 1.03 (0.67–1.59) | 1.07 (0.79–1.47) | 1.09 (0.79–1.49) | |
Diabetes mellitus | Q1 | REF | REF | REF | ||||||
Q2 | 0.85 (0.70–1.03) | 1.12 (1.05–1.20) * | 1.12 (1.05–1.20) * | 0.57 (0.36–0.91) * | 0.85 (0.63–1.15) | 0.84 (0.62–1.14) | 1.06 (1.03–1.09) * | 1.31 (1.20–1.43) * | 1.28 (1.15–1.41) * | |
Q3 | 1.34 (0.93–1.93) | 1.53 (1.30–1.81) * | 1.53 (1.30–1.81) * | 0.88 (0.50–1.57) | 1.09 (0.76–1.57) | 1.07 (0.75–1.52) | 1.70 (1.28–2.27) * | 1.89 (1.62–2.21) * | 1.86 (1.59–2.18) * | |
Q4 | 0.83 (0.66–1.06) | 1.00 (0.85–1.17) | 0.99 (0.86–1.15) | 0.68 (0.41–1.14) | 0.85 (0.59–1.22) | 0.83 (0.58–1.17) | 0.93 (0.81–1.07) | 1.12 (0.97–1.29) | 1.10 (0.95–1.28) | |
Prediabetes | Q1 | REF | REF | REF | ||||||
Q2 | 2.17 (1.36–3.47) * | 2.18 (1.43–3.34) * | 2.16 (1.40–3.32) * | 1.50 (1.34–1.68) * | 1.57 (1.41–1.77) * | 1.59 (1.42–1.77) * | 2.95 (1.29–6.71) * | 2.80 (1.29–6.06) * | 2.81 (1.32–6.01) * | |
Q3 | 2.17 (0.92–5.13) | 2.15 (0.97–4.76) | 2.14 (0.96–4.76) | 1.43 (0.69–2.95) | 1.45 (0.75–2.80) | 1.49 (0.77–2.89) | 3.02 (1.00–9.14) | 2.96 (1.06–8.26) * | 2.98 (1.08–8.21) * | |
Q4 | 2.11 (1.25–3.55) * | 2.08 (1.30–3.34) * | 2.07 (1.28–3.33) * | 1.49 (1.03–2.16) * | 1.50 (1.03–2.20) * | 1.53 (1.06–2.21) * | 2.72 (1.17–6.33) * | 2.69 (1.23–5.92) * | 2.71 (1.25–5.86) * | |
Chronic kidney disease | Q1 | REF | REF | REF | ||||||
Q2 | 1.62 (0.84–3.12) | 1.74 (1.04–2.90) * | 1.73 (1.04–2.88) * | 2.10 (1.48–3.00) * | 2.26 (1.45–3.53) * | 2.39 (1.60–3.59) * | 1.41 (0.66–3.03) | 1.45 (0.77–2.74) | 1.50 (0.85–2.63) | |
Q3 | 1.89 (0.83–4.29) | 1.93 (0.99–3.73) | 1.92 (0.99–3.71) | 1.71 (1.09–2.68) * | 1.87 (1.17–2.99) * | 1.82 (1.19–2.76) * | 2.01 (0.72–5.60) | 2.01 (0.83–4.90) | 2.03 (0.91–4.53) | |
Q4 | 1.25 (0.58–2.71) | 1.33 (0.71–2.49) | 1.32 (0.71–2.44) | 1.42 (0.83–2.42) | 1.48 (0.85–2.58) | 1.49 (0.88–2.53) | 1.19 (0.49–2.88) | 1.22 (0.56–2.65) | 1.25 (0.65–2.39) | |
Hyperuricemia | Q1 | REF | REF | REF | ||||||
Q2 | 1.68 (1.28–2.20) * | 1.75 (1.40–2.18) * | 1.74 (1.40–2.17) * | 1.51 (1.26–1.81) * | 1.46 (1.33–1.61) * | 1.49 (1.33–1.66) * | 1.77 (1.30–2.41) * | 1.83 (1.35–2.50) * | 1.84 (1.36–2.50) * | |
Q3 | 1.15 (0.80–1.65) | 1.18 (0.87–1.59) | 1.18 (0.88–1.59) | 0.73 (0.54–0.98) * | 0.78 (0.63–0.96) * | 0.78 (0.63–0.98) * | 1.56 (1.05–2.32) * | 1.56 (1.08–2.25) * | 1.57 (1.09–2.25) * | |
Q4 | 1.64 (1.12–2.41) * | 1.74 (1.22–2.48) * | 1.74 (1.22–2.48) * | 1.32 (0.91–1.90) | 1.37 (0.97–1.93) | 1.40 (0.99–1.97) | 1.84 (1.20–2.82) * | 1.94 (1.22–3.08) * | 1.95 (1.24–3.09) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelenina, A.A.; Shalnova, S.A.; Drapkina, O.M. Association Between Area-Level Deprivation and Cardio-Metabolic Risk Factors Among the Adult Population in Russia. Int. J. Environ. Res. Public Health 2025, 22, 594. https://doi.org/10.3390/ijerph22040594
Zelenina AA, Shalnova SA, Drapkina OM. Association Between Area-Level Deprivation and Cardio-Metabolic Risk Factors Among the Adult Population in Russia. International Journal of Environmental Research and Public Health. 2025; 22(4):594. https://doi.org/10.3390/ijerph22040594
Chicago/Turabian StyleZelenina, Anastasia A., Svetlana A. Shalnova, and Oksana M. Drapkina. 2025. "Association Between Area-Level Deprivation and Cardio-Metabolic Risk Factors Among the Adult Population in Russia" International Journal of Environmental Research and Public Health 22, no. 4: 594. https://doi.org/10.3390/ijerph22040594
APA StyleZelenina, A. A., Shalnova, S. A., & Drapkina, O. M. (2025). Association Between Area-Level Deprivation and Cardio-Metabolic Risk Factors Among the Adult Population in Russia. International Journal of Environmental Research and Public Health, 22(4), 594. https://doi.org/10.3390/ijerph22040594