Patterns of Online Stress Management Information-Seeking Behavior in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire, Sample Population, and Data Acquisition
2.3. Data Treatment and Variable Specification
2.4. Statistical Analysis
2.5. Sensitivity Analysis
3. Results
3.1. Socioeconomic, Demographic, and Healthy Lifestyle Characteristics
3.2. Multiple Logistic Regression Models
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
6. Strength and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sep, M.S.; Veenman, K.; Vinkers, C.; Habets, P.C.; Bonapersona, V.; Bakvis, P.; Bentele, U.; Binder, E.; Branje, S.J.; Brückl, T.; et al. The STRESS-EU database: A European resource of human acute stress studies for the worldwide research community. Neurosci. Appl. 2024, 3, 104063. [Google Scholar]
- Turner, A.I.; Smyth, N.; Hall, S.J.; Torres, S.J.; Hussein, M.; Jayasinghe, S.U.; Ball, K.; Clow, A.J. Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology 2020, 114, 104599. [Google Scholar] [CrossRef]
- Zorn, J.V.; Schür, R.R.; Boks, M.P.; Kahn, R.S.; Joëls, M.; Vinkers, C.H. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 77, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Juhász, Á.; Sebestyén, N.; Árva, D.; Barta, V.; Pártos, K.; Vokó, Z.; Rákosy, Z. We need better ways to help students avoid the harms of stress: Results of a meta-analysis on the effectiveness of school-based stress management interventions. J. Sch. Psychol. 2024, 106, 101352. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Skelly, N.; Chew-Graham, C.A. Online health research and health anxiety: A systematic review and conceptual integration. Clin. Psychol. Sci. Pract. 2020, 27, 12299. [Google Scholar] [CrossRef]
- Otto, L.; Schlieter, H.; Harst, L.; Whitehouse, D.; Maeder, A. The telemedicine community readiness model—Successful telemedicine implementation and scale-up. Front. Digit. Health 2023, 5, 1057347. [Google Scholar] [CrossRef]
- Győrffy, Z.; Békási, S.; Döbrössy, B.; Bognár, V.K.; Radó, N.; Morva, E.; Zsigri, S.; Tari, P.; Girasek, E. Exploratory attitude survey of homeless persons regarding telecare services in shelters providing mid- and long-term accommodation: The importance of trust. PLoS ONE 2022, 17, e0261145. [Google Scholar]
- Zeng, B.; A Rivadeneira, N.; Wen, A.; Sarkar, U.; Khoong, E.C. The impact of the COVID19 pandemic on internet use and the use of digital health tools: Secondary analysis of the 2020 health information national trends survey. J. Med. Internet Res. 2022, 24, e35828. [Google Scholar] [CrossRef]
- WHO. Global Strategy on Digital Health 2020–2025; World Health Organization: Geneva, Switzerland, 2021; Available online: https://iris.who.int/bitstream/handle/10665/344249/9789240020924-eng.pdf?sequence=1 (accessed on 21 March 2025).
- Eurostat. One in Two EU Citizens Look for Health Information Online. 2021. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20210406-1 (accessed on 10 March 2025).
- Jia, X.; Pang, Y.; Liu, L.S. Online Health Information Seeking Behavior: A Systematic Review. Healthcare 2021, 9, 1740. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office 2024. Available online: https://www.ksh.hu/stadat_files/ikt/en/ikt0016.html (accessed on 10 March 2025).
- Győrffy, Z.; Döbrössy, B.; Radó, N.; Boros, J.; Békási, S. State of vulnerable populations in the techquity framework in Hungary. Front. Public Health 2023, 11, 1215325. [Google Scholar] [CrossRef]
- Schuster, A.M.; Ghaiumy, A.R.; Cotton, S.R. Online health information seeking and the association with anxiety among older adults. Front. Public Health 2023, 11, 1076571. [Google Scholar]
- Wang, X.; Shi, J.; Kong, H. Online health information seeking: A review and meta-analysis. Health Commun. 2020, 36, 1163–1175. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J. Consumer health information seeking in social media: A literature review. Health Inf. Libr. J. 2017, 34, 268–283. [Google Scholar] [CrossRef]
- Bertuzzi, V.; Semonella, M.; Bruno, D.; Manna, C.; Edbrook-Childs, J.; Giusti, E.M.; Castelnuovo, G.; Pietrabissa, G. Psy-chological support interventions for Healthcare Providers and Informal Caregivers during the COVID-19 pandemic: A systematic review of the literature. Int. J. Environ. Res. Public Health 2021, 18, 6939. [Google Scholar] [CrossRef] [PubMed]
- Döbrössy, B.; Girasek, E.; Győrffy, Z. The adaptation of digital health solutions during the COVID-19 pandemic in Hungary: A scoping review. Int. J. Health Policy Manag. 2024, 13, 7940. [Google Scholar] [CrossRef]
- Sinha, J.; Serin, N. Online Health Information Seeking and Preventative Health Actions: Cross Generational Online Survey Study. J. Med. Internet Res. 2024, 26, e48977. [Google Scholar] [PubMed]
- Sieck, C.J.; Sheon, A.; Ancker, J.S.; Castek, J.; Callahan, B.; Siefer, A. Digital inclusion as a social determinant of health. NPJ Digit. Med. 2021, 4, 52. [Google Scholar] [CrossRef]
- Reed, M.E.; Huang, J.; Graetz, I.; Lee, C.; Muelly, E.; Kennedy, C.; Kim, E. Patient characteristics associated with choosing a telemedicine visit vs office visit with the same primary care clinicians. JAMA Netw. Open 2020, 3, e205873. [Google Scholar]
- Wilson, J.; Heinsch, M.; Betts, D.; Booth, D.; Kay-Lambkin, F. Barriers and facilitators to the use of e-health by older adults: A scoping review. BMC Public Health 2021, 21, 1556. [Google Scholar] [CrossRef]
- Nagy, A.; Bata, R.; Ghanem, A.; Móré, M. Predicting diabetes prognosis using machine learning techniques in a Hungarian clinic database. Eur. J. Public Health 2024, 34 (Suppl. S3), iii450–iii451. [Google Scholar]
- Ghanem, A.; Nagy, A. Oral health’s role in diabetes risk. Front. Endocrinol. 2024, 15, 126–131. [Google Scholar]
- Jiang, Y.; Xie, Y.; Shao, Q. How did Internet usage affect life satisfaction before and after COVID-19? Mediating effects and heterogeneity analysis. Socio-Econ. Plan Sci. 2024, 95, 102007. [Google Scholar] [CrossRef]
- Chau, N.M.; Nguyen TV, A.; To, M.N.; Ghanem, A.S.; Szőllősi, G.; Móré, M.; Nagy, A.C. Association Between Influenza Vaccine Uptake and Health Awareness. Med. Sci. Monit. 2024, 29, e941406. [Google Scholar]
- Rouvinen, H.; Turunen, H.; Lindfors, P.; Kinnunen, J.M.; Rimpelä, A.; Koivusilta, L.; Kulmala, M.; Dadaczynski, K.; Okan, O.; Sormunen, M. Online health information-seeking behaviour and mental well-being among Finnish higher education students during COVID-19. Health Promot. Int. 2023, 38, daad143. [Google Scholar] [CrossRef]
- Ukonu, M.O.; Ajaebili, N.C. Socio-cultural determinants of women’s health information opportunities in Nsukka, Southeast Nigeria. Asian Women 2021, 37, 25–49. [Google Scholar]
- Woods, S.; Harris, M.; Rice, S.; Boquet, A.; Rice, C.; Rosales, D.; Domingo, C.; Bivens, M.; Lange, R.; Winter, S.; et al. Using social role theory to predict how gender and ethnicity of aviation job candidates affects perceived job classifications. Technol. Soc. 2024, 76, 102481. [Google Scholar] [CrossRef]
- Furman, M.; Joseph, N.; Miller-Perrin, C. Associations between coping strategies, perceived stress, and health indicators. Psi Chi J. Psychol. Res. 2018, 23, 61–72. [Google Scholar]
- Hamilton, S.; Fagot, B.I. Chronic stress and coping styles: A comparison of male and female undergraduates. J. Pers. Soc. Psychol. 1988, 55, 819–823. [Google Scholar]
- Bak, C.K.; Krammer, J.Ø.; Dadaczynski, K.; Orkan, O.; von Seelen, J.; Prinds, C.; Søbjerg, L.M.; Klakk, H. Digital health literacy and information-seeking behavior among university college students during the COVID-19 pandemic: A cross-sectional study from Denmark. Int. J. Environ. Res. Public Health 2022, 19, 3676. [Google Scholar] [CrossRef]
- Lee, J.; Kapteyn, A.; Clomax, A.; Jin, H. Estimating influences of unemployment and underemployment on mental health during the COVID-19 pandemic: Who suffers the most? Public Health 2021, 201, 48–54. [Google Scholar] [CrossRef]
- Bernadas, J.M.A.C.; Jiang, L.C. Explaining online health information seeking of foreign domestic workers: A test of the comprehensive model of information seeking. Health Technol. 2018, 9, 7–16. [Google Scholar] [CrossRef]
- Virtanen, P.; Janlert, U.; Hammarström, A. Health status and health behavior as predictors of the occurrence of unemployment and prolonged unemployment. Public Health 2013, 127, 46–52. [Google Scholar] [CrossRef]
- Capello, R.; Cerisola, S. Catching-up and Regional Disparities: A Resource-Allocation Approach. Eur. Plan. Stud. 2020, 29, 94–116. [Google Scholar] [CrossRef]
- Egri, Z.; Lengyel, I. Convergence and catch-up of the region types in the Central and Eastern European Countries. Appl. Spat. Anal. Policy 2024, 17, 393–415. [Google Scholar]
- van Kessel, R.; Hrzic, R.; O’Nuallain, E.; Weir, E.; Wong, B.L.H.; Anderson, M.; Baron-Cohen, S.; Mossialos, E. Digital health paradox: International policy perspectives to address increased health inequalities for people living with disabilities. J. Med. Internet Res. 2022, 24, e33819. [Google Scholar] [CrossRef]
- Kukafka, R. The Influence of Online Health Information Seeking Before a Consultation on Anxiety, Satisfaction, and Information Recall, Mediated by Patient Participation: Field Study. J. Med. Internet Res. 2021, 23, e23670. [Google Scholar]
- Zhao, Y.C.; Zhao, M.; Song, S. Online Health Information Seeking Behaviors Among Older Adults: Systematic Scoping Review. J. Med. Internet Res. 2022, 24, e34790. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Laboy, M.; Severson, N.; Perry, A.; Guilamo-Ramos, V. Differential Impact of Types of Social Support in the Mental Health of Formerly Incarcerated Latino Men. Am. J. Mens. Health 2014, 8, 226–239. [Google Scholar]
- Christiansen, J.; Lund, R.; Qualter, P.; Andersen, C.M.; Pedersen, S.S.; Lasgaard, M. Loneliness, Social Isolation, and Chronic Disease Outcomes. Ann. Behav. Med. 2021, 55, 203–215. [Google Scholar]
- Negi, S.; Sattler, M.P. Protective effect of social support: A longitudinal application of Family Stress Model. Child. Youth Serv. Rev. 2024, 164, 107864. [Google Scholar]
- Sharma, M.K.; Anand, N.; Roopesh, B.N.; Sunil, S. Digital resilience mediates healthy use of technology. Med.-Leg. J. 2021, 90, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Gasull, M.; Pallares, N.; Salcedo, N.; Pumarega, J.; Alonso, J.; Porta, M. Self-rated health and chronic conditions are associated with blood concentrations of persistent organic pollutants in the general population of Catalonia, Spain. Environ. Res. 2015, 143, 211–220. [Google Scholar] [PubMed]
- Ou, J.Y.; Peters, J.L.; Levy, J.I.; Bongiovanni, R.; Rossini, A.; Scammell, M.K. Self-rated health and its association with perceived environmental hazards, the social environment, and cultural stressors in an environmental justice population. BMC Public Health 2018, 18, 970. [Google Scholar]
- Dyar, C. The cumulative effects of stigma-related stress: Chronic stigma-related stress exposure exacerbates daily associations between enacted stigma and anxious/depressed affect. Soc. Sci. Med. 2024, 344, 116604. [Google Scholar] [CrossRef] [PubMed]
- Kovács, E.; Pikó, B. The role of religiosity and spirituality in adolescent’s mental health. Int. J. Behav. Med. 2012, 19 (Suppl. S1), S133–S134. [Google Scholar]
- Özkan, S.; Tüzün, H.; Dikmen, A.U.; Aksakal, N.B.; Çalışkan, D.; Taşçı, Ö.; Güneş, S.C. The relationship between health literacy level and media used as a source of health-related information. HLRP Health Lit. Res. Pract. 2021, 5, e109–e117. [Google Scholar] [CrossRef]
- Meskó, B.; Drobni, Z.; Bényei, É.; Gergely, B.; Győrffy, Z. Digital health is a cultural transformation of traditional healthcare. Mhealth 2017, 3, 38. [Google Scholar] [CrossRef]
- ISSP Research Group. International Social Survey Programme: Health and Health Care II—ISSP 2021; GESIS: Cologne, Germany, 2021. [Google Scholar] [CrossRef]
Variable | Category | Non-Users of OSMI (n,%) | Users of OSMI (n,%) | Total (n,%) | p-Value |
---|---|---|---|---|---|
Sex | Male | 290 (46.3) | 114 (30.9) | 404 (40.6) | <0.001 |
Female | 336 (53.7) | 255 (69.1) | 591 (59.39) | ||
Age group | Gen Z (18–24 y) | 32 (5.1) | 14 (3.8) | 46 (4.62) | <0.001 |
Gen Y (25–43 y) | 141 (22.5) | 139 (37.7) | 280 (28.14) | ||
Gen X (44–59 y) | 218 (34.8) | 133 (36) | 351 (35.27) | ||
Older adult (60 y-) | 235 (37.5) | 83 (22.5) | 318 (31.95) | ||
Marital status | Single | 111 (17.7) | 80 (21.7) | 191 (19.23) | <0.001 |
Married | 327 (52.2) | 215 (58.3) | 542 (54.58) | ||
Divorced | 85 (13.6) | 52 (14.1) | 137 (13.79) | ||
Widowed | 101 (16.1) | 22 (6) | 123 (12.4) | ||
Educational attainment | Primary | 132 (21.1) | 30 (8.1) | 162 (16.28) | <0.001 |
Secondary | 422 (67.4) | 285 (77.2) | 707 (71.05) | ||
Higher | 72 (11.5) | 54 (14.6) | 126 (12.66) | ||
Place of residence | Big city | 219 (35) | 136 (36.9) | 355 (35.67) | <0.001 |
Suburb | 16 (2.6) | 31 (8.4) | 47 (4.72) | ||
Town/small city | 194 (31) | 113 (30.6) | 307 (30.85) | ||
Rural village | 197 (31.5) | 89 (24.1) | 286 (28.74) | ||
Subjective well-being | Poor | 61 (9.9) | 38 (10.4) | 99 (10.09) | <0.001 |
Lower mid class | 180 (29.2) | 96 (26.3) | 276 (28.13) | ||
Middle class | 187 (30.4) | 73 (20) | 260 (26.5) | ||
Upper mid class | 158 (25.6) | 127 (34.8) | 285 (29.05) | ||
Affluent | 30 (4.9) | 31 (8.5) | 61 (6.21) | ||
Income quintiles | First | 211 (47.4) | 83 (29.9) | 294 (40.66) | <0.001 |
Second | 145 (32.6) | 120 (43.2) | 265 (36.65) | ||
Third | 62 (13.9) | 58 (20.9) | 120 (16.59) | ||
Fourth | 5 (1.1) | 6 (2.2) | 11 (1.52) | ||
Fifth | 22 (4.9) | 11 (4) | 33 (4.56) | ||
Smoking | Smoker | 171 (27.3) | 106 (28.7) | 277 (27.86) | 0.728 |
Non-smoker | 455 (72.7) | 262 (71) | 717 (72.13) | ||
Alcohol use | Drinker | 21 (3.4) | 20 (5.4) | 41 (4.12) | <0.001 |
Non-drinker | 604 (96.5) | 349 (94.6) | 953 (95.87) | ||
Had depression | Yes | 161 (25.7) | 109 (29.5) | 270 (27.16) | 0.144 |
No | 464 (74.1) | 260 (70.5) | 724 (72.83) | ||
Happiness | Not happy | 270 (42.2) | 118 (32) | 388 (38.5) | <0.001 |
Happy | 369 (57.8) | 250 (68) | 619 (61.5) | ||
Self-perceived health | Not good | 69 (10.7) | 17 (4.6) | 86 (8.5) | <0.001 |
Good | 570 (89.3) | 352 (95.4) | 922 (91.5) | ||
Had chronic disease | Yes | 201 (32.1) | 67 (18.2) | 268 (26.96) | <0.001 |
No | 425 (67.9) | 301 (81.8) | 726 (73.03) | ||
Employment | Employed | 366 (60) | 271 (75.6) | 637 (65.8) | <0.001 |
Unemployed | 233 (38.2) | 79 (22) | 312 (32.2) | ||
Pensioner | 10 (1.7) | 8 (2.3) | 18 (2) | ||
BMI | Overweight and obese | 150 (24.1) | 93 (25.6) | 243 (24.7) | <0.04 |
Normal | 471 (75.9) | 269 (74.4) | 740 (75.3) | ||
Religion | Other religions | 139 (22.4) | 117 (32.5) | 256 (26.2) | <0.001 |
Atheist | 96 (15.5) | 71 (19.7) | 167 (17) | ||
Catholic | 383 (62.1) | 171 (47.8) | 554 (56.8) | ||
Attendance at religious service | Several times in a month | 63 (10.1) | 28 (7.7) | 91 (9.2) | 0.09 |
Several times in a year | 295 (47.4) | 199 (54.8) | 494 (50.1) | ||
Never | 264 (42.5) | 136 (37.5) | 400 (40.7) | ||
Trust in healthcare | Yes | 536 (84.1) | 335 (91.5) | 871 (86.8) | <0.001 |
No | 101 (15.9) | 31 (8.5) | 132 (13.2) | ||
Trust in doctors | Yes | 616 (97.4) | 351 (95.9) | 967 (96.8) | 0.16 |
No | 16 (2.6) | 15 (4.1) | 31 (3.2) | ||
Easy access to healthcare | Yes | 379 (60.8) | 268 (74.2) | 647 (65.7) | <0.001 |
No | 244 (39.2) | 93 (25.8) | 337 (34.3) | ||
Trust in online health information | Yes | 418 (83.43) | 332 (90.95) | 750 (86.6) | <0.001 |
No | 83 (16.56) | 33 (9) | 116 (13.39) |
Characteristics | Users of Online Stress Management Information | ||
---|---|---|---|
OR (95% CI) | p-Value | ||
Sex | Male | ||
Female | 0.51 [0.39–0.67] | <0.001 | |
Age group | Gen Z (18–24 y) | ||
Gen Y (25–43 y) | 3.42 [1.51–4.81] | 0.03 | |
Gen X (44–59 y) | 2.01 [1.35–3.34] | <0.001 | |
Older adults (60 y-) | 1.18 [0.60–2.31] | 0.61 | |
Marital status | Single | ||
Married | 1.64 [0.31–8.54] | 0.55 | |
Divorced | 3.13 [1.92–5.17] | <0.001 | |
Widowed | 0.94 [0.67–1.31] | 0.74 | |
Educational attainment | Primary | ||
Secondary | 0.33 [0.21–0.50] | <0.001 | |
Higher | 0.31 [0.18–0.53] | <0.001 | |
Employment | Employed | ||
Unemployed | 2.21 [1.64–2.99] | <0.001 | |
Pensioner | 0.91 [0.35–2.34] | 0.85 | |
Place of residence | Big city | ||
Suburb | 0.31 [0.16–0.60] | <0.24 | |
Town/small city | 1.07 [0.78–1.47] | 0.54 | |
Rural village | 1.39 [1.12–1.93] | <0.001 | |
Subjective well-being | Poor | ||
Lower mid class | 1.11 [0.69–1.79] | 0.63 | |
Middle class | 1.53 [0.94–2.49] | 0.08 | |
Upper mid class | 0.74 [0.47–1.19] | 0.22 | |
Affluent | 0.57 [0.30–1.09] | 0.09 | |
Income quintiles | First | ||
Second | 0.47 [0.33–0.66] | <0.001 | |
Third | 0.41 [0.26–0.64] | <0.001 | |
Fourth | 0.32 [0.09–1.08] | 0.56 | |
Fifth | 0.77 [0.35–1.66] | 0.68 | |
Smoking | Non-smoker | ||
Smoker | 1.04 [0.83–1.31] | 0.70 | |
Alcohol use | Non-drinker | ||
Drinker | 0.95 [0.72–1.24] | 0.70 | |
Had depression | Yes | ||
No | 1.04 [0.83–1.31] | 0.67 | |
Happiness | Not happy | ||
Happy | 0.64 [0.49–0.84] | <0.001 | |
Self-perceived health | Not good | ||
Good | 0.39 [0.23–0.68] | <0.001 | |
Had chronic disease | Yes | ||
No | 0.46 [0.34–0.63] | <0.001 | |
BMI | Overweight and obese | ||
Normal | 2.25 [1.56–3.46] | <0.001 | |
Religion | Other religion | ||
Atheist | 1.13 [0.76–1.68] | 0.51 | |
Catholic | 1.88 [1.39–2.55] | <0.001 | |
Attendance at religious services | Several times in a month | ||
Several times in a year | 0.52 [0.20–1.35] | 0.48 | |
Never | 0.68 [0.26–1.77] | 0.43 | |
Trust in healthcare | Yes | ||
No | 2.03 [1.33–3.11] | <0.001 | |
Trust in doctors | Yes | ||
No | 0.60 [0.29–1.24] | 0.77 | |
Easy access to healthcare | Yes | ||
No | 1.85 [1.39–2.46] | <0.001 | |
Trust in online health information | No | ||
Yes | 2.02 [1.32–3.10] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jóna, G.; Fedor, A.R. Patterns of Online Stress Management Information-Seeking Behavior in Hungary. Int. J. Environ. Res. Public Health 2025, 22, 473. https://doi.org/10.3390/ijerph22040473
Jóna G, Fedor AR. Patterns of Online Stress Management Information-Seeking Behavior in Hungary. International Journal of Environmental Research and Public Health. 2025; 22(4):473. https://doi.org/10.3390/ijerph22040473
Chicago/Turabian StyleJóna, György, and Anita R. Fedor. 2025. "Patterns of Online Stress Management Information-Seeking Behavior in Hungary" International Journal of Environmental Research and Public Health 22, no. 4: 473. https://doi.org/10.3390/ijerph22040473
APA StyleJóna, G., & Fedor, A. R. (2025). Patterns of Online Stress Management Information-Seeking Behavior in Hungary. International Journal of Environmental Research and Public Health, 22(4), 473. https://doi.org/10.3390/ijerph22040473