Communicating Community-Based Public Health Surveillance: Lessons from Profiling Public Risk Perceptions of COVID-19 Wastewater Monitoring
Abstract
1. Introduction
1.1. Communicating Community-Based Public Health Surveillance: Lessons from Wastewater Monitoring Risk Profiling
1.2. Science and Utility of Wastewater Monitoring of Infectious Diseases
1.3. Public’s Risk Perceptions of Wastewater Monitoring
1.4. Profiles of Risk Perceptions and Their Covariates
2. Methods
2.1. Participants and Procedures
2.2. Measurement
2.2.1. Latent Class Indicators
2.2.2. Covariates
3. Results
3.1. Descriptive Statistics
3.2. Latent Class Analysis
3.3. Covariate Analysis
4. Discussion
Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byambasuren, O.; Cardona, M.; Bell, K.; Clark, J.; McLaws, M.L.; Glasziou, P. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. Off. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2020, 5, 223–234. [Google Scholar] [CrossRef]
- Daughton, C.G. Wastewater surveillance for population-wide COVID-19: The present and future. Sci. Total Environ. 2020, 736, 139631. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Environmental Surveillance for SARS-CoV-2 to Complement Public Health Surveillance—Interim Guidance. 2022. Available online: https://www.who.int/publications/i/item/WHO-HEP-ECH-WSH-2022.1 (accessed on 30 March 2025).
- LaJoie, A.S.; Holm, R.H.; Anderson, L.B.; Ness, H.D.; Smith, T. Nationwide public perceptions regarding the acceptance of using wastewater for community health monitoring in the United States. PLoS ONE 2022, 17, e0275075. [Google Scholar] [CrossRef]
- Holm, R.H.; Brick, J.M.; Amraotkar, A.R.; Hart, J.L.; Mukherjee, A.; Zeigler, J.; Bushau-Sprinkle, A.M.; Anderson, L.B.; Walker, K.L.; Smith, T.R.; et al. Public awareness and support for use of wastewater for SARS-CoV-2 monitoring: A community survey in Louisville, Kentucky. Environ. Sci. Technol. 2022, 2, 1891–1898. [Google Scholar] [CrossRef]
- Hrudey, S.E.; Silva, D.S.; Shelley, J.; Pons, W.; Isaac-Renton, J.; Chik, A.H.S.; Conant, B. Ethics guidance for environmental scientists engaged in surveillance of wastewater for SARS-CoV-2. Environ. Sci. Technol. 2021, 55, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S. The Ghost Map: The Story of London’s Most Terrifying Epidemic—And How It Changed Science, Cities, and the Modern World; Penguin: London, UK, 2006. [Google Scholar]
- Kilaru, P.; Hill, D.; Anderson, K.; Collins, M.B.; Green, H.; Kmush, B.L.; Larsen, D.A. Wastewater surveillance for infectious disease: A systematic review. Am. J. Epidemiol. 2023, 192, 305–322. [Google Scholar] [CrossRef]
- Paul, J.R.; Trask, J.D.; Gard, S. II. Poliomyelitic virus in urban sewage. J. Exp. Med. 1940, 71, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Asghar, H.; Diop, O.M.; Weldegebriel, G.; Malik, F.; Shetty, S.; Bassioni, L.E.; Akande, A.O.; Maamoun, E.A.; Zaidi, S.; Lowther, S.A.; et al. Environmental surveillance for polioviruses in the Global Polio Eradication Initiative. J. Infect. Dis. 2014, 210 (Suppl. S1), S294–S303. [Google Scholar] [CrossRef]
- Castiglioni, S.; Thomas, K.V.; Kasprzyk-Hordern, B.; Vandam, L.; Griffiths, P. Testing wastewater to detect illicit drugs: State of the art, potential and research needs. Sci. Total Environ. 2014, 487, 613–620. [Google Scholar] [CrossRef]
- Annan, J.; Henderson, R.; Gray, M.; Clark, R.G.; Sarin, C.; Black, K. A review of wastewater-based epidemiology for the SARS-CoV-2 virus in rural, remote, and resource-constrained settings internationally: Insights for implementation, research, and policy for first nations in Canada. Int. J. Environ. Res. Public Health 2024, 21, 1429. [Google Scholar] [CrossRef]
- Embrett, M.; Sim, S.M.; Caldwell, H.A.T.; Boulos, L.; Yu, Z.; Agarwal, G.; Cooper, R.; Aj, A.J.G.; Bielska, I.A.; Chishtie, J.; et al. Barriers to and strategies to address COVID-19 testing hesitancy: A rapid scoping review. BMC Public Health 2022, 22, 750. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Zhang, H.; Ibaraki, M.; VanTassell, J.; Geith, K.; Cavallo, M.; Kann, R.; Saber, L.; Kraft, C.S.; et al. Early warning of a COVID-19 surge on a university campus based on wastewater surveillance for SARS-CoV-2 at residence halls. Sci. Total Environ. 2022, 821, 153291. [Google Scholar] [CrossRef]
- Chen, C.; Gao, G.; Xu, Y.; Pu, L.; Wang, Q.; Wang, L.; Wang, W.; Song, Y.; Chen, M.; Wang, L.; et al. SARS-CoV-2–positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19. Ann. Intern. Med. 2020, 172, 832–834. [Google Scholar] [CrossRef]
- Wu, F.; Lee, W.L.; Chen, H.; Gu, X.; Chandra, F.; Armas, F.; Xiao, A.; Leifels, M.; Rhode, S.F.; Wuertz, S.; et al. Making waves: Wastewater surveillance of SARS-CoV-2 in an endemic future. Water Res. 2022, 219, 118535. [Google Scholar] [CrossRef]
- Wong, J.C.C.; Tan, J.; Lim, Y.X.; Arivalan, S.; Hapuarachchi, H.C.; Mailepessov, D.; Griffiths, J.; Jayarajah, P.; Setoh, Y.X.; Tien, W.P.; et al. Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. Sci. Total Environ. 2021, 786, 147419. [Google Scholar] [CrossRef]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19–approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Onifade, T.T. Risk analysis versus risk governance: The case study of the Ebola Virus Disease. J. Risk Res. 2023, 26, 625–647. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID Data Tracker_Wastewater Surveillance. 2024. Available online: https://covid.cdc.gov/covid-data-tracker/#wastewater-surveillance (accessed on 30 March 2025).
- National Academies of Sciences, Engineering, and Medicine. Wastewater-Based Disease Surveillance for Public Health Action. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK591705/ (accessed on 30 March 2025).
- Adams, C.; Bias, M.; Welsh, R.M.; Webb, J.; Reese, H.; Delgado, S.; Person, J.; West, R.; Shin, S.; Kirby, A. The national wastewater surveillance system (NWSS): From inception to widespread coverage, 2020–2022, United States. Sci. Total Environ. 2024, 924, 171566. [Google Scholar] [CrossRef]
- Schenk, H.; Rauch, W.; Zulli, A.; Boehm, A.B. SARS-CoV-2 surveillance in US wastewater: Leading indicators and data variability analysis in 2023–2024. PLoS ONE 2024, 19, e0313927. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Avedillo, D.; Gómez-Gómez, C.; Sala-Comorera, L.; Rodríguez-Rubio, L.; Carcereny, A.; García-Pedemonte, D.; Pintó, R.M.; Guix, S.; Galofré, B.; Bosch, A.; et al. Monitoring influenza and respiratory syncytial virus in wastewater. Beyond COVID-19. Sci. Total Environ. 2023, 892, 164495. [Google Scholar] [CrossRef] [PubMed]
- van Rooyen, M.; Van der Lingen, E. Reducing uncertainty associated with managing technology innovation. Soc. Sci. Humanit. Open 2024, 9, 100771. [Google Scholar] [CrossRef]
- Yoo, W.; Yu, E.; Jung, J. Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telemat. Inform. 2018, 35, 1687–1700. [Google Scholar] [CrossRef]
- Slater, M.D. Theory and method in health audience segmentation. J. Health Commun. 1996, 1, 267–284. [Google Scholar] [CrossRef]
- Smith, R.A. Audience segmentation techniques. In Oxford Research Encyclopedia of Communication: Health and Risk Message Design and Processing; Parrott, R.L., Ed.; Oxford University Press: Oxford, UK, 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Digmayer, C.; Jakobs, E.M. Risk perception of complex technology innovations: Perspectives of experts and laymen. In Proceedings of the 2016 IEEE International Professional Communication Conference (IPCC), Austin, TX, USA, 2–5 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef]
- Bowes, D.A.; Darling, A.; Driver, E.M.; Kaya, D.; Maal-Bared, R.; Lee, L.M.; Goodman, K.; Adhikari, S.; Aggarwal, S.; Bivins, A.; et al. Structured ethical review for wastewater-based testing in support of public health. Environ. Sci. Technol. 2023, 57, 12969–12980. [Google Scholar] [CrossRef] [PubMed]
- Klingler, C.; Silva, D.S.; Schuermann, C.; Reis, A.A.; Saxena, A.; Strech, D. Ethical issues in public health surveillance: A systematic qualitative review. BMC Public Health 2017, 17, 295. [Google Scholar] [CrossRef]
- Nainani, D.; Ng, W.J.; Wuertz, S.; Thompson, J.R. Balancing public health and group privacy: Ethics, rights, and obligations for wastewater surveillance systems. Water Res. 2024, 258, 121756. [Google Scholar] [CrossRef]
- Tomsone, L.E.; Neilands, R.; Kokina, K.; Bartkevics, V.; Pugajeva, I. Pharmaceutical and recreational drug usage patterns during and post COVID-19 determined by wastewater-based epidemiology. Int. J. Environ. Res. Pub. Health 2024, 21, 206. [Google Scholar] [CrossRef]
- Hall, W.; Prichard, J.; Kirkbride, P.; Bruno, R.; Thai, P.K.; Gartner, C.; Lai, F.Y.; Ort, C.; Mueller, J.F. An analysis of ethical issues in using wastewater analysis to monitor illicit drug use. Addiction 2012, 107, 1767–1773. [Google Scholar] [CrossRef]
- Prichard, J.; Hall, W.; de Voogt, P.; Zuccato, E. Sewage epidemiology and illicit drug research: The development of ethical research guidelines. Sci. Total Environ. 2014, 472, 550–555. [Google Scholar] [CrossRef]
- Thompson, J.R.; Nancharaiah, Y.V.; Gu, X.; Lee, W.L.; Rajal, V.B.; Haines, M.B.; Girones, R.; Ng, L.C.; Alm, E.J.; Wuertz, S. Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Res. 2020, 184, 116181. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Zinn, J. COVID-19, pandemic risk and inequality: Emerging social science insights at 24 months. Health Risk Soc. 2021, 23, 273–288. [Google Scholar] [CrossRef]
- Zalla, L.C.; Martin, C.L.; Edwards, J.K.; Gartner, D.R.; Noppert, G.A. A geography of risk: Structural racism and coronavirus disease 2019 mortality in the United States. Am. J. Epidemiol. 2021, 190, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Gable, L.; Ram, N.; Ram, J.L. Legal and ethical implications of wastewater monitoring of SARS-CoV-2 for COVID-19 surveillance. J. Law Biosci. 2020, 7, lsaa039. [Google Scholar] [CrossRef]
- Vernengo, M.; Nabar-Bhaduri, S. The economic consequences of COVID-19: The great shutdown and the rethinking of economic policy. Int. J. Political Econ. 2020, 49, 265–277. [Google Scholar] [CrossRef]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lanza, S.T.; Rhoades, B.L. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prev. Sci. 2013, 14, 157–168. [Google Scholar] [CrossRef]
- Fischhoff, B. Risk perception and communication. In Oxford Textbook of Global Public Health; Roger, D., Robert, B., Mary Ann, L., Martin, G., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 940–954. [Google Scholar] [CrossRef]
- Johnson, B.B.; Kay, C.S. Affect mediates culture’s effects on COVID-19 risk perceptions, behavioral intentions, and policy support among Americans. Health Risk Soc. 2025, 27, 1–26. [Google Scholar] [CrossRef]
- Kim, Y.; Tian, X.; Solomon, D.H. Coping with COVID-19 at the community level: Testing the predictors and outcomes of communal coping. J. Community Psychol. 2022, 50, 2790–2807. [Google Scholar] [CrossRef]
- Afifi, T.D.; Basinger, E.D.; Kam, J.A. The extended theoretical model of communal coping: Understanding the properties and functionality of communal coping. J. Commun. 2020, 70, 424–446. [Google Scholar] [CrossRef]
- Hornik, R.; Kikut, A.; Jesch, E.; Woko, C.; Siegel, L.; Kim, K. Association of COVID-19 misinformation with face mask wearing and social distancing in a nationally representative US sample. Health Commun. 2021, 36, 6–14. [Google Scholar] [CrossRef]
- Marsh, K.L.; Wallace, H.M. The influence of attitudes on beliefs: Formation and change. In Handbook of Attitudes; Albarracín, D., Johnson, B.T., Zanna, M.P., Eds.; Erlbaum: Mahwah, NJ, USA, 2005; pp. 369–395. [Google Scholar]
- Aguinis, H.; Villamor, I.; Ramani, R.S. MTurk research: Review and recommendations. J. Manag. 2021, 47, 823–837. [Google Scholar] [CrossRef]
- Palan, S.; Schitter, C. Prolific. ac—A subject pool for online experiments. J. Behav. Exp. Financ. 2018, 17, 22–27. [Google Scholar] [CrossRef]
- McClary-Gutierrez, J.S.; Mattioli, M.C.; Marcenac, P.; Silverman, A.I.; Boehm, A.B.; Bibby, K.; Balliet, M.; Reyes, F.L.d.L.; Gerrity, D.; Griffith, J.F.; et al. SARS-CoV-2 wastewater surveillance for public health action. Emerg. Infect. Dis. 2021, 27, e210753. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. Colorado QuickFacts; U.S. Department of Commerce: Washington, DC, USA, 2023. Available online: https://data.census.gov/all?q=colorado (accessed on 30 March 2025).
- U.S. Census Bureau. Educational Attainment: Colorado; Table S1501, ACS 1-Year Estimates; U.S. Department of Commerce: Washington, DC, USA, 2023. Available online: https://data.census.gov/table/ACSST1Y2023.S1501?q=%22S1501:+Educational+Attainment+Colorado (accessed on 30 March 2025).
- U.S. Census Bureau. Income in the Past 12 Months: Colorado; Table S1901, ACS 1-Year Estimates; U.S. Department of Commerce: Washington, DC, USA, 2023. Available online: https://data.census.gov/table/ACSST1Y2023.S1901?g=040XX00US08 (accessed on 30 March 2025).
- U.S. Census Bureau. ACS Demographic and Housing Estimates: Colorado; Table DP05, ACS 1-Year Estimates; U.S. Department of Commerce: Washington, DC, USA, 2023. Available online: https://data.census.gov/table/ACSDP1Y2023.DP05?q=DP05:+ACS+Demographic+and+Housing+Estimates+Colorado (accessed on 30 March 2025).
- Krosnick, J.A.; Holbrook, A.L.; Berent, M.K.; Carson, R.T.; Hanemann, W.M.; Kopp, R.J.; Mitchell, R.C.; Presser, S.; Ruud, P.A.; Smith, V.K.; et al. The impact of “no opinion” response options on data quality: Non-attitude reduction or an invitation to satisfice? Public. Opin. Q. 2002, 66, 371–403. [Google Scholar] [CrossRef]
- Lee, T.; Koo, G.H. What drives belief in COVID-19 conspiracy theories? Examining the role of uncertainty, negative emotions, and perceived relevance and threat. Health Commun. 2023, 38, 3091–3101. [Google Scholar] [CrossRef]
- Graham, J.W. Missing data analysis: Making it work in the real world. Annu. Rev. Psychol. 2009, 60, 549–576. [Google Scholar] [CrossRef]
- Basinger, E.D. Testing a dimensional versus a typological approach to the communal coping model in the context of type 2 diabetes. Health Commun. 2019, 35, 585–596. [Google Scholar] [CrossRef]
- Helgeson, V.S.; Jakubiak, B.; Van Vleet, M.; Zajdel, M. Communal coping and adjustment to chronic illness: Theory update and evidence. Personal. Soc. Psychol. Rev. 2018, 22, 170–195. [Google Scholar] [CrossRef]
- Weller, B.E.; Bowen, N.K.; Faubert, S.J. Latent class analysis: A guide to best practice. J. Black Psychol. 2020, 46, 287–311. [Google Scholar] [CrossRef]
- Celeux, G.; Soromenho, G. An entropy criterion for assessing the number of clusters in a mixture model. J. Classif. 1996, 13, 195–212. [Google Scholar] [CrossRef]
- Muthén, B.O.; Muthén, L.K. Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcohol Clin. Exp. Res. 2000, 24, 882–891. [Google Scholar] [CrossRef]
- Rimal, R.N.; Real, K. Perceived risk and efficacy beliefs as motivators of change: Use of the risk perception attitude (RPA) framework to understand health behaviors. Hum. Commun. Res. 2003, 29, 370–399. [Google Scholar] [CrossRef]
- Smith, R.A.; Myrick, J.G.; Lennon, R.P.; Martin, M.A.; Small, M.L.; Van Scoy, L.J.; The Data4 Action Research Group. Exploring behavioral typologies to inform COVID-19 health campaigns: A person-centered approach. J. Health Commun. 2021, 26, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.A.; McGlone, M.S.; Dragojevic, M. Vicious viruses and vigilant vaccines: Effects of linguistic agency assignment in health policy advocacy. J. Health Commun. 2014, 19, 1178–1195. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Craig, L.S.; Peacock, E.; Fields, T.; Al-Dahir, S.; Hawkins, F.; Gillard, C.; Singleton, B.; Theall, K.; Wilson, M.; et al. Exploring the roles of trust, attitudes, and motivations in COVID-19 decision-making and vaccination likelihood: Insights from the Louisiana Community Engagement Alliance (LA-CEAL) Community—Academic—Public Health—Practice (CAPP) Partnership. Int. J. Environ. Res. Public Health 2024, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.; Bavik, Y.L.; Mount, M.; Shao, B. Data collection via online platforms: Challenges and recommendations for future research. Appl. Psychol. 2021, 70, 1380–1402. [Google Scholar] [CrossRef]
- Chung, H.; Lanza, S.T.; Loken, E. Latent transition analysis: Inference and estimation. Stat. Med. 2008, 27, 1834–1854. [Google Scholar] [CrossRef]
| Study Participants | Colorado Residents | |
|---|---|---|
| Variable | % | |
| Sex | ||
| Female | 50.0 | 49.4 |
| Ethnicity * | ||
| White | 83.1 | 84.5 |
| Black or African American | 3.3 | 5.8 |
| Asian | 4.2 | 5.1 |
| Hispanic, Latino, or Spanish origin | 6.6 | 22.7 |
| American Indian or Alaska native | 3.3 | 3.5 |
| Native Hawaiian or Pacific Islander | 0.9 | 0.4 |
| Some other race, ethnicity, or origin | 2.1 | 16.7 |
| Education | ||
| Eighth grade or less | 0.3 | 4.6 |
| Some high school or less | 1.0 | 5.6 |
| Graduated high school | 20.7 | 44.8 |
| Associate’s degree | 8.9 | 8.8 |
| Bachelor’s degree | 48.7 | 21.8 |
| Graduate or professional degree | 20.4 | 14.3 |
| Income | ||
| Less than $35,000 | 17.6 | 16.7 |
| $35,000 to less than $50,000 | 14.7 | 8.5 |
| $50,000 to less than $75,000 | 28.8 | 15.1 |
| $75,000 to less than $100,000 | 17.3 | 13.0 |
| Over $100,000 | 21.7 | 46.8 |
| Indicators (I Am Concerned That Wastewater Monitoring…) | Code | Label | n | % |
|---|---|---|---|---|
| 1. may not provide accurate early warnings of potential COVID-19 outbreaks. | 1 | Not concerned | 102 | 31.7 |
| 2 | Concerned or Unsure | 220 | 68.3 | |
| 2. may not be cost-effective | 1 | Not concerned | 86 | 26.7 |
| 2 | Concerned or Unsure | 236 | 73.3 | |
| 3. may be used to support drastic measures such as shutting down businesses and schools. | 1 | Not concerned | 90 | 28 |
| 2 | Concerned or Unsure | 232 | 72 | |
| 4. may be used to imply that certain individuals or communities are responsible for spreading the coronavirus. | 1 | Not concerned | 110 | 34.2 |
| 2 | Concerned or Unsure | 212 | 65.8 | |
| 5. may contribute to inequitable resource allocation in coping with COVID-19. | 1 | Not concerned | 103 | 32 |
| 2 | Concerned or Unsure | 219 | 68 | |
| 6. may contribute to stigmatizing certain individuals or communities. | 1 | Not concerned | 112 | 34.8 |
| 2 | Concerned or Unsure | 210 | 65.2 | |
| 7. may let my health information be readily available to people/organizations unauthorized to view or work with the data | 1 | Not concerned | 138 | 42.9 |
| 2 | Concerned or Unsure | 184 | 57.1 | |
| 8. may be used to trace the use of illegal materials, such as opioids and other drugs. | 1 | Not concerned | 141 | 43.8 |
| 2 | Concerned or Unsure | 181 | 56.2 |
| Model Fit Criteria | ||||||||
|---|---|---|---|---|---|---|---|---|
| Number of Classes | LL | G2 | df | AIC | BIC | Adjusted BIC | ||
| 2 | −1287.35 | 301.74 | 238 | 335.74 | 399.91 | 345.99 | ||
| 3 | −1256.10 | 239.24 | 229 | 291.24 | 389.38 | 306.91 | ||
| 4 | −1239.23 | 205.51 | 220 | 275.51 | 407.62 | 296.60 | ||
| 5 | −1229.97 | 187 | 211 | 275.00 | 441.08 | 301.51 | ||
| 6 | −1221.42 | 172.09 | 202 | 278.09 | 478.14 | 310.03 | ||
| 7 | −1211.07 | 149.20 | 193 | 273.20 | 507.22 | 310.56 | ||
| Diagnostic criteria | ||||||||
| Number of classes | Smallest class count (n) | Smallest class size (%) | Entropy | Average latent class posterior probability | ||||
| 2 | 134 | 41.56 | 0.87 | 0.96 | ||||
| 3 | 71 | 22.11 | 0.78 | 0.90 | ||||
| 4 | 57 | 11.37 | 0.81 | 0.90 | ||||
| 5 | 26 | 7.92 | 0.77 | 0.87 | ||||
| 6 | 15 | 4.65 | 0.76 | 0.88 | ||||
| 7 | 17 | 5.31 | 0.79 | 0.85 | ||||
| I Am Concerned That Wastewater Monitoring… | Minimally Concerned (22%) | Practical (19%) | Community -Oriented (11%) | Worrisome (48%) |
|---|---|---|---|---|
| 1. may not provide accurate early warnings of potential COVID-19 outbreaks. | 0.23 | 0.73 | 0.33 | 0.96 |
| (0.06) | (0.10) | (0.11) | (0.02) | |
| 2. may not be cost-effective | 0.31 | 0.99 | 0.19 | 0.96 |
| (0.08) | (0.04) | (0.23) | (0.02) | |
| 3. may be used to support drastic measures such as shutting down businesses and schools. | 0.31 | 0.64 | 0.65 | 0.96 |
| (0.06) | (0.09) | (0.10) | (0.02) | |
| 4. may be used to imply that certain individuals or communities are responsible for spreading the coronavirus. | 0.16 | 0.39 | 0.79 | 0.97 |
| (0.06) | (0.10) | (0.11) | (0.02) | |
| 5. may contribute to inequitable resource allocation in coping with COVID-19. | 0.07 | 0.70 | 0.66 | 0.96 |
| (0.04) | (0.10) | (0.12) | (0.02) | |
| 6. may contribute to stigmatizing certain individuals or communities. | 0.10 | 0.42 | 0.85 | 0.96 |
| (0.05) | (0.11) | (0.09) | (0.02) | |
| 7. may let my health information be readily available to people/organizations | 0.07 | 0.29 | 0.48 | 0.94 |
| (0.04) | (0.09) | (0.11) | (0.02) | |
| 8. may be used to trace the use of illegal materials, such as opioids and other drugs. | 0.09 | 0.31 | 0.58 | 0.88 |
| (0.05) | (0.08) | (0.11) | (0.03) |
| Practical | Community-Oriented | Worrisome | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
| Model 1 | |||||||||
| Communal coping | 0.14 | [0.03, 0.64] | 0.011 | 0.43 | [0.10, 1.79] | 0.247 | 0.37 | [0.07, 1.83] | 0.221 |
| COVID-19 misinfo | 3.38 | [0.74, 15.44] | 0.116 | 7.93 | [1.75, 5.96] | 0.007 | 84.83 | [4.35, 1654.3] | 0.003 |
| WW knowledge | 3.37 | [0.067, 2.080] | 0.261 | 0.18 | [0.04, 0.91] | 0.038 | 0.07 | [0.01, 0.53] | 0.010 |
| WW attitude | 0.16 | [0.041, 0.632] | 0.009 | 0.07 | [0.02, 0.30] | <0.001 | 0.16 | [0.03, 0.97] | 0.046 |
| Model 2 | |||||||||
| Age | 0.98 | [0.946, 1.022] | 0.393 | 1.00 | [0.97, 1.04] | 0.802 | 0.96 | [0.93, 0.98] | 0.003 |
| Education | 0.55 | [0.331, 0.929] | 0.025 | 1.11 | [0.72, 1.73] | 0.633 | 0.98 | [0.69, 1.38] | 0.894 |
| Gender | 0.64 | [0.195, 2.112] | 0.465 | 1.14 | [0.50, 2.61] | 0.762 | 0.85 | [0.42, 1.74] | 0.665 |
| White | 4.48 | [0.43, 48.47] | 0.217 | 0.71 | [0.18, 2.74] | 0.616 | 0.53 | [0.17, 1.59] | 0.257 |
| Political ideology | 2.40 | [1.46, 3.96] | <0.001 | 1.05 | [0.69, 1.62] | 0.812 | 2.89 | [1.99, 4.18] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y. Communicating Community-Based Public Health Surveillance: Lessons from Profiling Public Risk Perceptions of COVID-19 Wastewater Monitoring. Int. J. Environ. Res. Public Health 2025, 22, 1782. https://doi.org/10.3390/ijerph22121782
Kim Y. Communicating Community-Based Public Health Surveillance: Lessons from Profiling Public Risk Perceptions of COVID-19 Wastewater Monitoring. International Journal of Environmental Research and Public Health. 2025; 22(12):1782. https://doi.org/10.3390/ijerph22121782
Chicago/Turabian StyleKim, Youllee. 2025. "Communicating Community-Based Public Health Surveillance: Lessons from Profiling Public Risk Perceptions of COVID-19 Wastewater Monitoring" International Journal of Environmental Research and Public Health 22, no. 12: 1782. https://doi.org/10.3390/ijerph22121782
APA StyleKim, Y. (2025). Communicating Community-Based Public Health Surveillance: Lessons from Profiling Public Risk Perceptions of COVID-19 Wastewater Monitoring. International Journal of Environmental Research and Public Health, 22(12), 1782. https://doi.org/10.3390/ijerph22121782

