The Impact of Prolonged Stress of COVID-19 Pandemic and Earthquakes on Internet-Based Addictive Behaviour and Quality of Life in Croatia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Method
2.4. Measures
2.5. Ethical Procedures
2.6. Data Analysis
3. Results
3.1. Descriptive Statistics and Normality Assumption Check
3.2. Structural Equation Modelling Results
3.2.1. Direct Effects of Overall and Specific Internet Use and PIU During Prolonged Stress on QoL Domains
3.2.2. Direct Effects of Overall and Specific Internet Use, and PIU During Prolonged Stress on Stress, Anxiety, and Depression Symptoms
3.2.3. Indirect Effects of Overall and Specific Internet Use and PIU During Prolonged Stress on QoL Domains Through Intrusion and Avoidance Stress Symptoms
3.2.4. Indirect Effects of Overall and Specific Internet Use, and PIU During Prolonged Stress on QoL Domains Through Anxiety and Depression Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of Stress, Anxiety, Depression among the General Population during the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef]
- Cénat, J.M.; Blais-Rochette, C.; Kokou-Kpolou, C.K.; Noorishad, P.-G.; Mukunzi, J.N.; McIntee, S.-E.; Dalexis, R.D.; Goulet, M.-A.; Labelle, P.R. Prevalence of Symptoms of Depression, Anxiety, Insomnia, Posttraumatic Stress Disorder, and Psychological Distress among Populations Affected by the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Psychiatry Res. 2021, 295, 113599. [Google Scholar] [CrossRef]
- Amit Aharon, A.; Dubovi, I.; Ruban, A. Differences in Mental Health and Health-Related Quality of Life between the Israeli and Italian Population during a COVID-19 Quarantine. Qual. Life Res. 2021, 30, 1675–1684. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef]
- Yzermans, C.J.; Donker, G.A.; Kerssens, J.J.; Dirkzwager, A.J.; Soeteman, R.J.; ten Veen, P.M. Health Problems of Victims before and after Disaster: A Longitudinal Study in General Practice. Int. J. Epidemiol. 2005, 34, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Galea, S.; Nandi, A.; Vlahov, D. The Epidemiology of Post-Traumatic Stress Disorder after Disasters. Epidemiol. Rev. 2005, 27, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.; Masedu, F.; Mazza, M.; Tiberti, S.; Di Giovanni, C.; Calvarese, A.; Pirro, R.; Sconci, V. A Longitudinal Study of Quality of Life of Earthquake Survivors in L’Aquila, Italy. BMC Public Health 2013, 13, 1143. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Shi, Y.; Li, Y.; Yuan, P.; Wang, F. Quality of Life, Physical Diseases, and Psychological Impairment among Survivors 3 Years after Wenchuan Earthquake: A Population Based Survey. PLoS ONE 2012, 7, e43081. [Google Scholar] [CrossRef]
- Cui, K.; Han, Z. Association between Disaster Experience and Quality of Life: The Mediating Role of Disaster Risk Perception. Qual. Life Res. 2019, 28, 509–513. [Google Scholar] [CrossRef]
- Szczepańska, A.; Pietrzyk, K. The COVID-19 Epidemic in Poland and Its Influence on the Quality of Life of University Students (Young Adults) in the Context of Restricted Access to Public Spaces. Z. Gesundh. Wiss. 2023, 31, 295–305. [Google Scholar]
- Lardone, A.; Sorrentino, P.; Giancamilli, F.; Palombi, T.; Simper, T.; Mandolesi, L.; Lucidi, F.; Chirico, A.; Galli, F. Psychosocial Variables and Quality of Life during the COVID-19 Lockdown: A Correlational Study on a Convenience Sample of Young Italians. PeerJ 2020, 8, e10611. [Google Scholar] [CrossRef]
- Vitorino, L.M.; Júnior, G.H.Y.; Gonzaga, G.; Dias, I.F.; Pereira, J.P.L.; Ribeiro, I.M.G.; França, A.B.; Al-Zaben, F.; Koenig, H.G.; Trzesniak, C. Factors Associated with Mental Health and Quality of Life during the COVID-19 Pandemic in Brazil. BJPsych Open 2021, 7, e103. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Bidzan, M.; Jurek, P.; Bidzan, L.; Knietzsch, J.; Stueck, M.; Bidzan, M. A Polish and German Population Study of Quality of Life, Wellbeing, and Life Satisfaction in Older Adults during the COVID-19 Pandemic. Front. Psychiatry 2020, 11, 585813. [Google Scholar] [CrossRef]
- Kovačić Petrović, Z.; Peraica, T.; Kozarić-Kovačić, D.; Palavra Rojnić, I. Internet Use and Internet-Based Addictive Behaviours during Coronavirus Pandemic. Curr. Opin. Psychiatry 2022, 35, 324–331. [Google Scholar] [CrossRef]
- Saunders, J.B. Substance Use and Addictive Disorders in DSM-5 and ICD 10 and the ICD 11 Draft. Curr. Opin. Psychiatry 2017, 30, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Block, J.J. Issues for DSM-V: Internet Addiction. Am. J. Psychiatry 2008, 165, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Burkauskas, J.; Gecaite-Stonciene, J.; Demetrovics, Z.; Griffiths, M.D.; Király, O. Prevalence of Problematic Internet Use during the Coronavirus Disease 2019 Pandemic. Curr. Opin. Behav. Sci. 2022, 46, 101179. [Google Scholar] [CrossRef]
- Vismara, M.; Caricasole, V.; Varinelli, A.; Fineberg, N.A. Cyberchondria, Cyberhoarding, and Other Compulsive Online Disorders. In Mental Health in a Digital World; Stein, D.J., Fineberg, N.A., Chamberlain, S.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 261–283. [Google Scholar]
- Dahl, D.; Bergmark, K.H. Persistence in Problematic Internet Use—A Systematic Review and Meta-Analysis. Front. Sociol. 2020, 5, 30. [Google Scholar] [CrossRef]
- Masaeli, N.; Farhadi, H. Prevalence of Internet-Based Addictive Behaviors during COVID-19 Pandemic: A Systematic Review. J. Addict. Dis. 2021, 39, 468–488. [Google Scholar] [CrossRef]
- Kovačić Petrović, Z.; Peraica, T.; Blažev, M.; Tomašić, L.; Kozarić-Kovačić, D. Problematic Internet Use, Anxiety, Depression, and Stress Symptoms in Adults with COVID-19 Pandemic and Earthquake Experience: Insights from Croatian Online Survey. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, S.; Zeidi, I.M.; Lin, C.-Y.; Namdar, P.; Griffiths, M.D.; Ahorsu, D.K.; Pakpour, A.H. Depression, Anxiety, and Stress Mediate the Associations between Internet Gaming Disorder, Insomnia, and Quality of Life during the COVID-19 Outbreak. Addict. Behav. Rep. 2020, 12, 100307. [Google Scholar] [CrossRef]
- Geirdal, A.Ø.; Ruffolo, M.; Leung, J.; Thygesen, H.; Price, D.; Bonsaksen, T.; Schoultz, M. Mental Health, Quality of Life, Wellbeing, Loneliness and Use of Social Media in a Time of Social Distancing during the COVID-19 Outbreak: A Cross-Country Comparative Study. J. Ment. Health 2021, 30, 148–155. [Google Scholar] [CrossRef]
- Karakose, T.; Ozdemir, T.Y.; Papadakis, S.; Yirci, R.; Ozkayran, S.E.; Polat, H. Investigating the Relationships between COVID-19 Quality of Life, Loneliness, Happiness, and Internet Addiction among K-12 Teachers and School Administrators—A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2022, 19, 1052. [Google Scholar] [CrossRef] [PubMed]
- Wallinheimo, A.S.; Evans, S.L. More Frequent Internet Use during the COVID-19 Pandemic Associates with Enhanced Quality of Life and Lower Depression Scores in Middle-Aged and Older Adults. Healthcare 2021, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Kovačić Petrović, Z.; Peraica, T.; Blažev, M.; Tomašić, L.; Kozarić-Kovačić, D. Quality of Life during the First Three Waves of the COVID-19 Pandemic and Two Earthquakes in Croatia. J. Nerv. Ment. Dis. 2023, 211, 919–926. [Google Scholar] [CrossRef]
- Laconi, S.; Urbán, R.; Kaliszewska-Czeremska, K.; Kuss, D.J.; Gnisci, A.; Sergi, I.; Barke, A.; Jeromin, F.; Groth, J.; Gamez-Guadix, M.; et al. Psychometric Evaluation of the Nine-Item Problematic Internet Use Questionnaire (PIUQ-9) in Nine European Samples of Internet Users. Front. Psychiatry 2019, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed Diagnostic Criteria for Internet Addiction. Addiction 2010, 105, 556–564. [Google Scholar] [CrossRef]
- Kuder, G.F.; Richardson, M.W. The Theory of Estimation of Test Reliability. Psychometrika 1937, 2, 151–160. [Google Scholar] [CrossRef]
- Horowitz, M.; Wilner, M.; Alvarez, W. Impact of Event Scale: A Measure of Subjective Stress. Psychosom. Med. 1979, 41, 209–218. [Google Scholar] [CrossRef]
- Zilberg, N.J.; Weiss, D.S.; Horowitz, M.J. Impact of Event Scale: A Cross-Validation Study and Some Empirical Evidence Supporting a Conceptual Model of Stress Response Syndromes. J. Consult. Clin. Psychol. 1982, 50, 407–414. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The Validity of the Hospital Anxiety and Depression Scale: An Updated Literature Review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Kovačić Petrović, Z.; Repovečki, S. Učestalost anksioznih i depresivnih simptoma kod obiteljskih i profesionalnih njegovatelja koji skrbe o oboljelima od alzheimerove bolesti (Prevalence of Anxiety and Depressive Symptoms in Family and Professional Caregivers of Persons with Alzheimer’s Disease). Soc. Psihijatr. 2016, 44, 93–104. [Google Scholar]
- World Health Organization. WHOQOL-BREF: Introduction, Administration, Scoring and Generic Version of the Assessment, Field Trial Version; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- WHOQOL Group. The World Health Organization Quality of Life Assessment (WHOQOL): Development and General Psychometric Properties. Soc. Sci. Med. 1988, 46, 1569–1585. [Google Scholar]
- Skevington, S.M.; Lotfy, M.; O’Connell, K.A. The World Health Organization’s WHOQOL-BREF Quality of Life Assessment: Psychometric Properties and Results of the International Field Trial. A Report from the WHOQOL Group. Qual. Life Res. 2004, 13, 299–310. [Google Scholar] [CrossRef]
- Hancock, G.R.; Mueller, R.O. (Eds.) Structural Equation Modeling: A Second Course; Information Age Publishing: Charlotte, NC, USA, 2013. [Google Scholar]
- Liang, X.; Yang, Y. An Evaluation of WLSMV and Bayesian Methods for Confirmatory Factor Analysis with Categorical Indicators. Int. J. Quant. Res. Educ. 2014, 2, 17–38. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 1993; pp. 136–162. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modelling, 3rd ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Kovačić Petrović, Z.; Peraica, T.; Kozarić-Kovačić, D. The Importance of Assessing Quality of Life in Patients with Alcohol Dependence. Arch. Psychiatry Res. 2021, 57, 29–38. [Google Scholar] [CrossRef]
- Peraica, T.; Vidović, A.; Kovačić Petrović, Z.; Kozarić-Kovačić, D. Quality of Life of Croatian Veterans’ Wives and Veterans with Posttraumatic Stress Disorder. Health Qual. Life Outcomes 2014, 12, 136. [Google Scholar] [CrossRef]
- Cai, H.; Xi, H.; Zhu, Q.; Wang, Z.; Han, L.; Liu, S.; Bai, W.; Zhao, Y.; Chen, L.; Ge, Z.; et al. Prevalence of Problematic Internet Use and Its Association with Quality of Life among Undergraduate Nursing Students in the Later Stage of COVID-19 Pandemic Era in China. Am. J. Addict. 2021, 30, 585–592. [Google Scholar] [CrossRef]
- Andreassen, C.S. Online Social Network Site Addiction: A Comprehensive Review. Curr. Addict. Rep. 2015, 2, 175–184. [Google Scholar] [CrossRef]
- Al Dhaheri, A.S.; Bataineh, M.A.F.; Mohamad, M.N.; Ajab, A.; Al Marzouqi, A.; Jarrar, A.H.; Habib-Mourad, C.; Abu Jamous, D.O.; Ali, H.I.; Hasan, H.; et al. Impact of COVID-19 on Mental Health and Quality of Life: Is There Any Effect? A Cross-Sectional Study of the MENA Region. PLoS ONE 2021, 16, e0249107. [Google Scholar] [CrossRef]
- Goldmann, E.; Galea, S. Mental Health Consequences of Disasters. Annu. Rev. Public Health 2014, 35, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.C.; Luitel, N.P.; Jordans, M.J.D.; Kohrt, B.A.; Weissbecker, I.; Tol, W.A. Mental Health and Psychosocial Problems in the Aftermath of the Nepal Earthquakes: Findings from a Representative Cluster Sample Survey. Epidemiol. Psychiatr. Sci. 2018, 27, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Masedu, F.; Mazza, M.; Di Giovanni, C.; Calvarese, A.; Tiberti, S.; Sconci, V.; Valenti, M. Facebook, Quality of Life, and Mental Health Outcomes in Post-Disaster Urban Environments: The L’Aquila Earthquake Experience. Front. Public Health 2014, 2, 286. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Gan, Y.; Whittal, A.; Lippke, S. Problematic Internet Use and Perceived Quality of Life: Findings from a Cross-Sectional Study Investigating Work-Time and Leisure-Time Internet Use. Int. J. Environ. Res. Public Health 2020, 17, 4056. [Google Scholar] [CrossRef]
- Masaeli, N.; Billieux, J. Is Problematic Internet and Smartphone Use Related to Poorer Quality of Life? A Systematic Review of Available Evidence and Assessment Strategies. Curr. Addict. Rep. 2022, 9, 235–250. [Google Scholar] [CrossRef]
- World Health Organization. Action Required to Address the Impacts of the COVID-19 Pandemic on Mental Health and Service Delivery Systems in the WHO European Region: Recommendations from the European Technical Advisory Group on the Mental Health Impacts of COVID-19. World Health Organization Regional Office for Europe. 2021. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-2845-42603-59267 (accessed on 14 February 2025).
Variables | M (SD) | Min | Max | Skew. | Kurt. | K–S |
---|---|---|---|---|---|---|
General QoL | 3.81 (0.92) | 1 | 5 | −0.44 | −0.23 | 0.23 * |
Health satisfaction | 3.88 (0.99) | 1 | 5 | −0.68 | −0.04 | 0.23 * |
Physical health | 15.77 (3.03) | 4.57 | 20 | −0.77 | 0.33 | 0.10 * |
Psychological health | 14.63 (3.50) | 4 | 20 | −0.56 | −0.38 | 0.10 * |
Social relationships | 14.89 (3.69) | 4 | 20 | −0.47 | −0.35 | 0.10 * |
Environment | 15.71 (2.71) | 5.50 | 20 | −0.72 | 0.44 | 0.08 * |
IES-Intrusion | 12.44 (9.98) | 0 | 35 | 0.62 | −0.67 | 0.12 * |
IES-Avoidance | 11.52 (9.37) | 0 | 40 | 0.76 | −0.08 | 0.11 * |
HADS-Anxiety | 8.31 (4.78) | 0 | 21 | 0.39 | −0.44 | 0.08 * |
HADS-Depression | 5.90 (4.38) | 0 | 21 | 0.76 | 0.04 | 0.12 * |
Increase in use | n (%) | |||||
Online gaming | 118 (10.6) | |||||
Pornography viewing | 71 (6.4) | |||||
Social media | 540 (48.3) | |||||
Online shopping | 307 (27.5) | |||||
Overall Internet use | 586 (52.4) | |||||
Problematic Internet use | 264 (26.3) |
Fit Index | Model Value | Recommended Cutoff | Interpretation |
---|---|---|---|
χ2 | 3931.1 * | p > 0.05 | Bad fit |
χ2/df | 2.76 | <3.00 (good), <5.00 (acceptable) | Good fit |
CFI | 0.910 | >0.95 (good), >0.90 (acceptable) | Acceptable fit |
TLI | 0.900 | >0.95 (good), >0.90 (acceptable) | Acceptable fit |
RMSEA | 0.042 | <0.05 (good), <0.08 (acceptable) | Good fit |
90% CI RMSEA | 0.040, 0.043 | The upper bound ≤ 0.05 | Good fit |
pclose | 0.999 | p > 0.05 | Good fit |
SRMR | 0.073 | <0.08 (good) | Good fit |
General QoL | Health Satisfaction | Physical Health | |||||||
---|---|---|---|---|---|---|---|---|---|
Direct effects | β | p | 95% CI | β | p | 95% CI | β | p | 95% CI |
Online gaming | 0.00 | 0.957 | −0.06, 0.05 | −0.02 | 0.552 | −0.08, 0.04 | 0.00 | 0.997 | −0.05, 0.05 |
Pornography viewing | −0.04 | 0.155 | −0.09, 0.02 | −0.03 | 0.350 | −0.08, 0.03 | 0.02 | 0.511 | −0.03, 0.07 |
Social media | 0.04 | 0.462 | −0.07, 0.15 | −0.03 | 0.633 | −0.15, 0.09 | 0.09 | 0.104 | −0.02, 0.20 |
Online shopping | 0.04 | 0.191 | −0.02, 0.10 | 0.05 | 0.114 | −0.01, 0.12 | 0.03 | 0.382 | −0.03, 0.08 |
Internet use | −0.06 | 0.279 | −0.18, 0.05 | −0.01 | 0.906 | −0.13, 0.12 | −0.19 ** | 0.001 | −0.30, −0.08 |
Problematic Internet use | −0.03 | 0.226 | −0.09, 0.02 | 0.01 | 0.760 | −0.05, 0.06 | −0.04 | 0.147 | −0.09, 0.01 |
IES-Intrusion | −0.03 | 0.572 | −0.13, 0.07 | 0.02 | 0.665 | −0.09, 0.14 | −0.02 | 0.694 | −0.12, 0.08 |
IES-Avoidance | 0.01 | 0.874 | −0.09, 0.10 | −0.05 | 0.295 | −0.15, 0.05 | −0.04 | 0.381 | −0.13, 0.05 |
HADS-Anxiety | −0.06 | 0.296 | −0.17, 0.05 | −0.16 ** | 0.008 | −0.28, −0.04 | −0.27 ** | <0.001 | −0.38, −0.16 |
HADS-Depression | −0.58 ** | <0.001 | −0.68, −0.48 | −0.41 ** | <0.001 | −0.52, −0.31 | −0.54 ** | <0.001 | −0.64, −0.45 |
Psychological Health | Social Relationships | Environment | |||||||
Direct effects | β | p | 95% CI | β | p | 95% CI | β | p | 95% CI |
Online gaming | 0.02 | 0.435 | −0.03, 0.06 | −0.04 | 0.264 | −0.01, 0.03 | −0.04 | 0.210 | −0.11, 0.02 |
Pornography viewing | −0.04 | 0.108 | −0.08, 0.01 | −0.05 | 0.090 | −0.11, 0.01 | −0.02 | 0.538 | −0.09, 0.05 |
Social media | 0.07 | 0.103 | −0.02, 0.16 | 0.03 | 0.603 | −0.09, 0.16 | −0.11 | 0.111 | −0.25, 0.03 |
Online shopping | 0.02 | 0.416 | −0.03, 0.07 | 0.00 | 0.946 | −0.07, 0.07 | −0.01 | 0.748 | −0.09, 0.06 |
Internet use | −0.10 * | 0.038 | −0.19, −0.01 | −0.08 | 0.254 | −0.21, 0.06 | 0.05 | 0.534 | −0.10, 0.19 |
Problematic Internet use | −0.01 | 0.636 | −0.05, 0.03 | 0.03 | 0.373 | −0.03, 0.09 | −0.07 * | 0.037 | −0.13, −0.00 |
IES-Intrusion | 0.07 | 0.112 | −0.02, 0.15 | 0.21 ** | <0.001 | 0.10, 0.33 | 0.04 | 0.597 | −0.09, 0.16 |
IES-Avoidance | 0.01 | 0.843 | −0.07, 0.08 | −0.14 ** | 0.008 | −0.25, −0.04 | −0.06 | 0.345 | −0.17, 0.06 |
HADS-Anxiety | −0.24 ** | <0.001 | −0.33, −0.15 | −0.16 * | 0.018 | −0.29, −0.03 | −0.27 ** | <0.001 | −0.41, −0.13 |
HADS-Depression | −0.69 ** | <0.001 | −0.77, −0.61 | −0.59 ** | <0.001 | −0.70, −0.48 | −0.32 ** | <0.001 | −0.44, −0.19 |
IES-Intrusion | IES-Avoidance | |||||
---|---|---|---|---|---|---|
Direct effects | β | p | 95% CI | β | p | 95% CI |
Online gaming | 0.05 | 0.177 | −0.02, 0.11 | 0.04 | 0.278 | −0.03, 0.11 |
Pornography viewing | −0.01 | 0.692 | −0.08, 0.05 | 0.00 | 0.937 | −0.07, 07 |
Social media | 0.17 * | 0.017 | 0.03, 0.31 | 0.21 ** | 0.004 | 0.07, 0.35 |
Online shopping | 0.14 ** | <0.001 | 0.06, 0.21 | 0.12 ** | 0.003 | 0.04, 0.20 |
Internet use | 0.01 | 0.881 | −0.13, 0.16 | −0.03 | 0.679 | −0.18, 0.12 |
Problematic Internet use | 0.09 ** | 0.004 | 0.03, 0.16 | 0.10 ** | 0.004 | 0.03, 0.17 |
HADS−Anxiety | HADS−Depression | |||||
Direct effects | β | p | 95% CI | β | p | 95% CI |
Online gaming | 0.03 | 0.376 | −0.04, 0.10 | 0.07 | 0.052 | −0.00, 0.14 |
Pornography viewing | 0.10 ** | 0.004 | 0.03, 0.16 | 0.07 * | 0.032 | 0.01, 0.14 |
Social media | 0.14 * | 0.047 | 0.00, 0.28 | 0.20 ** | 0.005 | 0.06, 0.34 |
Online shopping | 0.09 * | 0.025 | 0.01, 0.17 | 0.01 | 0.727 | −0.06, 0.09 |
Internet use | 0.05 | 0.507 | −0.10, 0.20 | 0.00 | 0.988 | −0.15, 0.15 |
Problematic Internet use | 0.16 ** | <0.001 | 0.09, 0.22 | 0.13 ** | <0.001 | 0.07, 0.20 |
Predictor | Mediator | QoL Domain(s) Affected |
---|---|---|
Online gambling | n.s. | n.s. |
Pornography viewing | Anxiety | Physical health, psychological health, and environment |
Depression | All domains | |
Social media use | Intrusion | Social relationships |
Depression | All domains | |
Online shopping | Intrusion | Social relationships |
Avoidance | Social relationships | |
Anxiety | Physical health and psychological health | |
Overall Internet use | n.s. | n.s. |
Problematic Internet use | Intrusion | Social relationships |
Anxiety | Health satisfaction, physical health, psychological health, social relationships, and environment | |
Depression | All domains |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačić Petrović, Z.; Peraica, T.; Blažev, M.; Kozarić-Kovačić, D. The Impact of Prolonged Stress of COVID-19 Pandemic and Earthquakes on Internet-Based Addictive Behaviour and Quality of Life in Croatia. Int. J. Environ. Res. Public Health 2025, 22, 1587. https://doi.org/10.3390/ijerph22101587
Kovačić Petrović Z, Peraica T, Blažev M, Kozarić-Kovačić D. The Impact of Prolonged Stress of COVID-19 Pandemic and Earthquakes on Internet-Based Addictive Behaviour and Quality of Life in Croatia. International Journal of Environmental Research and Public Health. 2025; 22(10):1587. https://doi.org/10.3390/ijerph22101587
Chicago/Turabian StyleKovačić Petrović, Zrnka, Tina Peraica, Mirta Blažev, and Dragica Kozarić-Kovačić. 2025. "The Impact of Prolonged Stress of COVID-19 Pandemic and Earthquakes on Internet-Based Addictive Behaviour and Quality of Life in Croatia" International Journal of Environmental Research and Public Health 22, no. 10: 1587. https://doi.org/10.3390/ijerph22101587
APA StyleKovačić Petrović, Z., Peraica, T., Blažev, M., & Kozarić-Kovačić, D. (2025). The Impact of Prolonged Stress of COVID-19 Pandemic and Earthquakes on Internet-Based Addictive Behaviour and Quality of Life in Croatia. International Journal of Environmental Research and Public Health, 22(10), 1587. https://doi.org/10.3390/ijerph22101587