Impact of Delayed Trauma Unit Admission on Mortality and Disability in Traumatic Brain Injury Patients
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | computed axial tomography |
GCS | Glasgow Coma Scale |
GOS | Glasgow Outcome Scale |
ICU | intensive care unit |
ISS | Injury Severity Score |
MRI | magnetic resonance imaging |
SAH | subarachnoid hemorrhage |
TBI | traumatic brain injury |
References
- Stubbs, J.L.; Thornton, A.E.; Sevick, J.M.; Silverberg, N.D.; Barr, A.M.; Honer, W.G.; Panenka, W.J. Traumatic brain injury in homeless and marginally housed individuals: A systematic review and meta-analysis. Lancet Public Health 2020, 5, e19–e32. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1304–1314. [Google Scholar] [CrossRef]
- Rubiano, A.M.; Vera, D.S.; Montenegro, J.H.; Carney, N.; Clavijo, A.; Carreño, J.N.; Gutierrez, O.; Mejia, J.; Ciro, J.D.; Barrios, N.D.; et al. Recommendations of the Colombian Consensus Committee for the Management of Traumatic Brain Injury in Prehospital, Emergency Department, Surgery, and Intensive Care (Beyond One Option for Treatment of Traumatic Brain Injury: A Stratified Protocol [BOOTStraP]). J. Neurosci. Rural. Pract. 2020, 11, 7–22. [Google Scholar] [CrossRef]
- Vedantam, A.; Robertson, C.S.; Gopinath, S.P. Clinical characteristics and temporal profile of recovery in patients with favorable outcomes at 6 months after severe traumatic brain injury. J. Neurosurg. 2018, 129, 234–240. [Google Scholar] [CrossRef]
- Klein, K.; Lefering, R.; Jungbluth, P.; Lendemans, S.; Hussmann, B. Is Prehospital Time Important for the Treatment of Severely Injured Patients? A Matched-Triplet Analysis of 13,851 Patients from the TraumaRegister DGU®. Biomed. Res. Int. 2019, 2019, 5936345. [Google Scholar] [CrossRef]
- Dinh, M.M.; Bein, K.; Roncal, S.; Byrne, C.M.; Petchell, J.; Brennan, J. Redefining the golden hour for severe head injury in an urban setting: The effect of pre-hospital arrival times on patient outcomes. Injury 2013, 44, 606–610. [Google Scholar] [CrossRef]
- Sugerman, D.E.; Xu, L.; Pearson, W.S.; Faul, M. Patients with severe traumatic brain injury transferred to a Level I or II trauma center: United States, 2007 to 2009. J. Trauma Acute Care Surg. 2012, 73, 1491–1499. [Google Scholar] [CrossRef]
- Singh, A.K.; Mishra, P. Clinical Epidemiology of Trauma Patients: A Retrospective Analysis of 3705 Consecutive Patients Treated at a Level I Trauma Center. Cureus 2025, 17, e80657. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.A.; van Wessem, K.J.; McDougall, D.; Lee, K.A.; Lyons, T.; Balogh, Z.J. Epidemiology of traumatic deaths: A comprehensive population-based assessment. World J. Surg. 2010, 34, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Carney, N.; Totten, A.M.; O’REilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Newgard, C.D.; Fu, R.; Bulger, E.; Hedges, J.R.; Mann, N.C.; Wright, D.A.; Lehrfeld, D.P.; Shields, C.; Hoskins, G.; Warden, C.; et al. Evaluation of Rural vs. Urban Trauma Patients Served by 9-1-1 Emergency Medical Services. JAMA Surg. 2017, 152, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ruelas, O.S.; Tschautscher, C.F.; Lohse, C.M.; Sztajnkrycer, M.D. Analysis of Prehospital Scene Times and Interventions on Mortality Outcomes in a National Cohort of Penetrating and Blunt Trauma Patients. Prehospital Emerg. Care 2018, 22, 691–697. [Google Scholar] [CrossRef]
- CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): A randomized, placebo-controlled trial. Lancet 2019, 394, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Roberts, I.; Shakur, H. A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: Study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]). Trials 2017, 18, 330. [Google Scholar] [CrossRef] [PubMed]
- Rubenson Wahlin, R.; Nelson, D.W.; Bellander, B.M.; Svensson, M.; Helmy, A.; Thelin, E.P. Pre-hospital Intubation and Outcome in Traumatic Brain Injury-Assessing Intervention Efficacy in a Modern Trauma Cohort. Front. Neurol. 2018, 9, 194. [Google Scholar] [CrossRef]
- Geeraerts, T.; Velly, L.; Abdennour, L.; Asehnoune, K.; Audibert, G.; Bouzat, P.; Bruder, N.; Carrillon, R.; Cottenceau, V.; Cotton, F.; et al. Management of severe traumatic brain injury (first 24 hours). Aaesthesia Crit. Care Pain Med. 2018, 37, 171–186. [Google Scholar] [CrossRef]
- Gamberini, L.; Baldazzi, M.; Coniglio, C.; Gordini, G.; Bardi, T. Prehospital Airway Management in Severe Traumatic Brain Injury. Air Med. J. 2019, 38, 366–373. [Google Scholar] [CrossRef]
- Popal, Z.; Bossers, S.M.; Terra, M.; Schober, P.; de Leeuw, M.A.; Bloemers, F.W.; Giannakopoulos, G.F. Effect of Physician-Staffed Emergency Medical Services (P-EMS) on the Outcome of Patients with Severe Traumatic Brain Injury: A Review of the Literature. Prehospital Emerg. Care 2019, 23, 730–739. [Google Scholar] [CrossRef]
- Marmarou, A.; Lu, J.; Butcher, I.; McHugh, G.S.; Murray, G.D.; Steyerberg, E.W.; Mushkudiani, N.A.; Choi, S.; Maas, A.I. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: An IMPACT analysis. J. Neurotrauma 2007, 24, 270–280. [Google Scholar] [CrossRef]
- Mata-Mbemba, D.; Mugikura, S.; Nakagawa, A.; Murata, T.; Ishii, K.; Li, L.; Takase, K.; Kushimoto, S.; Takahashi, S. Early CT findings to predict early death in patients with traumatic brain injury: Marshall and Rotterdam CT scoring systems compared in the major academic tertiary care hospital in northeastern Japan. Acad. Radiol. 2014, 21, 605–611. [Google Scholar] [CrossRef]
- Shan, Y.; Li, Y.; Xu, X.; Feng, J.; Wu, X.; Gao, G. Evaluation of Intracranial Hypertension in Traumatic Brain Injury Patient: A Noninvasive Approach Based on Cranial Computed Tomography Features. J. Clin. Med. 2021, 10, 2524. [Google Scholar] [CrossRef]
- Yue, J.K.; Satris, G.G.; Ore, C.L.D.; Huie, J.R.; Deng, H.; Winkler, E.A.; Lee, Y.M.; Vassar, M.J.; Taylor, S.R.; Schnyer, D.M.; et al. Polytrauma Is Associated with Increased Three- and Six-Month Disability after Traumatic Brain Injury: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2020, 1, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Jayan, M.; Shukla, D.; Devi, B.I.; Bhat, D.I.; Konar, S.K. Development of a Prognostic Model to Predict Mortality after Traumatic Brain Injury in Intensive Care Setting in a Developing Country. J. Neurosci. Rural. Pract. 2021, 12, 368–375. [Google Scholar] [CrossRef]
- Endo, A.; Kojima, M.; Uchiyama, S.; Shiraishi, A.; Otomo, Y. Physician-led pre-hospital management is associated with reduced mortality in severe blunt trauma patients: A retrospective analysis of the Japanese nationwide trauma registry. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 9. [Google Scholar] [CrossRef]
- Otten, E.J.; Dorlac, W.C. Managing Traumatic Brain Injury: Translating Military Guidelines to the Wilderness. Wilderness Environ. Med. 2017, 28, S117–S123. [Google Scholar] [CrossRef]
- Harmsen, A.M.; Giannakopoulos, G.F.; Moerbeek, P.R.; Jansma, E.P.; Bonjer, H.J.; Bloemers, F.W. The influence of pre-hospital time on trauma patients outcome: A systematic review. Injury 2015, 46, 602–609. [Google Scholar] [CrossRef]
- Gondek, S.; Schroeder, M.E.; Sarani, B. Assessment and Resuscitation in Trauma Management. Surg. Clin. N. Am. 2017, 97, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Marincowitz, C.; Lecky, F.E.; Morris, E.; Allgar, V.; Sheldon, T.A. Impact of the SIGN head injury guidelines and NHS 4-hour emergency target on hospital admissions for head injury in Scotland: An interrupted times series. BMJ Open 2018, 8, e022279. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Shin, S.D.; Sun, J.-T.; Jamaluddin, S.F.; Tanaka, H.; Song, K.J.; Kajino, K.; Kimura, A.; Huang, E.P.-C.; Hsieh, M.-J.; et al. Association between pre-hospital time and outcome of trauma patients in 4 Asian countries: A cross-national, multicenter cohort study. PLoS Med. 2020, 17, e1003360. [Google Scholar] [CrossRef]
- Brown, E.; Tohira, H.; Bailey, P.; Fatovich, D.; Pereira, G.; Finn, J. Longer Prehospital Time was not Associated with Mortality in Major Trauma: A Retrospective Cohort Study. Prehospital Emerg. Care 2019, 23, 527–537. [Google Scholar] [CrossRef]
- Marincowitz, C.; Lecky, F.; Allgar, V.; Sheldon, T. Evaluation of the impact of the NICE head injury guidelines on inpatient mortality from traumatic brain injury: An interrupted time series analysis. BMJ Open 2019, 9, e028912. [Google Scholar] [CrossRef] [PubMed]
- Bedard, A.F.; Mata, L.V.; Dymond, C.; Moreira, F.; Dixon, J.; Schauer, S.G.; Ginde, A.A.; Bebarta, V.; Moore, E.E.; Mould-Millman, N.-K. A scoping review of worldwide studies evaluating the effects of pre-hospital time on trauma outcomes. Int. J. Emerg. Med. 2020, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Barthélemy, E.J.; Spaggiari, R.; Corley, J.; Lepard, J.R.; Staffa, S.J.; Iv, V.; Servadei, F.; Park, K.B. Injury-to-Admission Delay Beyond 4 Hours Is Associated with Worsening Outcomes for Traumatic Brain Injury in Cambodia. World Neurosurg. 2019, 126, e232–e240. [Google Scholar] [CrossRef] [PubMed]
Clinical Findings at Admission | General | Time of Arrival (Hours) | p-Value | |
---|---|---|---|---|
<5 | ≥5 | |||
Age (mean (SD)) 1/ | 56.81 (21.95) | 54.05 (23.00) | 57.89 (21.47) | 0.172 |
Sex (n (%)) 2/ | ||||
Male | 307 (80.16) | 88 (81.48) | 219 (79.64) | 0.684 |
Female | 76 (19.84) | 20 (18.52) | 56 (20.36) | |
Trauma mechanism (n (%)) 2/ | ||||
Minor fall than 1.5 m | 101 (27.82) | 26 (24.53) | 75 (29.18) | 0.502 |
Major fall than 1.5 m | 68 (18.73) | 21 (19.81) | 47 (18.29) | |
Road traffic accident: driver | 83 (22.87) | 26 (24.53) | 57 (22.18) | |
Road traffic accident: passenger | 41 (11.29) | 16 (15.09) | 25 (9.73) | |
Motorcycle | 25 (6.89) | 8 (7.55) | 17 (6.61) | |
Run over | 3 (0.83) | 0 (0) | 3 (1.17) | |
Physical violence | 42 (11.57) | 9 (8.49) | 33 (12.84) | |
First care (n (%)) 2/ | ||||
Medical | 232 (60.57) | 58 (53.7) | 174 (63.3) | 0.085 |
No Medical | 151 (39.43) | 50 (46.3) | 101 (36.7) | |
GOS (media (SD) 1/ | 12 (8–14) | 12 (8–14) | 12 (8–14) | 0.691 |
Sedation (n (%)) 2/ | 111 (28.98) | 33 (30.56) | 78 (28.36) | 0.671 |
Polytrauma (n (%)) 2/ | 50 (13.05) | 11 (10.19) | 39 (14.18) | 0.296 |
ISS (media (SD) 1/ | 4 (1–16) | 4 (1–16) | 4 (1–16) | 0.538 |
Hospital discharge condition **GOS (n (%)) | ||||
5 = good condition | 127 (33.16) | 50 (46.3) a | 77 (28) a | 0.012 * |
4 = moderate disability | 59 (15.4) | 12 (11.11) | 47 (17.09) | |
3 = severe disability | 63 (16.45) | 14 (12.96) | 49 (17.82) | |
2 = Vegetative status | 34 (8.88) | 6 (5.56) | 28 (10.18) | |
1 = Death | 100 (26.11) | 26 (24.07) | 74 (26.91) |
Prognostic and Radiological Parameters | Arrival Time (Hours) | p-Value | |
---|---|---|---|
<5 | ≥5 | ||
Motor response (n (%)) | |||
Pathological extension | 3 (2.88) | 21 (7.66) | 0.197 |
Pathological flexion | 11 (10.58) | 16 (5.84) | |
Normal flexion | 29 (27.88) | 89 (32.48) | |
Locate | 21 (20.19) | 55 (20.07) | |
Obey | 40 (38.46) | 93 (33.94) | |
Pupillary response (n (%)) | |||
Reactive | 88 (81.48) | 240 (87.27) | 0.320 |
One-sided reactivity | 17 (15.74) | 31 (11.27) | |
No reactivity | 3 (2.78) | 4 (1.45) | |
Hypoxia (n (%)) | 27 (25) | 66 (24) | 0.837 |
Hypotension (n (%)) | 21 (19.44) | 56 (20.36) | 0.840 |
Hyperglycemia (n (%)) | 91 (84.3) | 247 (89.8) | 0.128 |
Acute anemia (n (%)) | 18 (16.67) | 35 (12.73) | 0.315 |
Marshall scale (n (%)) | |||
Diffuse I | 20 (18.52) a | 28 (10.18) a | 0.049 * |
Diffuse II | 40 (37.04) a | 124 (45.09) a | |
Diffuse III | 32 (29.63) | 96 (34.91) | |
Diffuse IV | 16 (14.81) | 27 (9.82) | |
Subarachnoid hemorrhage (n (%)) | 79 (73.15) | 204 (74.18) | 0.836 |
Evacuate lesion (n (%)) | 16 (14.81) | 27 (9.82) | 0.163 |
Treatment | Arrival Time (Hours) | p-Value | |
---|---|---|---|
<5 | ≥5 | ||
Surgical treatment (n (%)) 1/ | 74 (68.52) | 200 (72.73) | 0.411 |
Trauma time to surgery (mean (SD)) 2/ | 5.66 (0.67) | 10 (4.07) | 0.000 * |
Admission to ICU (n (%)) 1/ | 70 (64.81) | 199 (72.36) | 0.146 |
ICU stay (n (%)) 1/ | |||
<7 days | 31 (44.29) | 78 (38.61) | 0.780 |
≥7 days | 39 (55.71) | 124 (61.39) | |
Post-surgical complications (n (%)) 1/ | 33 (30.56) | 69 (25.09) | 0.276 |
Surgical reintervention (n (%)) 1/ | 12 (11.11) | 27 (9.82) | 0.707 |
Variables | B | p-Value | OR | CI-OR 95% | |
---|---|---|---|---|---|
Lower | Upper | ||||
Arrival time (≥5 h late) | 1.07 | 0.003 * | 2.92 ** | 1.46 | 5.86 |
Age > 62 years | 0.98 | 0.002 * | 2.65 ** | 1.43 | 4.94 |
Male sex | 0.61 | 0.115 | 1.84 | 0.86 | 3.94 |
Marshall | |||||
Diffuse II | −0.04 | 0.930 | 0.96 | 0.35 | 2.59 |
Diffuse III | 2.45 | 0.001 * | 11.55 * | 2.81 | 47.41 |
Diffuse IV | −0.04 | 0.964 | 0.96 | 0.18 | 5.25 |
Subarachnoid hemorrhage (yes) | 0.20 | 0.562 | 1.22 | 0.63 | 2.35 |
Glasgow | |||||
3 to 8 | 1.62 | 0.000 * | 5.07 * | 2.31 | 11.12 |
9–13 | 1.33 | 0.029 * | 3.77 * | 1.15 | 12.36 |
Variables | B | p-Value | OR | CI-OR 95% | |
---|---|---|---|---|---|
Lower | Upper | ||||
Arrival time (≥5 h late) | 1.21 | 0.012 * | 3.34 ** | 1.31 | 8.55 |
Age > 62 years | 0.13 | 0.753 | 1.14 | 0.50 | 2.59 |
Male ex | 0.40 | 0.413 | 1.49 | 0.57 | 3.87 |
Marshall | |||||
Diffuse II | −0.48 | 0.487 | 0.62 | 0.16 | 2.39 |
Diffuse III | 2.17 | 0.010 * | 8.80 ** | 1.67 | 46.33 |
Diffuse IV | 2.20 | 0.012 * | 9.05 ** | 1.62 | 50.47 |
Subarachnoid hemorrhage (yes) | 1.51 | 0.006* | 4.53 ** | 1.53 | 13.41 |
Glasgow | |||||
3–8 | 0.86 | 0.135 | 2.36 | 0.77 | 7.27 |
9–13 | 1.87 | 0.007 * | 6.49 ** | 1.66 | 25.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quispe-Alcocer, J.; Biroli, A.; González-Andrade, F. Impact of Delayed Trauma Unit Admission on Mortality and Disability in Traumatic Brain Injury Patients. Int. J. Environ. Res. Public Health 2025, 22, 1566. https://doi.org/10.3390/ijerph22101566
Quispe-Alcocer J, Biroli A, González-Andrade F. Impact of Delayed Trauma Unit Admission on Mortality and Disability in Traumatic Brain Injury Patients. International Journal of Environmental Research and Public Health. 2025; 22(10):1566. https://doi.org/10.3390/ijerph22101566
Chicago/Turabian StyleQuispe-Alcocer, Julio, Antonio Biroli, and Fabricio González-Andrade. 2025. "Impact of Delayed Trauma Unit Admission on Mortality and Disability in Traumatic Brain Injury Patients" International Journal of Environmental Research and Public Health 22, no. 10: 1566. https://doi.org/10.3390/ijerph22101566
APA StyleQuispe-Alcocer, J., Biroli, A., & González-Andrade, F. (2025). Impact of Delayed Trauma Unit Admission on Mortality and Disability in Traumatic Brain Injury Patients. International Journal of Environmental Research and Public Health, 22(10), 1566. https://doi.org/10.3390/ijerph22101566