Comparing Heart Rate and Heart Rate Reserve for Accurate Energy Expenditure Prediction Against Direct Measurement
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
3. Results
3.1. Correlation Between HR, HRres, and Energy Expenditure
3.2. Development of Regression Models for EE Prediction
3.3. Model Accuracy Compared to Measured EE
3.4. Comparisons Between HR- and HRres-Based Models
3.5. Consistency of Predicted Energy Expenditure Within HRres- or HR-Based Models
3.6. Prediction Accuracy Across Exercise Intensities (10~100%)
4. Discussion
4.1. Submaximal Intensities (10~70%)
4.2. Maximal Intensities (80~100%)
4.3. Model Structure and Consistency
4.4. Strengths
4.5. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
EE | Energy expenditure |
HR | Heart rate |
HRres | Heart rate reserve |
HRrest | Resting heart rate |
References
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018; 472p. [Google Scholar]
- Andrade-Mayorga, O.; Martínez-Maturana, N.; Salazar, L.A.; Díaz, E. Physiological Effects and Inter-Individual Variability to 12 Weeks of High Intensity-Interval Training and Dietary Energy Restriction in Overweight/Obese Adult Women. Front. Physiol. 2021, 12, 713016. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33, S446–S451; discussion S452–S453. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Hand, G.A.; Sagner, M.; Shook, R.P.; Burgess, S.; Blair, S.N. The Prospective Association between Different Types of Exercise and Body Composition. Med. Sci. Sports Exerc. 2015, 47, 2535–2541. [Google Scholar] [CrossRef] [PubMed]
- Whipple, M.O.; Schorr, E.N.; Talley, K.M.C.; Lindquist, R.; Bronas, U.G.; Treat-Jacobson, D. Variability in Individual Response to Aerobic Exercise Interventions Among Older Adults. J. Aging Phys. Act. 2018, 26, 655–670. [Google Scholar] [CrossRef]
- Lam, Y.Y.; Ravussin, E. Analysis of energy metabolism in humans: A review of methodologies. Mol. Metab. 2016, 5, 1057–1071. [Google Scholar] [CrossRef]
- Caserman, P.; Yum, S.; Göbel, S.; Reif, A.; Matura, S. Assessing the Accuracy of Smartwatch-Based Estimation of Maximum Oxygen Uptake Using the Apple Watch Series 7: Validation Study. JMIR Biomed. Eng. 2024, 9, e59459. [Google Scholar] [CrossRef] [PubMed]
- Smirmaul, B.P.; Bertucci, D.R.; Teixeira, I.P. Is the VO2max that we measure really maximal? Front. Physiol. 2013, 4, 203. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Wicks, J.R.; Oldridge, N.B.; Nielsen, L.K.; Vickers, C.E. HR index—A simple method for the prediction of oxygen uptake. Med. Sci. Sports Exerc. 2011, 43, 2005–2012. [Google Scholar] [CrossRef]
- Colosio, A.L.; Pedrinolla, A.; Da Lozzo, G.; Pogliaghi, S. Heart Rate-Index Estimates Oxygen Uptake, Energy Expenditure and Aerobic Fitness in Rugby Players. J. Sports Sci. Med. 2018, 17, 633–639. [Google Scholar]
- St Pierre, S.R.; Peirlinck, M.; Kuhl, E. Sex Matters: A Comprehensive Comparison of Female and Male Hearts. Front. Physiol. 2022, 13, 831179. [Google Scholar] [CrossRef]
- Teso, M.; Colosio, A.L.; Pogliaghi, S. An Intensity-dependent Slow Component of HR Interferes with Accurate Exercise Implementation in Postmenopausal Women. Med. Sci. Sports Exerc. 2022, 54, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, E.A.; Western, M.J.; Nightingale, T.E.; Peacock, O.J.; Thompson, D. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS ONE 2017, 12, e0171720. [Google Scholar] [CrossRef]
- Crouter, S.E.; Clowers, K.G.; Bassett, D.R., Jr. A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 2006, 100, 1324–1331. [Google Scholar] [CrossRef]
- Jubair, H.; Mehenaz, M. Utilizing machine learning algorithms for personalized workout recommendations and monitoring: A systematic review on smartwatch-assisted exercise prescription. Digit. Health 2025, 11, 20552076251355365. [Google Scholar] [CrossRef]
- Keytel, L.R.; Goedecke, J.H.; Noakes, T.D.; Hiiloskorpi, H.; Laukkanen, R.; van der Merwe, L.; Lambert, E.V. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J. Sports Sci. 2005, 23, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.; Hansen, J.E.; Sietsema, K.; Sue, D.Y.; Stringer, W.W.; Whipp, B.; Sun, X.G. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications; Wolters Kluwer Health: Philadelphia, PA, USA, 2015. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Selya, A.S.; Rose, J.S.; Dierker, L.C.; Hedeker, D.; Mermelstein, R.J. A Practical Guide to Calculating Cohen’s f(2), a Measure of Local Effect Size, from PROC MIXED. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef] [PubMed]
- Hiilloskorpi, H.K.; Pasanen, M.E.; Fogelholm, M.G.; Laukkanen, R.M.; Manttari, A.T. Use of heart rate to predict energy expenditure from low to high activity levels. Int. J. Sports Med. 2003, 24, 332–336. [Google Scholar] [CrossRef]
- Firstbeat, T. An Energy Expenditure Estimation Method Based on Heart Rate Measurement; Firstbeat Technologies Ltd.: Jyväskylä, Finland, 2012. [Google Scholar]
- Ogata, H.; Negishi, Y.; Koizumi, N.; Nagayama, H.; Kaneko, M.; Kiyono, K.; Omi, N. Individually optimized estimation of energy expenditure in rescue workers using a tri-axial accelerometer and heart rate monitor. Front. Physiol. 2024, 15, 1322881. [Google Scholar] [CrossRef]
- Powers, S.K.; Howley, E.T.; Quindry, J.C. Exercise Physiology: Theory and Application to Fitness and Performance, 12th ed.; McGraw-Hill Education LLC.: New York, NY, USA, 2023. [Google Scholar]
- Cataldo, A.R.; Fei, J.; Hutchinson, K.J.; Sloutsky, R.; Starr, J.; De Rossi, S.M.M.; Awad, L.N. Enhancing Heart Rate-Based Estimation of Energy Expenditure and Exercise Intensity in Patients Post Stroke. Bioengineering 2024, 11, 1250. [Google Scholar] [CrossRef]
- Kang, J.; Ratamess, N.A.; Faigenbaum, A.D.; Bush, J.A.; Roser, C.; Montemarano, D.; Mercado, H.; Choma, M.; Mendez, C.; Pollock, M. Use of Heart Rate Index to Predict Oxygen Uptake—A Validation Study. Int. J. Exerc. Sci. 2020, 13, 1705–1717. [Google Scholar] [CrossRef]
- Altini, M.; Casale, P.; Penders, J.; Ten Velde, G.; Plasqui, G.; Amft, O. Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates. J. Appl. Physiol. 2016, 120, 1082–1096. [Google Scholar] [CrossRef] [PubMed]
- Quer, G.; Gouda, P.; Galarnyk, M.; Topol, E.J.; Steinhubl, S.R. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS ONE 2020, 15, e0227709. [Google Scholar] [CrossRef] [PubMed]
- Strain, T.; Wijndaele, K.; Dempsey, P.C.; Sharp, S.J.; Pearce, M.; Jeon, J.; Lindsay, T.; Wareham, N.; Brage, S. Wearable-device-measured physical activity and future health risk. Nat. Med. 2020, 26, 1385–1391. [Google Scholar] [CrossRef]
- Hopkins, M.; Gibbons, C.; Blundell, J. Fat-free mass and resting metabolic rate are determinants of energy intake: Implications for a theory of appetite control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Q.; Lan, K.; Yang, Z.; Gao, X.; Wu, A.; Xin, Y.; Zhang, Z. Enhancing instantaneous oxygen uptake estimation by non-linear model using cardio-pulmonary physiological and motion signals. Front. Physiol. 2022, 13, 897412. [Google Scholar] [CrossRef]
- Dericioglu, D.; Methven, L.; Clegg, M.E. Does physical activity level and total energy expenditure relate to food intake, appetite, and body composition in healthy older adults? A cross-sectional study. Eur. J. Nutr. 2025, 64, 71. [Google Scholar] [CrossRef]
- Ostendorf, D.M.; Caldwell, A.E.; Creasy, S.A.; Pan, Z.; Lyden, K.; Bergouignan, A.; MacLean, P.S.; Wyatt, H.R.; Hill, J.O.; Melanson, E.L.; et al. Physical Activity Energy Expenditure and Total Daily Energy Expenditure in Successful Weight Loss Maintainers. Obesity 2019, 27, 496–504. [Google Scholar] [CrossRef]
- Krems, C.; Luhrmann, P.M.; Strassburg, A.; Hartmann, B.; Neuhauser-Berthold, M. Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur. J. Clin. Nutr. 2005, 59, 255–262. [Google Scholar] [CrossRef]
- Bjornstad, H.; Storstein, L.; Dyre Meen, H.; Hals, O. Electrocardiographic findings according to level of fitness and sport activity. Cardiology 1993, 83, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, S.; Elovainio, R. Resting ECG in athletic and non-athletic adolescent boys: Correlations with heart volume and cardiorespiratory fitness. Clin. Physiol. 1982, 2, 419–426. [Google Scholar] [CrossRef] [PubMed]
Experiments | Group | n | Age (yrs) | Weight (kg) | Height (cm) | BMI (kg/m2) |
---|---|---|---|---|---|---|
Experiment 1 | Total | 16 | 28.0 ± 5.4 | 73.1 ± 10.0 | 171.4 ± 7.2 | 24.8 ± 2.5 |
Men | 12 | 27.8 ± 3.3 | 77.0 ± 10.3 | 174.1 ± 5.3 | 25.4 ± 2.9 | |
Women | 4 | 28.5 ± 3.3 | 61.4 ± 10.3 | 163.3 ± 5.3 | 23.0 ± 2.9 | |
Experiment 2 | Total | 4 | 25.8 ± 4.3 | 71.2 ± 7.1 | 175.3 ± 2.2 | 23.1 ± 1.9 |
Men | 4 | 25.8 ± 4.3 | 71.2 ± 7.1 | 175.3 ± 2.2 | 23.1 ± 1.9 | |
Women | - | N/A | N/A | N/A | N/A | |
Experiment 3 | Total | 6 | 26.2 ± 1.7 | 66.9 ± 8.8 | 167.6 ± 3.6 | 23.7 ± 2.5 |
Men | 3 | 27.3 ± 0.6 | 75.1 ± 2.6 | 170.2 ± 3.0 | 25.9 ± 1.6 | |
Women | 3 | 25.0 ± 2.0 | 58.7 ± 4.9 | 165.0 ± 3.1 | 21.5 ± 1.0 | |
Total | Total | 26 | 27.2 ± 4.7 | 71.4 ± 9.7 | 171.1 ± 6.4 | 24.3 ± 2.5 |
Men | Men | 19 | 27.3 ± 5.2 | 75.5 ± 6.8 | 173.7 ± 5.0 | 25.0 ± 2.2 |
Women | Women | 7 | 27.0 ± 3.0 | 60.3 ± 7.4 | 164.0 ± 3.9 | 22.3 ± 2.1 |
Model | Primary Predictor | Other Variables | EE Prediction Equation | β | p |
---|---|---|---|---|---|
1 | HRres | Sex, Weight, HRrest | EE = 0.051 + (0.164 × HRres) − (2.271 × S) + (0.075 × W) − 0.009 × HRrest | 0.899 | ≤0.001 |
2 | HR | Sex, Weight, HRrest | EE = −5.944 + (0.136 × HR) − (2.363 × S) + (0.077 × W) − (0.063 × HRrest) | 0.909 | ≤0.001 |
3 | HRres | Sex, BMI, HRrest | EE = 1.923 + (0.164 × HRres) − (2.964 × S) + (0.167 × BMI) − (0.005 × HRrest) | 0.899 | ≤0.001 |
4 | HR | Sex, BMI, HRrest | EE = −3.140 + (0.136 × HR) − (3.167 × S) + (0.141 × BMI) − (0.058 × HRrest) | 0.909 | ≤0.001 |
5 | HRres | HRrest | EE = 2.709 + (0.163 × HRres) − (0.011 × HRrest) | 0.893 | ≤0.001 |
6 | HR | HRrest | EE = −3.114 + (0.135 × HR) − (0.065 × Hrrest) | 0.900 | ≤0.001 |
Group | Mean Difference (Cal/min) | t | p |
---|---|---|---|
MEE—Model 1 | 0.1 ± 0.6 | 0.329 | 0.745 |
MEE—Model 2 | 0.1 ± 0.6 | 0.406 | 0.688 |
MEE—Model 3 | 0.1 ± 0.6 | 0.353 | 0.727 |
MEE—Model 4 | 0.0 ± 0.6 | 0.101 | 0.920 |
MEE—Model 5 | 0.1 ± 0.6 | 0.221 | 0.827 |
MEE—Model 6 | 0.1 ± 0.6 | 0.125 | 0.902 |
Group | Mean Difference (Cal/min) | t | p | ||
---|---|---|---|---|---|
Model 1—Model 2 | 0.0 | ± | 0.6 | 0.205 | 0.839 |
Model 3—Model 4 | −0.1 | ± | 0.6 | −0.928 | 0.362 |
Model 5—Model 6 | 0.0 | ± | 0.4 | −0.578 | 0.569 |
Group | Mean Difference ± SD (Kcal/min) | t | p | |
---|---|---|---|---|
HRres Models | Model 1—Model 3 | 0.0 ± 0.6 | 0.214 | 0.832 |
Model 1—Model 5 | 0.0 ± 0.5 | −0.051 | 0.960 | |
Model 3—Model 5 | 0.0 ± 0.5 | −0.011 | 0.991 | |
HR Models | Model 2—Model 4 | −0.1 ± 0.6 | −1.155 | 0.259 |
Model 2—Model 6 | 0.0 ± 0.5 | 0.136 | 0.893 | |
Model 4—Model 6 | 0.0 ± 0.5 | −0.095 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Lee, Y.; Lee, D.T. Comparing Heart Rate and Heart Rate Reserve for Accurate Energy Expenditure Prediction Against Direct Measurement. Int. J. Environ. Res. Public Health 2025, 22, 1539. https://doi.org/10.3390/ijerph22101539
Seo Y, Lee Y, Lee DT. Comparing Heart Rate and Heart Rate Reserve for Accurate Energy Expenditure Prediction Against Direct Measurement. International Journal of Environmental Research and Public Health. 2025; 22(10):1539. https://doi.org/10.3390/ijerph22101539
Chicago/Turabian StyleSeo, Yongsuk, Yunbin Lee, and Dae Taek Lee. 2025. "Comparing Heart Rate and Heart Rate Reserve for Accurate Energy Expenditure Prediction Against Direct Measurement" International Journal of Environmental Research and Public Health 22, no. 10: 1539. https://doi.org/10.3390/ijerph22101539
APA StyleSeo, Y., Lee, Y., & Lee, D. T. (2025). Comparing Heart Rate and Heart Rate Reserve for Accurate Energy Expenditure Prediction Against Direct Measurement. International Journal of Environmental Research and Public Health, 22(10), 1539. https://doi.org/10.3390/ijerph22101539