The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Flowchart and Scope of Review
2.4. Data Extraction
2.5. Data Analysis and Synthesis
3. Results
3.1. Publication Characteristics
3.2. Conceptual Framework
3.3. Summary of Findings
3.3.1. Pesticides and Endocrine-Disrupting Chemicals (ECDs) as a Cause of Breast Cancer
3.3.2. Workplace, Rural Settings, and Other Elements Influencing Breast Cancer Incidence
3.3.3. Rising Temperature in Isolation as a Cause of Breast Cancer
3.3.4. Behaviours Related to Temperature and Exposure to UV Radiation and Occurrence of Breast Cancer
3.3.5. Air Pollution as a Cause of Breast Cancer
3.3.6. Preventing Breast Cancer and Ensuring Access to Care Amid Climate Change and Rural Healthcare Challenges
4. Discussion
Main Findings
5. Limitations
5.1. Heterogeneity in Study Designs
5.2. Potential Publication Bias
5.3. Challenges in Extrapolating Global Data to South Africa
5.4. Proposed Policies Tailored to South Africa
5.4.1. Environmental Monitoring and Regulation
5.4.2. Public Health and Awareness Campaigns
5.4.3. Research and Data Localisation
5.4.4. Climate Change Adaptation in Healthcare
5.4.5. Intersectoral Collaboration and Policy Integration
5.4.6. Policy Recommendations for South Africa to Reduce DDT and Other Water Contaminants
5.5. Challenges in Ranking Risk Factors for Breast Cancer and Climate Change
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bani, I.; Hamad, E.M.; Elnour, A.A. The Impact of Breast Cancer on Sustainable Development Goals (SDGs). In Gum Arabic and Breast Cancer Biology: Biotechnology Perspective; Springer Nature: Singapore, 2025; pp. 215–237. [Google Scholar]
- Freeman, J.Q.; Huo, D.; Shubeck, S.P.; Chen, N.; Yarlagadda, S.R.; Nanda, R.; Howard, F.M. Trends and Disparities in the Use of Immunotherapy for Triple-Negative Breast Cancer in the U.S. JAMA Netw. Open 2025, 8, e2460243. [Google Scholar] [CrossRef]
- Abdul-Nabi, S.S.; Al Karaki, V.; Khalil, A.; El Zahran, T. Climate Change and Its Environmental and Health Effects from 2015 to 2022: A scoping review. Heliyon 2025, 11, e42315. [Google Scholar] [CrossRef]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef]
- Lakkis, N.A.; Abdallah, R.M.; Musharrafieh, U.M.; Issa, H.G.; Osman, M.H. Epidemiology of breast, corpus uteri, and ovarian cancers in lebanon with emphasis on breast cancer incidence trends and risk factors compared to regional and global rates. Cancer Control 2024, 31, 10732748241236266. [Google Scholar] [CrossRef]
- Cartwright, A.; Khalatbari-Soltani, S.; Zhang, Y. Housing conditions and the health and wellbeing impacts of climate change: A scoping review. Environ. Res. 2025, 270, 120846. [Google Scholar] [CrossRef]
- Williams, Z.; Hartwell, C. A case for nature: The climate and public health co-benefits of nature-based solutions. In Health and Climate Change; Academic Press: Cambridge, MA, USA, 2025; pp. 361–387. [Google Scholar]
- Muhsin, E.A. The Impact of Climate Change on the Mental and Physical Health in Human Being: A review. Al-Salam J. Med. Sci. 2025, 4, 72–76. [Google Scholar] [CrossRef]
- Harris, A.R.; Pichardo, C.M.; Franklin, J.; Liu, H.; Wooten, W.; Panigrahi, G.; Lawrence, W.R.; Pichardo, M.S.; Jenkins, B.D.; Dorsey, T.H.; et al. Multilevel stressors and systemic and tumor immunity in Black and White women with breast cancer. JAMA Netw. Open 2025, 8, e2459754. [Google Scholar] [CrossRef]
- Bell, M.L.; Gasparrini, A.; Benjamin, G.C. Climate change, extreme heat, and health. N. Engl. J. Med. 2024, 390, 1793–1801. [Google Scholar] [CrossRef]
- Ofremu, G.O.; Raimi, B.Y.; Yusuf, S.O.; Dziwornu, B.A.; Nnabuife, S.G.; Eze, A.M.; Nnajiofor, C.A. Exploring the relationship between climate change, air pollutants and human health: Impacts, adaptation, and mitigation strategies. Green Energy Resour. 2024, 3, 100074. [Google Scholar] [CrossRef]
- Goodarzi, E.; Beiranvand, R.; Naemi, H.; Pordanjani, S.R.; Khazaei, Z. Geographical distribution incidence and mortality of breast cancer and its relationship with the human development index (HDI): An ecology study in 2018. World Cancer Res. J. 2020, 7, 12. [Google Scholar]
- Adams, S.V.; Shafer, M.M.; Bonner, M.R.; LaCroix, A.Z.; Manson, J.E.; Meliker, J.R.; Neuhouser, M.L.; Newcomb, P.A. Urinary cadmium and risk of invasive breast cancer in the women’s health initiative. Am. J. Epidemiol. 2016, 183, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.; Kumari, R.; Ratre, P.; Rehman, A.; Srivastava, R.K.; Reszka, E.; Goryacheva, I.Y.; Mishra, P.K. Cell-free circulating miRNAs-lncRNAs-mRNAs as predictive markers for breast cancer risk assessment in women exposed to indoor air pollution. Case Stud. Chem. Environ. Eng. 2022, 6, 100267. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Loutfy, N.; El Shiekh, E. Residue levels of DDE and PCBs in the blood serum of women in the Port Said region of Egypt. J. Hazard. Mater. 2002, 89, 41–48. [Google Scholar] [CrossRef]
- Amadou, A.; Praud, D.; Coudon, T.; Deygas, F.; Grassot, L.; Dubuis, M.; Faure, E.; Couvidat, F.; Caudeville, J.; Bessagnet, B.; et al. Long-term exposure to nitrogen dioxide air pollution and breast cancer risk: A nested case-control within the French E3N cohort study. Environ. Pollut. 2023, 317, 120719. [Google Scholar] [CrossRef]
- Anderson, L.N.; Cotterchio, M.; Cole, D.E.; Knight, J.A. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1708–1717. [Google Scholar] [CrossRef]
- Aronson, K.J.; Miller, A.B.; Woolcott, C.G.; Sterns, E.E.; McCready, D.R.; Lickley, L.A.; Fish, E.B.; Hiraki, G.Y.; Holloway, C.; Ross, T.; et al. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 2000, 9, 55–63. [Google Scholar]
- Arslan, A.A.; Zhang, Y.; Durmus, N.; Pehlivan, S.; Addessi, A.; Schnabel, F.; Shao, Y.; Reibman, J. Breast cancer characteristics in the population of survivors participating in the world trade center environmental health center program 2002–2019. Int. J. Environ. Res. Public Health 2021, 18, 7555. [Google Scholar] [CrossRef]
- Bagga, D.; Anders, K.H.; Wang, H.J.; Roberts, E.; Glaspy, J.A. Organochlorine pesticide content of breast adipose tissue from women with breast cancer and control subjects. J. Natl. Cancer Inst. 2000, 92, 750–753. [Google Scholar] [CrossRef]
- Bernstein, J.L.; Haile, R.W.; Stovall, M.; Boice Jr, J.D.; Shore, R.E.; Langholz, B.; Thomas, D.C.; Bernstein, L.; Lynch, C.F.; Olsen, J.H.; et al. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J. Natl. Cancer Inst. 2010, 102, 475–483. [Google Scholar] [CrossRef]
- Bertucci, F.; Lerebours, F.; Ceccarelli, M.; Guille, A.; Syed, N.; Finetti, P.; Adélaïde, J.; Van Laere, S.; Goncalves, A.; Viens, P.; et al. Mutational landscape of inflammatory breast cancer. J. Transl. Med. 2024, 22, 374. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.F.; He, L.; Hjelmborg, J.V.; Kaprio, J.; Ollikainen, M. Pre-diagnosis blood DNA methylation profiling of twin pairs discordant for breast cancer points to the importance of environmental risk factors. Clin. Epigenetics 2024, 16, 160. [Google Scholar] [CrossRef]
- Bonefeld-Jorgensen, E.C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Krüger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P.; et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environ. Health 2011, 10, 88. [Google Scholar] [CrossRef]
- Bonner, M.R.; Han, D.; Nie, J.; Rogerson, P.; Vena, J.E.; Muti, P.; Trevisan, M.; Edge, S.B.; Freudenheim, J.L. Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol. Biomark. Prev. 2005, 14, 53–60. [Google Scholar] [CrossRef]
- Bonner, M.R.; Nie, J.; Han, D.; Vena, J.E.; Rogerson, P.; Muti, P.; Trevisan, M.; Edge, S.B.; Freudenheim, J.L. Secondhand smoke exposure in early life and the risk of breast cancer among never smokers (United States). Cancer Causes Control 2005, 16, 683–689. [Google Scholar] [CrossRef]
- Caini, S.; Cozzolino, F.; Saieva, C.; Aprea, M.C.; Cavalcabo, N.D.; Ermini, I.; Assedi, M.; Biagiotti, D.; Trane, C.; Facchini, L.; et al. Serum heavy metals and breast cancer risk: A case-control study nested in the Florence cohort of the EPIC (European Prospective Investigation into Cancer and nutrition) study. Sci. Total Environ. 2023, 861, 160568. [Google Scholar] [CrossRef]
- Chang, Y.L.; Li, J.; Yao, S.Q.; Hu, W.N.; Jiang, S.F.; Guo, Z.; Yang, L.; Li, D.D.; Li, Y.M.; Liu, Y. A case-control study on serum organochlorines residues, genetic polymorphisms of glutathione S-transferase T1 and the risks of breast cancer. Zhonghua Liu Xing Bing Xue Za Zhi 2008, 29, 763–766. (In Chinese) [Google Scholar]
- Charles, M.J.; Schell, M.J.; Willman, E.; Gross, H.B.; Lin, Y.; Sonnenberg, S.; Graham, M.L. Organochlorines and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in cancerous and noncancerous breast tissue: Do the data support the hypothesis that oxidative DNA damage caused by organochlorines affects breast cancer? Arch. Environ. Contam. Toxicol. 2001, 41, 386–395. [Google Scholar]
- Charlier, C.; Albert, A.; Herman, P.; Hamoir, E.; Gaspard, U.; Meurisse, M.; Plomteux, G. Breast cancer and serum organochlorine residues. Occup. Environ. Med. 2003, 60, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.; Foidart, J.M.; Pitance, F.; Herman, P.; Gaspard, U.; Meurisse, M.; Plomteux, G. Environmental dichlorodiphenyltrichlorethane or hexachlorobenzene exposure and breast cancer: Is there a risk? Clin. Chem. Lab. Med. (CCLM) 2004, 42, 222–227. [Google Scholar] [CrossRef]
- Cohn, B.A. Developmental and environmental origins of breast cancer: DDT as a case study. Reprod. Toxicol. 2011, 31, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; La Merrill, M.; Krigbaum, N.Y.; Yeh, G.; Park, J.S.; Zimmermann, L.; Cirillo, P.M. DDT exposure in utero and breast cancer. J. Clin. Endocrinol. Metab. 2015, 100, 2865–2872. [Google Scholar] [CrossRef]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; Cirillo, P.M.; Terry, M.B. DDT and breast cancer: Prospective study of induction time and susceptibility windows. JNCI J. Natl. Cancer Inst. 2019, 111, 803–810. [Google Scholar] [CrossRef]
- Danjou, A.M.; Fervers, B.; Boutron-Ruault, M.C.; Philip, T.; Clavel-Chapelon, F.; Dossus, L. Estimated dietary dioxin exposure and breast cancer risk among women from the French E3N prospective cohort. Breast Cancer Res. 2015, 17, 39. [Google Scholar] [CrossRef]
- Di Lena, É.; Hopkins, B.; Wong, S.M.; Meterissian, S. Delays in operative management of early-stage, estrogen receptor–positive breast cancer during the COVID-19 pandemic: A multi-institutional matched historical cohort study. Surgery 2022, 171, 666–672. [Google Scholar] [CrossRef]
- Dorgan, J.F.; Brock, J.W.; Rothman, N.; Needham, L.L.; Miller, R.; Stephenson, H.E.; Schussler, N.; Taylor, P.R. Serum organochlorine pesticides and PCBs and breast cancer risk: Results from a prospective analysis (USA). Cancer Causes Control 1999, 10, 1–11. [Google Scholar] [CrossRef]
- Furberg, H.; Millikan, R.C.; Geradts, J.; Gammon, M.D.; Dressler, L.G.; Ambrosone, C.B.; Newman, B. Environmental factors in relation to breast cancer characterized by p53 protein expression. Cancer Epidemiol. Biomark. Prev. 2002, 11, 829–835. [Google Scholar]
- Gammon, M.D.; Wolff, M.S.; Neugut, A.I.; Eng, S.M.; Teitelbaum, S.L.; Britton, J.A.; Terry, M.B.; Levin, B.; Stellman, S.D.; Kabat, G.C.; et al. Environmental toxins and breast cancer on Long Island II. Organochlorine compound Levels blood. Cancer Epidemiol. Biomark. Prev. 2002, 11, 686–697. [Google Scholar]
- Gatto, N.M.; Longnecker, M.P.; Press, M.F.; Sullivan-Halley, J.; McKean-Cowdin, R.; Bernstein, L. Serum organochlorines and breast cancer: A case–control study among African-American women. Cancer Causes Control 2007, 18, 29–39. [Google Scholar] [CrossRef]
- Giannico, O.V.; Carone, S.; Tanzarella, M.; Galluzzo, C.; Bruni, A.; Lagravinese, G.M.; Rashid, I.; Bisceglia, L.; Sardone, R.; Addabbo, F.; et al. Environmental pressures, tumor characteristics, and death rate in a female breast cancer cohort: A seven-years Bayesian survival analysis using cancer registry data from a contaminated area in Italy. Front. Public Health 2024, 11, 1310823. [Google Scholar] [CrossRef] [PubMed]
- Go, Y.M.; Weinberg, J.; Teeny, S.; Cirillo, P.M.; Krigbaum, N.Y.; Singer, G.; Tran, V.; Cohn, B.A.; Jones, D.P. Exposome epidemiology for suspect environmental chemical exposures during pregnancy linked to subsequent breast cancer diagnosis. Environ. Int. 2023, 178, 108112. [Google Scholar] [CrossRef]
- He, T.T.; Zuo, A.J.; Wang, J.G.; Zhao, P. Organochlorine pesticides accumulation and breast cancer: A hospital-based case–control study. Tumor Biol. 2017, 39, 1010428317699114. [Google Scholar] [CrossRef]
- Heck, J.E.; He, D.; Wing, S.E.; Ritz, B.; Carey, C.D.; Yang, J.; Stram, D.O.; Le Marchand, L.; Park, S.L.; Cheng, I.; et al. Exposure to outdoor ambient air toxics and risk of breast cancer: The multiethnic cohort. Int. J. Hyg. Environ. Health 2024, 259, 114362. [Google Scholar] [CrossRef]
- Helzlsouer, K.J.; Alberg, A.J.; Huang, H.Y.; Hoffman, S.C.; Strickland, P.T.; Brock, J.W.; Burse, V.W.; Needham, L.L.; Bell, D.A.; Lavigne, J.A.; et al. Serum concentrations of organochlorine compounds and the subsequent development of breast cancer. Cancer Epidemiol. Biomark. Prev. 1999, 8, 525–532. [Google Scholar]
- Holmes, A.K.; Koller, K.R.; Kieszak, S.M.; Sjodin, A.; Calafat, A.M.; Sacco, F.D.; Varner, D.W.; Lanier, A.P.; Rubin, C.H. Case–control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women. Int. J. Circumpolar Health 2014, 73, 25760. [Google Scholar] [CrossRef]
- Huang, W.; He, Y.; Xiao, J.; Huang, Y.; Li, A.; He, M.; Wu, K. Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: A hospital-based case-control study in Chinese women. Environ. Sci. Pollut. Res. 2019, 26, 32128–32136. [Google Scholar] [CrossRef]
- Hunter, D.J.; Hankinson, S.E.; Laden, F.; Colditz, G.A.; Manson, J.E.; Willett, W.C.; Speizer, F.E.; Wolff, M.S. Plasma organochlorine levels and the risk of breast cancer. N. Engl. J. Med. 1997, 337, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Hvidtfeldt, U.A.; Chen, J.; Rodopoulou, S.; Strak, M.; de Hoogh, K.; Andersen, Z.J.; Bellander, T.; Brandt, J.; Fecht, D.; Forastiere, F.; et al. Breast cancer incidence in relation to long-term low-level exposure to air pollution in the ELAPSE pooled cohort. Cancer Epidemiol. Biomark. Prev. 2023, 32, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Høyer, A.P.; Grandjean, P.; Jørgensen, T.; Brock, J.W.; Hartvig, H.B. Organochlorine exposure and risk of breast cancer. Lancet 1998, 352, 1816–1820. [Google Scholar] [CrossRef]
- Ilozumba, M.N.; Shelver, W.L.; Hong, C.C.; Ambrosone, C.B.; Cheng, T.Y. Urinary concentrations of Triclosan, bisphenol, A.; and brominated flame retardants and the Association of Triclosan with demographic characteristics and body fatness among women with newly diagnosed breast cancer. Int. J. Environ. Res. Public Health 2022, 19, 4681. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Iwasaki, M.; Hanaoka, T.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; Kusama, R.; Tsugane, S. Serum organochlorines and breast cancer risk in Japanese women: A case–control study. Cancer Causes Control 2009, 20, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Inoue, M.; Sasazuki, S.; Kurahashi, N.; Itoh, H.; Usuda, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Plasma organochlorine levels and subsequent risk of breast cancer among Japanese women: A nested case–control study. Sci. Total Environ. 2008, 402, 176–183. [Google Scholar] [CrossRef]
- Iwasaki, M.; Itoh, H.; Sawada, N.; Tsugane, S. Exposure to environmental chemicals and cancer risk: Epidemiological evidence from Japanese studies. Genes Environ. 2023, 45, 10. [Google Scholar] [CrossRef]
- Jenkins, B.D.; Rossi, E.; Pichardo, C.; Wooten, W.; Pichardo, M.; Tang, W.; Dorsey, T.H.; Ajao, A.; Hutchison, R.; Moubadder, L.; et al. Neighborhood deprivation and DNA methylation and expression of cancer genes in breast tumors. JAMA Netw. Open 2023, 6, e2341651. [Google Scholar] [CrossRef]
- Johnson, K.C. Accumulating evidence on passive and active smoking and breast cancer risk. Int. J. Cancer 2005, 117, 619–628. [Google Scholar] [CrossRef]
- Jones, R.R.; Fisher, J.A.; Medgyesi, D.N.; Buller, I.D.; Liao, L.M.; Gierach, G.; Ward, M.H.; Silverman, D.T. Ethylene oxide emissions and incident breast cancer and non-Hodgkin lymphoma in a US cohort. JNCI J. Natl. Cancer Inst. 2023, 115, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Swain, S.K.; Banerjee, B.D.; Sharma, T.; Krishnalata, T. Organochlorine pesticide exposure as a risk factor for breast cancer in young Indian women: A case–control study. South Asian J. Cancer 2019, 8, 212–214. [Google Scholar] [CrossRef]
- Laden, F.; Collman, G.; Iwamoto, K.; Alberg, A.J.; Berkowitz, G.S.; Freudenheim, J.L.; Hankinson, S.E.; Helzlsouer, K.J.; Holford, T.R.; Huang, H.Y.; et al. 1, 1-Dichloro-2, 2-bis (p-chlorophenyl) ethylene and polychlorinated biphenyls and breast cancer: Combined analysis of five US studies. J. Natl. Cancer Inst. 2001, 93, 768–775. [Google Scholar] [CrossRef]
- Li, T.; Sotgia, F.; Vuolo, M.A.; Li, M.; Yang, W.C.; Pestell, R.G.; Sparano, J.A.; Lisanti, M.P. Caveolin-1 mutations in human breast cancer: Functional association with estrogen receptor α-positive status. Am. J. Pathol. 2006, 168, 1998–2013. [Google Scholar] [CrossRef]
- Li, Y.; Millikan, R.C.; Bell, D.A.; Cui, L.; Tse, C.K.; Newman, B.; Conway, K. Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African American women and white women in North Carolina: A population-based case-control study. Breast Cancer Res. 2004, 7, R12–R18. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, R.; Zheng, R.; Li, L.; Wang, S. Household air pollution from solid cooking fuel combustion and female breast cancer. Front. Public Health 2021, 9, 677851. [Google Scholar] [CrossRef] [PubMed]
- Louis, L.M.; Lerro, C.C.; Friesen, M.C.; Andreotti, G.; Koutros, S.; Sandler, D.P.; Blair, A.; Robson, M.G.; Beane Freeman, L.E. A prospective study of cancer risk among Agricultural Health Study farm spouses associated with personal use of organochlorine insecticides. Environ. Health 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Luginaah, I.N.; Gorey, K.M.; Oiamo, T.H.; Tang, K.X.; Holowaty, E.J.; Hamm, C.; Wright, F.C. A geographical analysis of breast cancer clustering in southern Ontario: Generating hypotheses on environmental influences. Int. J. Environ. Health Res. 2012, 22, 232–248. [Google Scholar] [CrossRef]
- Lynge, E.; Vejborg, I.; Andersen, Z.; von Euler-Chelpin, M.; Napolitano, G. Mammographic density and screening sensitivity, breast cancer incidence and associated risk factors in Danish breast cancer screening. J. Clin. Med. 2019, 8, 2021. [Google Scholar] [CrossRef]
- López-Carrillo, L.; Torres-Arreola, L.; Torres-Sánchez, L.; Espinosa-Torres, F.; Jiménez, C.; Cebrián, M.; Waliszewski, S.; Saldate, O. Is DDT use a public health problem in Mexico? Environ. Health Perspect. 1996, 104, 584–588. [Google Scholar] [CrossRef]
- López-Carrillo, L.; Hernández-Ramírez, R.U.; Gandolfi, A.J.; Ornelas-Aguirre, J.M.; Torres-Sánchez, L.; Cebrian, M.E. Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol. Appl. Pharmacol. 2014, 280, 53–59. [Google Scholar] [CrossRef]
- Mancini, F.R.; Cano-Sancho, G.; Gambaretti, J.; Marchand, P.; Boutron-Ruault, M.C.; Severi, G.; Arveux, P.; Antignac, J.P.; Kvaskoff, M. Perfluorinated alkylated substances serum concentration and breast cancer risk: Evidence from a nested case-control study in the French E3N cohort. Int. J. Cancer 2020, 146, 917–928. [Google Scholar] [CrossRef]
- Mathur, V.; Bhatnagar, P.; Sharma, R.G.; Acharya, V.; Sexana, R. Breast cancer incidence and exposure to pesticides among women originating from Jaipur. Environ. Int. 2002, 28, 331–336. [Google Scholar] [CrossRef]
- McElroy, J.A.; Kanarek, M.S.; Trentham-Dietz, A.; Robert, S.A.; Hampton, J.M.; Newcomb, P.A.; Anderson, H.A.; Remington, P.L. Potential exposure to PCBs, DDT, and PBDEs from sport-caught fish consumption in relation to breast cancer risk in Wisconsin. Environ. Health Perspect. 2004, 112, 156–162. [Google Scholar] [CrossRef] [PubMed]
- McElroy, J.A.; Shafer, M.M.; Gangnon, R.E.; Crouch, L.A.; Newcomb, P.A. Urinary lead exposure and breast cancer risk in a population-based case-control study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, G.A.; Eluf-Neto, J.; Andrada-Serpa, M.J.; Carmo, P.A.; Barreto, H.H.; Inomata, O.N.; Kussumi, T.A. Organochlorines and breast cancer: A case-control study in Brazil. Int. J. Cancer 1999, 83, 596–600. [Google Scholar] [CrossRef]
- Millikan, R.; DeVoto, E.; Duell, E.J.; Tse, C.K.; Savitz, D.A.; Beach, J.; Edmiston, S.; Jackson, S.; Newman, B. Dichlorodiphenyldichloroethene, polychlorinated biphenyls, and breast cancer among African-American and white women in North Carolina. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1233–1240. [Google Scholar]
- Moysich, K.B.; Ambrosone, C.B.; Vena, J.E.; Shields, P.G.; Mendola, P.; Kostyniak, P.; Greizerstein, H.; Graham, S.; Marshall, J.R.; Schisterman, E.F.; et al. Environmental organochlorine exposure and postmenopausal breast cancer risk. Cancer Epidemiol. Biomark. Prev. 1998, 7, 181–188. [Google Scholar]
- Muscat, J.E.; Britton, J.A.; Djordjevic, M.V.; Citron, M.L.; Kemeny, M.; Busch-Devereaux, E.; Pittman, B.; Stellman, S.D. Adipose concentrations of organochlorine compounds and breast cancer recurrence in Long Island, New York. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1474–1478. [Google Scholar]
- Niehoff, N.; White, A.J.; McCullough, L.E.; Steck, S.E.; Beyea, J.; Mordukhovich, I.; Shen, J.; Neugut, A.I.; Conway, K.; Santella, R.M.; et al. Polycyclic aromatic hydrocarbons and postmenopausal breast cancer: An evaluation of effect measure modification by body mass index and weight change. Environ. Res. 2017, 152, 17–25. [Google Scholar] [CrossRef]
- Okobia, M.; Bunker, C.; Zmuda, J.; Kammerer, C.; Vogel, V.; Uche, E.; Anyanwu, S.; Ezeome, E.; Ferrell, R.; Kuller, L. Case–control study of risk factors for breast cancer in Nigerian women. Int. J. Cancer 2006, 119, 2179–2185. [Google Scholar] [CrossRef]
- Olson, J.E.; Vachon, C.M.; Vierkant, R.A.; Sweeney, C.; Limburg, P.J.; Cerhan, J.R.; Sellers, T.A. Prepregnancy exposure to cigarette smoking and subsequent risk of postmenopausal breast cancer. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2005; Volume 80, pp. 1423–1428. [Google Scholar]
- Parada, H., Jr.; Wolff, M.S.; Engel, L.S.; White, A.J.; Eng, S.M.; Cleveland, R.J.; Khankari, N.K.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. Organochlorine insecticides DDT and chlordane in relation to survival following breast cancer. Int. J. Cancer 2016, 138, 565–575. [Google Scholar] [CrossRef]
- Parada, H., Jr.; Gammon, M.D.; Ettore, H.L.; Chen, J.; Calafat, A.M.; Neugut, A.I.; Santella, R.M.; Wolff, M.S.; Teitelbaum, S.L. Urinary concentrations of environmental phenols and their associations with breast cancer incidence and mortality following breast cancer. Environ. Int. 2019, 130, 104890. [Google Scholar] [CrossRef] [PubMed]
- Parada, H., Jr.; Sun, X.; Tse, C.K.; Engel, L.S.; Olshan, A.F.; Troester, M.A. Plasma levels of dichlorodiphenyldichloroethene (DDE) and dichlorodiphenyltrichloroethane (DDT) and survival following breast cancer in the Carolina Breast Cancer Study. Environ. Int. 2019, 125, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Pavuk, M.; Cerhan, J.R.; Lynch, C.F.; Kocan, A.; Petrik, J.; Chovancova, J. Case–control study of PCBs, other organochlorines and breast cancer in Eastern Slovakia. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 267–275. [Google Scholar] [CrossRef]
- Paydar, P.; Asadikaram, G.; Fallah, H.; Zeynali Nejad, H.; Akbari, H.; Abolhassani, M.; Moazed, V.; Khazaeli, P.; Heidari, M.R. Serum levels of organochlorine pesticides and breast cancer risk in Iranian women. Arch. Environ. Contam. Toxicol. 2019, 77, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.E.; Hansen, J. Risk of breast cancer in daughters of agricultural workers in Denmark. Environ. Res. 2024, 240, 117374. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Belmontes, C.P.; Hernández-Ramírez, R.U.; Hernández-Alcaraz, C.; Cebrián, M.E.; López-Carrillo, L. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women. Salud Pública México 2016, 58, 220–227. [Google Scholar] [CrossRef]
- Poulsen, A.H.; Hvidtfeldt, U.A.; Sørensen, M.; Pedersen, J.E.; Ketzel, M.; Brandt, J.; Geels, C.; Christensen, J.H.; Raaschou-Nielsen, O. Air pollution with NO2, PM2.5, and elemental carbon in relation to risk of breast cancer—A nationwide case-control study from Denmark. Environ. Res. 2023, 216, 114740. [Google Scholar] [CrossRef]
- Praud, D.; Deygas, F.; Amadou, A.; Bouilly, M.; Turati, F.; Bravi, F.; Xu, T.; Grassot, L.; Coudon, T.; Fervers, B. Traffic-related air pollution and breast cancer risk: A systematic review and meta-analysis of observational studies. Cancers 2023, 15, 927. [Google Scholar] [CrossRef]
- Preston, D.L.; Kitahara, C.M.; Freedman, D.M.; Sigurdson, A.J.; Simon, S.L.; Little, M.P.; Cahoon, E.K.; Rajaraman, P.; Miller, J.S.; Alexander, B.H.; et al. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. Br. J. Cancer 2016, 115, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Pavuk, M.; LeBlanc, A.; Dumas, P.; Philippe Weber, J.; Olsen, A.; Tjønneland, A.; Overvad, K.; Olsen, J.H. Adipose organochlorine concentrations and risk of breast cancer among postmenopausal Danish women. Cancer Epidemiol. Biomark. Prev. 2005, 14, 67–74. [Google Scholar] [CrossRef]
- Rhee, J.; Medgyesi, D.N.; Fisher, J.A.; White, A.J.; Sampson, J.N.; Sandler, D.P.; Ward, M.H.; Jones, R.R. Residential proximity to dioxin emissions and risk of breast cancer in the sister study cohort. Environ. Res. 2023, 222, 115297. [Google Scholar] [CrossRef]
- Robson, M.E.; Reiner, A.S.; Brooks, J.D.; Concannon, P.J.; John, E.M.; Mellemkjaer, L.; Bernstein, L.; Malone, K.E.; Knight, J.A.; Lynch, C.F.; et al. Association of common genetic variants with contralateral breast cancer risk in the WECARE study. JNCI J. Natl. Cancer Inst. 2017, 109, djx051. [Google Scholar] [CrossRef]
- Shmuel, S.; White, A.J.; Sandler, D.P. Residential exposure to vehicular traffic-related air pollution during childhood and breast cancer risk. Environ. Res. 2017, 159, 257–263. [Google Scholar] [CrossRef]
- Silva, S.N.; Tomar, M.; Paulo, C.; Gomes, B.C.; Azevedo, A.P.; Teixeira, V.; Pina, J.E.; Rueff, J.; Gaspar, J.F. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. 2010, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Campos, P.H.; Mattos, I.E.; Hajat, S.; Lacerda, E.M.; Ferreira, M.J. Environmental exposure to pesticides and breast cancer in a region of intensive agribusiness activity in Brazil: A case-control study. Int. J. Environ. Res. Public Health 2019, 16, 3951. [Google Scholar] [CrossRef]
- Smotherman, C.; Sprague, B.; Datta, S.; Braithwaite, D.; Qin, H.; Yaghjyan, L. Association of air pollution with postmenopausal breast cancer risk in UK Biobank. Breast Cancer Res. 2023, 25, 83. [Google Scholar] [CrossRef]
- Song, S.; Lei, L.; Zhang, R.; Liu, H.; Du, J.; Li, N.; Chen, W.; Peng, J.; Ren, J. Circadian disruption and breast cancer risk: Evidence from a case-control study in China. Cancers 2023, 15, 419. [Google Scholar] [CrossRef]
- Stellman, S.D.; Djordjevic, M.V.; Muscat, J.E.; Gong, L.; Bernstein, D.; Citron, M.L.; White, A.; Kemeny, M.; Busch, E.; Nafziger, A.N. Relative abundance of organochlorine pesticides and polychlorinated biphenyls in adipose tissue and serum of women in Long Island, New York. Cancer Epidemiol. Biomark. Prev. 1998, 7, 489–496. [Google Scholar]
- Stellman, S.D.; Djordjevic, M.V.; Britton, J.A.; Muscat, J.E.; Citron, M.L.; Kemeny, M.; Busch, E.; Gong, L. Breast cancer risk in relation to adipose concentrations of organochlorine pesticides and polychlorinated biphenyls in Long Island, New York. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1241–1249. [Google Scholar]
- Tang, M.; Zhao, M.; Shanshan, Z.; Chen, K.; Zhang, C.; Liu, W. Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. Environ. Int. 2014, 73, 208–215. [Google Scholar] [CrossRef]
- Terre-Torras, I.; Recalde, M.; Díaz, Y.; de Bont, J.; Bennett, M.; Aragón, M.; Cirach, M.; O’Callaghan-Gordo, C.; Nieuwenhuijsen, M.J.; Duarte-Salles, T. Air pollution and green spaces in relation to breast cancer risk among pre and postmenopausal women: A mega cohort from Catalonia. Environ. Res. 2022, 214, 113838. [Google Scholar] [CrossRef]
- Tsai, M.S.; Chang, S.H.; Kuo, W.H.; Kuo, C.H.; Li, S.Y.; Wang, M.Y.; Chang, D.Y.; Lu, Y.S.; Huang, C.S.; Cheng, A.L.; et al. A case-control study of perfluoroalkyl substances and the risk of breast cancer in Taiwanese women. Environ. Int. 2020, 142, 105850. [Google Scholar] [CrossRef]
- Varma, G.; Varma, R.; Huang, H.; Pryshchepava, A.; Groth, J.; Fleming, D.; Nowak, N.J.; McQuaid, D.; Conroy, J.; Mahoney, M.; et al. Array comparative genomic hybridisation (aCGH) analysis of premenopausal breast cancers from a nuclear fallout area and matched cases from Western New York. Br. J. Cancer 2005, 93, 699–708. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Teitelbaum, S.L.; Wolff, M.S.; Stellman, S.D.; Neugut, A.I.; Gammon, M.D. Exposure to fogger trucks and breast cancer incidence in the Long Island Breast Cancer Study Project: A case–control study. Environ. Health 2013, 12, 1–2. [Google Scholar] [CrossRef]
- Williams, L.A.; Haynes, D.; Sample, J.M.; Lu, Z.; Hossaini, A.; McGuinn, L.A.; Hoang, T.T.; Lupo, P.J.; Scheurer, M.E. PM2. 5, vegetation density, and childhood cancer: A case-control registry-based study from Texas 1995–2011. JNCI J. Natl. Cancer Inst. 2024, 116, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S.; Toniolo, P.G.; Lee, E.W.; Rivera, M.; Dubin, N. Blood levels of organochlorine residues and risk of breast cancer. JNCI J. Natl. Cancer Inst. 1993, 85, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S.; Zeleniuch-Jacquotte, A.; Dubin, N.; Toniolo, P. Risk of breast cancer and organochlorine exposure. Cancer Epidemiol. Biomark. Prev. 2000, 9, 271–277. [Google Scholar]
- Woolcott, C.G.; Aronson, K.J.; Hanna, W.M.; SenGupta, S.K.; McCready, D.R.; Sterns, E.E.; Miller, A.B. Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Causes Control 2001, 12, 395–404. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, R.; Liu, Q.; Yang, Z.; Lin, X.; Pang, J.; Li, X.; Wang, D.; He, J.; Li, J.; et al. Breast adipose metabolites mediates the association of tetrabromobisphenol a with breast cancer: A case-control study in Chinese population. Environ. Pollut. 2023, 316, 120701. [Google Scholar] [CrossRef]
- Zheng, T.; Holford, T.R.; Tessari, J.; Mayne, S.T.; Owens, P.H.; Ward, B.; Carter, D.; Boyle, P.; Dubrow, R.; Archibeque-Engle, S.; et al. Breast cancer risk associated with congeners of polychlorinated biphenyls. Am. J. Epidemiol. 2000, 152, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S.; Collman, G.W.; Barrett, J.C.; Huff, J. Breast cancer and environmental risk factors: Epidemiological and experimental findings. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 573–596. [Google Scholar] [CrossRef]
- Sayad, B.; Osra, O.A.; Binyaseen, A.M.; Qattan, W.S. Analyzing Urban Climatic Shifts in Annaba City: Decadal Trends, Seasonal Variability and Extreme Weather Events. Atmosphere 2024, 15, 529. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. Nutrition intervention and microbiome modulation in the management of breast cancer. Nutrients 2024, 16, 2644. [Google Scholar] [CrossRef] [PubMed]
- Stordal, B.; Harvie, M.; Antoniou, M.N.; Bellingham, M.; Chan, D.S.; Darbre, P.; Karlsson, O.; Kortenkamp, A.; Magee, P.; Mandriota, S.; et al. Breast cancer risk and prevention in 2024: An overview from the Breast Cancer UK-Breast Cancer Prevention Conference. Cancer Med. 2024, 13, e70255. [Google Scholar] [CrossRef]
- Goldfinger, E.; Stoler, J.; Goel, N. A multiscale spatiotemporal epidemiological analysis of neighborhood correlates of triple-negative breast cancer. Cancer Epidemiol. Biomark. Prev. 2024, 33, 279–287. [Google Scholar] [CrossRef]
- Bix, A.S. Diseases chasing money and power: Breast cancer and aids activism challenging authority. J. Policy Hist. 1997, 9, 5–32. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Bhuiyan, M.R.; Jaman, M.S.; Haque, M.S. MicroRNA dynamics, PTEN/PI3K/AKT signaling, and their relationship to breast cancer: Prospects for pharmaceuticals and natural product application. Breast Cancer Res. Treat. 2025, 209, 467–485. [Google Scholar] [CrossRef]
- Srivastava, T.P.; Dhar, R.; Karmakar, S. Looking beyond the, E.R.; PR, and HER2: What’s new in the ARsenal for combating breast cancer? Reprod. Biol. Endocrinol. 2025, 23, 9. [Google Scholar] [CrossRef]
- AlKetbi, L.B.; Alazeezi, M.; Ashoor, R.; Nagelkerke, N.; AlAlawi, N.; AlKetbi, R.; Aleissaee, H.; AlShamsi, N.; Humaid, A.; Abdulbaqi, H.; et al. Breast Cancer Risk Factors in the Abu Dhabi Population: A Retrospective Cohort Study. medRxiv 2025. [Google Scholar] [CrossRef]
- Tao, S.; Ji, Y.; Li, R.; Xiao, Y.; Wu, H.; Ye, R.; Shi, J.; Geng, C.; Tang, G.; Ran, R.; et al. Layered Double Hydroxide LDH-Loaded miR-141–3p Targets RAB10 Suppressing Cellular Autophagy to Reverse Paclitaxel Resistance in Breast Cancer. ACS Omega 2025, 10, 5886–5899. [Google Scholar] [CrossRef]
- Song, N.; Xi, X.; Yang, K.; Pei, C.; Zhao, L. Effects of endocrine disrupting chemicals, blood metabolome, and epigenetics on breast cancer risk: A multi-dimensional mendelian randomization study. Ecotoxicol. Environ. Saf. 2025, 291, 117791. [Google Scholar] [CrossRef]
- Arneth, B. Endocrine Parameters and Climate Change. Endocrines 2025, 6, 5. [Google Scholar] [CrossRef]
- Shah, S.; Oh, J.; Bang, Y.; Jung, S.; Kim, H.C.; Jeong, K.S.; Park, M.H.; Lee, K.A.; Ryoo, J.H.; Kim, Y.J.; et al. Pregnant women’s lifestyles and exposure to endocrine-disrupting chemicals: A machine learning approach. Environ. Pollut. 2025, 366, 125309. [Google Scholar] [CrossRef]
- Mahasa, P.S.; Milambo, M.J.P.; Nkosi, S.F.; Mukwada, G.; Nyaga, M.M.; Tesfamichael, S.G.; A Comprehensive Analysis of Epidemiological Research on the Relationship Between Endocrine Disrupting Substances and Breast Cancer. Prospero 2024. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD42024625457 (accessed on 12 May 2025).
- Liu, Y.; Wang, F.; Li, L.; Fan, B.; Kong, Z.; Tan, J.; Li, M. The potential endocrine disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models. Ecotoxicol. Environ. Saf. 2025, 289, 117615. [Google Scholar] [CrossRef]
- Moon, N.; Heo, S.J.; Kim, J.H. Associations of Exposure to 24 Endocrine-Disrupting Chemicals with Perinatal Depression and Lifestyle Factors: A Prospective Cohort Study in Korea. Environments 2025, 12, 15. [Google Scholar] [CrossRef]
- Praud, D.; Amadou, A.; Coudon, T.; Duboeuf, M.; Mercoeur, B.; Faure, E.; Grassot, L.; Danjou, A.M.; Salizzoni, P.; Couvidat, F.; et al. Association between chronic long-term exposure to airborne dioxins and breast cancer. Int. J. Hyg. Environ. Health 2025, 263, 114489. [Google Scholar] [CrossRef]
- Fernando, F.N.; Maloney, M.; Tappel, L. In the Face of Climate Change: Perceptions of Interconnections Between Community Resilience and Community Sustainability. Urban Sci. 2025, 9, 60. [Google Scholar] [CrossRef]
- Ibrahim, H.A.; Saad-Hussein, A.; Ismail, N.M. Climate Change and Public Health. In Climate Changes Impacts on Aquatic Environment: Assessment, Adaptation, Mitigation, and Road Map for Sustainable Development; Springer Nature: Cham, Switzerland, 2025; pp. 21–61. [Google Scholar]
- Watson, T.P.G.; Tong, M.; Bailie, J.; Ekanayake, K.; Bailie, R.S. Relationship between climate change and skin cancer and implications for prevention and management: A scoping review. Public Health 2024, 227, 243–249. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, H.Y.; Jang, S.; Kim, W.; Kim, C.; Lee, J.; Ryoo, Z.Y.; Han, J.E.; Baek, S.M.; Park, J.K.; et al. Exploratory investigation of the correlation between microplastics and breast cancer: Polystyrene-derived microplastics promote cell proliferation via estrogenic endocrine disruption. J. Environ. Chem. Eng. 2025, 13, 115473. [Google Scholar] [CrossRef]
- Rantala, J.; Seppä, K.; Eriksson, J.; Heinävaara, S.; Härkänen, T.; Jousilahti, P.; Knekt, P.; Männistö, S.; Rahkonen, O.; Malila, N.; et al. Incidence trends of early-onset breast cancer by lifestyle risk factors. BMC Cancer 2025, 25, 326. [Google Scholar] [CrossRef] [PubMed]
- Mekonen, H.; Negesse, A.; Endalifer, M.L.; Molla, G.; Aneley, Z. Dietary factors associated with breast cancer among women in Ethiopia: A systematic review and meta-analysis of case–control studies. Front. Nutr. 2025, 12, 1499634. [Google Scholar] [CrossRef]
- Dong, R.; Wang, J.; Guan, R.; Sun, J.; Jin, P.; Shen, J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants 2025, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.K.; Pancholi, B.; Kumar, M.; Babu, R.; Garabadu, D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: Possible challenges and opportunities. J. Drug Target. 2025, 33, 206–231. [Google Scholar] [CrossRef]
- Starostecka, M.; Jeong, H.; Hasenfeld, P.; Benito-Garagorri, E.; Christiansen, T.; Stober Brasseur, C.; Gomes Queiroz, M.; Garcia Montero, M.; Jechlinger, M.; Korbel, J.O. Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model. Proc. Natl. Acad. Sci. USA 2025, 122, e2415475122. [Google Scholar] [CrossRef]
- Ogunjobi, T.T.; Nebolisa, N.M.; Ajayi, O.A.; Euba, M.I.; Musa, A.; Inusah, A.H.; Adedayo, F.; Jamgbadi, O.F.; Afuape, A.R.; Edema, A.A.; et al. Novel mechanism for protein delivery in breast cancer therapy: A public health perspective. Eur. J. Sustain. Dev. Res. 2025, 9, em0283. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Das, S.P.; Das, S.; Biswas, S.; Patel, M.K.; Kumar, A.; Sarker, U.; Choudhary, S.P.; Das, R.; Yogendra, K.; et al. Advancing vegetable genetics with gene editing: A pathway to food security and nutritional resilience in climate-shifted environments. Funct. Integr. Genom. 2025, 25, 31. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V. Water Quality, Air Pollution, and Climate Change: Investigating the Environmental Impacts of Industrialization and Urbanization. Water Air Soil Pollut. 2025, 236, 73. [Google Scholar] [CrossRef]
- Anastasiou, I.A.; Kounatidis, D.; Vallianou, N.G.; Skourtis, A.; Dimitriou, K.; Tzivaki, I.; Tsioulos, G.; Rigatou, A.; Karampela, I.; Dalamaga, M. Beneath the Surface: The Emerging Role of Ultra-Processed Foods in Obesity-Related Cancer. Curr. Oncol. Rep. 2025, 27, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Hayat, U.; Shahid, W. Understanding Psychological Distress and Body Image Disturbances among Breast Cancer Survivors: A Role of Surgery. Bull. Bus. Econ. (BBE) 2025, 14, 90–96. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Q.; Kan, H.; Zhao, F.; Zhu, M.; Chen, H.; Fu, E.; Li, Z. The regulation mechanism of perceived stress on cognitive function of patients with breast cancer undergoing chemotherapy: A multiple mediation analysis. Breast Cancer Res. Treat. 2025, 211, 245–259. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, X.; Wu, Z.; Ren, J.; Zhao, Y. Influence of the ERK/CHGB pathway in breast cancer progression under chronic stress. Int. J. Biochem. Cell Biol. 2025, 179, 106733. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Jasim, S.A.; Bansal, P.; Kaur, H.; Ahmad, I.; Saud, A.; Deorari, M.; Al-Mashhadani, Z.I.; Kumar, A.; Zwamel, A.H. Delving Into lncRNA-Mediated Regulation of Autophagy-Associated Signaling Pathways in the Context of Breast Cancer. Cell Biol. Int. 2025, 49, 221–234. [Google Scholar] [CrossRef]
- El Kouche, S.; Halvick, S.; Morel, C.; Duca, R.C.; van Nieuwenhuyse, A.; Turner, J.D.; Grova, N.; Meyre, D. Pollution, stress response, and obesity: A systematic review. Obes. Rev. 2025, 26, e13895. [Google Scholar] [CrossRef] [PubMed]
- He, C.; He, Y.; Lin, Y.; Hou, Y.; Wang, S.; Chang, W. Associations of temperament, family functioning with loneliness trajectories in patients with breast cancer: A longitudinal observational study. BMC Psychol. 2025, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Dees, K.J.; Kabir, K.; Bahani, R.; Beskow, C.; Blalock, M.; Kranzlein, J.; Pierson, D.; Rice, S.; Williams, M.; Dugger, K.J. Physical and Psychological Stressors Increase Breast Tumor Growth but Differentially Alter Tumor Immunity. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Kaddoura, S.; Hijazi, R.; Dahmani, N.; Nassar, R. Stimulating Environmental and Health Protection Through Utilizing Statistical Methods for Climate Resilience and Policy Integration. Int. J. Environ. Res. Public Health 2025, 22, 331. [Google Scholar] [CrossRef]
- Heath, S.C. Navigating psychosocial dimensions: Understanding the intersections of adaptation strategies and well-being outcomes in the context of climate change. Curr. Opin. Environ. Sustain. 2025, 72, 101493. [Google Scholar] [CrossRef]
- Berseth, V.; Letourneau, A. Climate Change-Conscious Methodologies: Ethical Research in a Changing World. Wiley Interdiscip. Rev. Clim. Change 2025, 16, e933. [Google Scholar] [CrossRef]
- Bertrand, K.A.; McCullough, L.E. Linking Neighborhood Socioenvironmental Factors to Breast Pathogenesis—Implications for Breast Cancer. JAMA Netw. Open 2025, 8, e2461353. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, W.; Zhang, Y.; Lu, J.; Luo, Q.; Yang, L.; Wan, D. Causal effects of blood cells on breast cancer: Evidence from bidirectional Mendelian randomization combined with meta-analysis. Medicine 2025, 104, e41545. [Google Scholar] [CrossRef]
- Derrick, A.; Yohana, M.A.; Yudong, Z.; Li, G.; Tan, B.; Zhang, S. Understanding the detrimental effects of heavy metal pollution in shrimp farming and treatment methods—A review. Ann. Anim. Sci. 2025, 25, 35–56. [Google Scholar] [CrossRef]
- Mathew, N.; Somanathan, A.; Tirpude, A.; Pillai, A.M.; Mondal, P.; Arfin, T. Dioxins and their impact: A review of toxicity, persistence, and novel remediation strategies. Anal. Methods 2025, 17, 1698–1748. [Google Scholar] [CrossRef]
- Kumar, P.; Dey, S.R.; Sharma, M.; Singh, J. Microbes in bioremediation of pesticides. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2025; pp. 539–556. [Google Scholar]
- Panis, C.; Lemos, B. Pesticide exposure and increased breast cancer risk in women population studies. Sci. Total Environ. 2024, 933, 172988. [Google Scholar] [CrossRef]
- Schluter, H.M.; Bariami, H.; Park, H.L. Potential Role of Glyphosate, Glyphosate-Based Herbicides, and AMPA in Breast Cancer Development: A Review of Human and Human Cell-Based Studies. Int. J. Environ. Res. Public Health 2024, 21, 1087. [Google Scholar] [CrossRef] [PubMed]
- Akbariani, M.; Omidi, M.; Shahabi, Z.; Haghi-Aminjan, H.; Shadboorestan, A. The AhR pathway regulation in phthalates-induced cancer promotion, progression and metastasis: A scoping review. Cancer Cell Int. 2025, 25, 27. [Google Scholar] [CrossRef]
- Taiba, J.; Beseler, C.; Zahid, M.; Bartelt-Hunt, S.; Kolok, A.; Rogan, E. Exploring the joint association between agrichemical mixtures and pediatric cancer. GeoHealth 2025, 9, e2024GH001236. [Google Scholar] [CrossRef] [PubMed]
- Olaide, T.H.; Babaniyi, B.R.; Adejumo, T.H.; Olorunfemi, K.O.; Ogundele, O.D.; Akinrinola, O. An Insight to Pesticides. In The Interplay of Pesticides and Climate Change: Environmental Dynamics and Challenges; Springer Nature: Cham, Switzerland, 2025; pp. 3–30. [Google Scholar]
- Sharma, S.; Mohanty, S. A Perspective of Environmental Toxicology: Biopesticides Versus Synthetic Pesticides. In Innovative Advancements in Biotechnology: Technological Advancements in Biosciences; Springer Nature: Cham, Switzerland, 2025; pp. 85–98. [Google Scholar]
- Neale, R.E.; Lucas, R.M.; Byrne, S.N.; Hollestein, L.; Rhodes, L.E.; Yazar, S.; Young, A.R.; Berwick, M.; Ireland, R.A.; Olsen, C.M. The effects of exposure to solar radiation on human health. Photochem. Photobiol. Sci. 2023, 22, 1011–1047. [Google Scholar] [CrossRef]
- Silva, G.S.; Rosenbach, M. Climate change and dermatology: An introduction to a special topic, for this special issue. Int. J. Women’s Dermatol. 2021, 7, 3–7. [Google Scholar] [CrossRef]
- Berger, E.; Dudouet, R.; Dossus, L.; Baglietto, L.; Gelot, A.; Boutron-Ruault, M.C.; Severi, G.; Castagné, R.; Delpierre, C. Biological embodiment of educational attainment and future risk of breast cancer: Findings from a French prospective cohort. BMJ Open 2025, 15, e087537. [Google Scholar] [CrossRef]
- Goswami, P.; Cherrier, H. Intimate neoliberal violence and ungrievable meno bodies. J. Mark. Manag. 2025, 41, 293–311. [Google Scholar] [CrossRef]
- Ishibe, N.; Ellison, G.L.; Rao, D.; Lam, T.K. Allostatic Load and Cancer Risk, Progression and Mortality in Epidemiologic Studies. Am. J. Epidemiol. 2025, 194, kwaf038. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wiley, J.; Jiang, L.; Wang, X.; Yi, R.; Xu, J.; Liu, Y.; Weng, A.; Zou, F.; Im, E.O. Digital humanistic program to manage premature frailty in young breast cancer survivors with gender perspective. npj Digit. Med. 2025, 8, 35. [Google Scholar] [CrossRef]
- Cassidy, C.M.; Choi, C.I.; Herdman, B.; Kilbane, T.K.; Lannen, J.F.; McConnell, J.P.; Moufawad, M.M.; Bailey, B.A. Benefits of breast self-examinations for medically underserved populations: A systematic review. Women’s Health 2025, 21. [Google Scholar] [CrossRef]
- Ellis, E.T.; Young, S.G.; Carroll, R.; Stahr, S.D.; Runnells, G.A.; Grasmuck, E.A.; Su, L.J.; Park, Y.M.; Hsu, P.C. Carcinogenic air pollutants and breast cancer risk in the Arkansas rural community health study: A nested case-control study. Environ. Pollut. 2025, 368, 125709. [Google Scholar] [CrossRef]
- Hanvey, G.A.; Johnson, H.; Cartagena, G.; Dede, D.E.; Krieger, J.L.; Ross, K.M.; Pereira, D.B. The role of social, economic, and medical marginalization in cancer clinical trial participation inequities: A systematic review. J. Clin. Transl. Sci. 2025, 9, e25. [Google Scholar] [CrossRef]
- Mark, C.; Pujara, V.; Boyle, M.K.; Yuan, Y.; Lee, J.S. Demographic and clinical trends of young breast cancer patients from the national cancer database: Disproportionate effect on minority populations. Breast Cancer Res. Treat. 2025, 210, 521–528. [Google Scholar] [CrossRef]
- Cupertino, S.E.; Gonçalves, A.C.; Gusmão Lopes, C.V.; Gradia, D.F.; Beltrame, M.H. The Current State of Breast Cancer Genetics in Populations of African Ancestry. Genes 2025, 16, 199. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Mandal, R.; Commendador, A.; Mannel, S.; Derryberry, D. Estrogen receptor positive breast cancers and their association with environmental factors. Int. J. Health Geogr. 2011, 10, 1–8. [Google Scholar] [CrossRef]
- Norval, M.; Lucas, R.M.; Cullen, A.P.; De Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; Van Der Leun, J.C. The human health effects of ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 2011, 10, 199–225. [Google Scholar] [CrossRef]
- Van der Leun, J.C.; de Gruijl, F.R. Climate change and skin cancer. Photochem. Photobiol. Sci. 2002, 1, 324–326. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, K.; Roy, A.M.; Attwood, K.; Gandhi, A.; Edge, S.; Takabe, K.; Repasky, E.; Yao, S.; Gandhi, S. Impact of Environmental Temperature on the Pathological Complete Response and Survival Outcomes of Breast Cancer: A NCDB and SEER study. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Gupta, K.; George, A.; Attwood, K.; Gupta, A.; Roy, A.M.; Gandhi, S.; Siromoni, B.; Singh, A.; Repasky, E.; Mukherjee, S. Association between environmental temperature and survival in gastroesophageal cancers: A population based study. Cancers 2023, 16, 74. [Google Scholar] [CrossRef]
- Kraimer, K.; Ganti, A.; Plitt, M.A.; Revenaugh, P.; Stenson, K.; Tajudeen, B.A.; Al-Khudari, S. Prognostic Indicators in Base of Tongue Adenocarcinoma: A Population-Based Analysis. Ear Nose Throat J. 2021, 100 (Suppl. S5), 467S–471S. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jiang, Y.Z.; Liu, Y.R.; Zuo, W.J.; Shao, Z.M. Clinicopathological characteristics and survival outcomes of invasive cribriform carcinoma of breast: A SEER population-based study. Medicine 2015, 94, e1309. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.C.; Rastogi, P.; Geyer Jr, C.E.; Miller, L.D.; Thomas, A. Early and locally advanced metaplastic breast cancer: Presentation and survival by receptor status in surveillance, epidemiology, and end results (SEER) 2010–2014. Oncologist 2018, 23, 481–488. [Google Scholar] [CrossRef]
- Malmgren, J.A.; Calip, G.S.; Atwood, M.K.; Mayer, M.; Kaplan, H.G. Metastatic breast cancer survival improvement restricted by regional disparity: Surveillance, epidemiology, and end results and institutional analysis: 1990 to 2011. Cancer 2020, 126, 390–399. [Google Scholar] [CrossRef]
- Robinson, T.J.; Wilson, L.E.; Marcom, P.K.; Troester, M.; Lynch, C.F.; Hernandez, B.Y.; Parrilla, E.; Brauer, H.A.; Dinan, M.A. Analysis of sociodemographic, clinical, and genomic factors associated with breast cancer mortality in the linked Surveillance, Epidemiology, and End Results and Medicare database. JAMA Netw. Open 2021, 4, e2131020. [Google Scholar] [CrossRef] [PubMed]
- Engel, L.S.; Satagopan, J.; Sima, C.S.; Orlow, I.; Mujumdar, U.; Coble, J.; Roy, P.; Yoo, S.; Sandler, D.P.; Alavanja, M.C. Sun exposure, vitamin D receptor genetic variants, and risk of breast cancer in the Agricultural Health Study. Environ. Health Perspect. 2014, 122, 165–171. [Google Scholar] [CrossRef]
- Engel, P.; Fagherazzi, G.; Mesrine, S.; Boutron-Ruault, M.C.; Clavel-Chapelon, F. Joint effects of dietary vitamin D and sun exposure on breast cancer risk: Results from the French E3N cohort. Cancer Epidemiol. Biomark. Prev. 2011, 20, 187–198. [Google Scholar] [CrossRef]
- Yang, L.; Veierød, M.B.; Löf, M.; Sandin, S.; Adami, H.O.; Weiderpass, E. Prospective study of UV exposure and cancer incidence among Swedish women. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1358–1367. [Google Scholar] [CrossRef]
- Anderson, L.N.; Cotterchio, M.; Kirsh, V.A.; Knight, J.A. Ultraviolet sunlight exposure during adolescence and adulthood and breast cancer risk: A population-based case-control study among Ontario women. Am. J. Epidemiol. 2011, 174, 293–304. [Google Scholar] [CrossRef] [PubMed]
- John, E.M.; Schwartz, G.G.; Koo, J.; Wang, W.; Ingles, S.A. Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population. Am. J. Epidemiol. 2007, 166, 1409–1419. [Google Scholar] [CrossRef]
- John, E.M.; Schwartz, G.G.; Dreon, D.M.; Koo, J. Vitamin D and breast cancer risk: The NHANES I epidemiologic follow-up study, 1971–1975 to 1992. Cancer Epidemiol. Biomark. Prev. 1999, 8, 399–406. [Google Scholar]
- Fuhrman, B.J.; Freedman, D.M.; Bhatti, P.; Doody, M.M.; Fu, Y.P.; Chang, S.C.; Linet, M.S.; Sigurdson, A.J. Sunlight, polymorphisms of vitamin D-related genes and risk of breast cancer. Anticancer Res. 2013, 33, 543–551. [Google Scholar]
- Edvardsen, K.; Veierød, M.B.; Brustad, M.; Braaten, T.; Engelsen, O.; Lund, E. Vitamin D-effective solar UV radiation, dietary vitamin D and breast cancer risk. Int. J. Cancer 2011, 128, 1425–1433. [Google Scholar] [CrossRef]
- Millen, A.E.; Pettinger, M.; Freudenheim, J.L.; Langer, R.D.; Rosenberg, C.A.; Mossavar-Rahmani, Y.; Duffy, C.M.; Lane, D.S.; McTiernan, A.; Kuller, L.H.; et al. Incident invasive breast cancer, geographic location of residence, and reported average time spent outside. Cancer Epidemiol. Biomark. Prev. 2009, 18, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Kuper, H.; Yang, L.; Sandin, S.; Lof, M.; Adami, H.O.; Weiderpass, E. Prospective study of solar exposure, dietary vitamin D intake, and risk of breast cancer among middle-aged women. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2558–2561. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.W.; Wheeler, D.C.; Park, Y.; Cahoon, E.K.; Hollenbeck, A.R.; Freedman, D.M.; Abnet, C.C. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int. J. Cancer 2012, 131, E1015–E1023. [Google Scholar] [CrossRef] [PubMed]
- Bidgoli, S.A.; Azarshab, H. Role of vitamin D deficiency and lack of sun exposure in the incidence of premenopausal breast cancer: A case control study in Sabzevar, Iran. Asian Pac. J. Cancer Prev. 2014, 15, 3391–3396. [Google Scholar] [CrossRef]
- Bilinski, K.; Byth, K.; Boyages, J. Association between latitude and breast cancer incidence in mainland Australian women. J. Cancer Res. 2014, 2014, 149865. [Google Scholar] [CrossRef]
- Blackmore, K.M.; Lesosky, M.; Barnett, H.; Raboud, J.M.; Vieth, R.; Knight, J.A. Vitamin D from dietary intake and sunlight exposure and the risk of hormone-receptor-defined breast cancer. Am. J. Epidemiol. 2008, 168, 915–924. [Google Scholar] [CrossRef]
- Boscoe, F.P.; Schymura, M.J. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002. BMC Cancer 2006, 6, 264. [Google Scholar] [CrossRef]
- Cauchi, J.P.; Camilleri, L.; Scerri, C. Environmental and lifestyle risk factors of breast cancer in Malta—A retrospective case-control study. EPMA J. 2016, 7, 20. [Google Scholar] [CrossRef]
- Colston, K.W. Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer. Endocr.-Relat. Cancer 2002, 9, 45–59. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Estébanez, N.; Gómez-Acebo, I.; Palazuelos, C.; Llorca, J.; Dierssen-Sotos, T. Vitamin D exposure and risk of breast cancer: A meta-analysis. Sci. Rep. 2018, 8, 9039. [Google Scholar] [CrossRef]
- Gorham, E.D.; Garland, F.C.; Garland, C.F. Sunlight and breast cancer incidence in the USSR. Int. J. Epidemiol. 1990, 19, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B. Role of solar UVB irradiance and smoking in cancer as inferred from cancer incidence rates by occupation in Nordic countries. Derm.-Endocrinol. 2012, 4, 203–211. [Google Scholar] [CrossRef]
- Grant, W.B. A multicountry ecological study of cancer incidence rates in 2008 with respect to various risk-modifying factors. Nutrients 2013, 6, 163–189. [Google Scholar] [CrossRef]
- Hiller, T.W.; O’Sullivan, D.E.; Brenner, D.R.; Peters, C.E.; King, W.D. Solar ultraviolet radiation and breast cancer risk: A systematic review and meta-analysis. Environ. Health Perspect. 2020, 128, 016002. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer) 1992. Solar and Ultraviolet Radiation. Available online: http://monographs.iarc.fr/ENG/Monographs/vol55/index.php (accessed on 15 March 2025).
- Knight, J.A.; Lesosky, M.; Barnett, H.; Raboud, J.M.; Vieth, R. Vitamin D and reduced risk of breast cancer: A population-based case-control study. Cancer Epidemiol. Biomark. Prev. 2007, 16, 422–429. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L. Exposure to solar ultraviolet radiation and breast cancer risk: A dose-response meta-analysis. Medicine 2020, 99, e23105. [Google Scholar] [CrossRef]
- Lopes, N.; Paredes, J.; Costa, J.L.; Ylstra, B.; Schmitt, F. Vitamin D and the mammary gland: A review on its role in normal development and breast cancer. Breast Cancer Res. 2012, 14, 211. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; St-Hilaire, S.; Kie, J.G.; Derryberry, D. Spatial trends of breast and prostate cancers in the United States between 2000 and 2005. Int. J. Health Geogr. 2009, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Martinaityte, I.; Kamycheva, E.; Didriksen, A.; Jakobsen, J.; Jorde, R. Vitamin D stored in fat tissue during a 5-year intervention affects serum 25-hydroxyvitamin D levels the following year. J. Clin. Endocrinol. Metab. 2017, 102, 3731–3738. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Baggerly, L.L.; Garland, C.F.; Gorham, E.D.; Hollis, B.W.; Trump, D.L.; Lappe, J.M. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations≥ 60 vs< 20 ng/mL (150 vs 50 nmol/L): Pooled analysis of two randomized trials and a prospective cohort. PLoS ONE 2018, 13, e0199265. [Google Scholar] [CrossRef]
- Mohr, S.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; Garland, F.C. Relationship between low ultraviolet B irradiance and higher breast cancer risk in 107 countries. Breast J. 2008, 14, 255–260. [Google Scholar] [CrossRef]
- Nair-Shalliker, V.; Dhillon, V.; Clements, M.; Armstrong, B.K.; Fenech, M. The association between personal sun exposure, serum vitamin D and global methylation in human lymphocytes in a population of healthy adults in South Australia. Mutat. Res. /Fundam. Mol. Mech. Mutagen. 2014, 765, 6–10. [Google Scholar] [CrossRef]
- Pinault, L.; Fioletov, V. Sun Exposure, Sun Protection and Sunburn Among Canadian Adults; Statistics Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- Setiawan, V.W.; Monroe, K.R.; Wilkens, L.R.; Kolonel, L.N.; Pike, M.C.; Henderson, B.E. Breast cancer risk factors defined by estrogen and progesterone receptor status: The multiethnic cohort study. Am. J. Epidemiol. 2009, 169, 1251–1259. [Google Scholar] [CrossRef]
- Stevens, R.G. Circadian disruption and breast cancer: From melatonin to clock genes. Epidemiology 2005, 16, 254–258. [Google Scholar] [CrossRef]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017, 13, 1387. [Google Scholar] [CrossRef]
- Tamimi, R.M.; Spiegelman, D.; Smith-Warner, S.A.; Wang, M.; Pazaris, M.; Willett, W.C.; Eliassen, A.H.; Hunter, D.J. Population attributable risk of modifiable and nonmodifiable breast cancer risk factors in postmenopausal breast cancer. Am. J. Epidemiol. 2016, 184, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Tommie, J.L.; Pinney, S.M.; Nommsen-Rivers, L.A. Serum vitamin D status and breast cancer risk by receptor status: A systematic review. Nutr. Cancer 2018, 70, 804–820. [Google Scholar] [CrossRef]
- Van Der Rhee, H.; Coebergh, J.W.; De Vries, E. Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies. Eur. J. Cancer 2013, 49, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Holick, M.F. The role of sunlight in the cutaneous production of vitamin D3. Annu. Rev. Nutr. 1988, 8, 375–399. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 15 March 2025).
- WHO (World Health Organization). Breast Cancer: Prevention and Control, 2016. Available online: http://www.who.int/cancer/detection/breastcancer/en/index1.html (accessed on 15 March 2025).
- Zamoiski, R.D.; Freedman, D.M.; Linet, M.S.; Kitahara, C.M.; Liu, W.; Cahoon, E.K. Prospective study of ultraviolet radiation exposure and risk of breast cancer in the United States. Environ. Res. 2016, 151, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Wigle, D.T.; Arbuckle, T.E.; Turner, M.C.; Bérubé, A.; Yang, Q.; Liu, S.; Krewski, D. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J. Toxicol. Environ. Health Part B 2008, 11, 373–517. [Google Scholar] [CrossRef]
- Koual, M.; Tomkiewicz, C.; Cano-Sancho, G.; Antignac, J.P.; Bats, A.S.; Coumoul, X. Environmental chemicals, breast cancer progression and drug resistance. Environ. Health 2020, 19, 117. [Google Scholar] [CrossRef]
- Wang, R.; Wang, P.; Zhou, Y.; Wang, Y.; Xu, C.; Wang, Z.; Wang, W. Association between long-term ambient air pollution exposure and the incidence of breast cancer: A meta-analysis based on updated evidence. Ecotoxicol. Environ. Saf. 2025, 289, 117472. [Google Scholar] [CrossRef]
- Sweeney, C.; Lazennec, G.; Vogel, C.F. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front. Pharmacol. 2022, 13, 1095289. [Google Scholar] [CrossRef]
- Tippila, J.; Wah, N.L.S.; Akbar, K.A.; Bhummaphan, N.; Wongsasuluk, P.; Kallawicha, K. Ambient Air Pollution Exposure and Breast Cancer Risk Worldwide: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2024, 21, 1713. [Google Scholar] [CrossRef]
- Neagu, A.N.; Jayaweera, T.; Corrice, L.; Johnson, K.; Darie, C.C. Breast Cancer Exposomics. Life 2024, 14, 402. [Google Scholar] [CrossRef] [PubMed]
- Gabet, S.; Lemarchand, C.; Guénel, P.; Slama, R. Breast Cancer Risk in Association with Atmospheric Pollution Exposure: A Meta-Analysis of Effect Estimates Followed by a Health Impact Assessment. Environ. Health Perspect. 2021, 129, 57012. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, G.H.; Neale, R.E.; Barnes, P.W.; Neale, P.J.; Zepp, R.G.; Wilson, S.R.; Andrady, A.L.; Bais, A.F.; McKenzie, R.L.; Aucamp, P.J.; et al. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef]
- Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Sahay, D.; Terry, M.B.; Miller, R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics 2019, 11, 701–714. [Google Scholar] [CrossRef]
- Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 1–6. [Google Scholar] [CrossRef]
- Moslehi, R.; Stagnar, C.; Srinivasan, S.; Radziszowski, P.; Carpenter, D.O. The possible role of arsenic and gene-arsenic interactions in susceptibility to breast cancer: A systematic review. Rev. Environ. Health 2020, 36, 523–534. [Google Scholar] [CrossRef]
- Mengistu, D.A.; Geremew, A.; Tessema, R.A.; Wolfing, T. Concentrations of DDT metabolites in different food items and public health risk in Africa regions: Systematic review and metal analysis. Front. Public Health 2025, 13, 1511012. [Google Scholar] [CrossRef]
- Bah, A.; Alonso, A.; Faye, S.; Vanclooster, M. Research Evolution on Environmental Risks Related to Agricultural Pesticide Use in Africa from 1990 to 2021. J. Geosci. Environ. Prot. 2025, 13, 275–300. [Google Scholar] [CrossRef]
- Francies, F.Z.; Wainstein, T.; De Leeneer, K.; Cairns, A.; Murdoch, M.; Nietz, S.; Cubasch, H.; Poppe, B.; Van Maerken, T.; Crombez, B.; et al. BRCA1, BRCA2 and PALB2 mutations and CHEK2 c 1100,delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer. BMC Cancer 2015, 15, 912. [Google Scholar] [CrossRef]
- Van der Merwe, N.C.; Oosthuizen, J.; Theron, M.; Chong, G.; Foulkes, W.D. The Contribution of Large Genomic Rearrangements in BRCA1 and BRCA2 to South African Familial Breast Cancer. BMC Cancer 2020, 20, 391. [Google Scholar] [CrossRef]
- van der Merwe, N.C.; Buccimazza, I.; Rossouw, B.; Araujo, M.; Ntaita, K.S.; Schoeman, M.; Vorster, K.; Napo, K.; Kotze, M.J.; Oosthuizen, J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res. Treat. 2024, 207, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Makhetha, M.; Walters, S.; Aldous, C. The review of genetic screening services and common BRCA1/2 variants among South African breast cancer patients. J. Genet. Couns. 2024, 33, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Schlebusch, C.M.; Dreyer, G.; Sluiter, M.D.; Yawitch, T.M.; van den Berg, H.J.; van Rensburg, E.J. Cancer Prevalence in 129 Breast-Ovarian Cancer Families Tested for BRCA1 and BRCA2 Mutations. S. Afr. Med. J. 2010, 100, 113–117. [Google Scholar] [CrossRef]
- Van der Merwe, N.C.; Combrink, H.M.; Ntaita, K.S.; Oosthuizen, J. Prevalence of clinically relevant germline BRCA variants in a large unselected South African breast and ovarian cancer cohort: A public sector experience. Front. Genet. 2022, 13, 834265. [Google Scholar] [CrossRef]
- Smith, D.C.; Gardiner, S.A.; Conradie, M.; Gerber, J.; Loubser, F. Genetic testing approaches for hereditary breast cancer: Perspectives from a private diagnostic laboratory. S. Afr. Med. J. 2020, 110, 988–992. [Google Scholar] [CrossRef]
- Mahasa, P.S.; Milambo, M.J.P.; Nkosi, S.F.; Mukwada, G.; Nyaga, M.M.; Tesfamichael, S.G. The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa. Prospero 2025 CRD42025625376. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD42025625376 (accessed on 12 May 2025).
- Milambo, J.P. Assessment of Point-of-Care Testing for Prediction of Aromatase Inhibitor-Associated Side Effects in Obese Postmenopausal Breast Cancer Patients Screened for Cardiovascular Risk Factors. Doctoral Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Milambo, J.P.; Ndirangu, J.; Nyasulu, P.S.; Akudugu, J.M. Feasibility of point of care testing for prevention and management of breast cancer therapy associated comorbidities in 6 African countries. BMC Res. Notes 2022, 15, 328. [Google Scholar] [CrossRef] [PubMed]
- RSA (Republic of South Africa). National Water Act (Act No. 36 of 1998). Government Gazette, South Africa. 1998;398(19182); Government Printer: Pretoria, South Africa, 1998. [Google Scholar]
- DWAF (South Africa Department of Water Affairs and Forestry). Water Services Act (No. 108 of 1997); Government Printer: Pretoria, South Africa, 1997. [Google Scholar]
- DEA (South Africa Department of Environmental Affairs). The National Environmental Management Act (1998); Government Printer: Pretoria, South Africa, 1998. [Google Scholar]
- DOH (South Africa Department of Health). The National Health Act 61 of 2003; Government Printer: Pretoria, South Africa, 2003. [Google Scholar]
- Eccles, S.A.; Aboagye, E.O.; Ali, S.; Anderson, A.S.; Armes, J.; Berditchevski, F.; Blaydes, J.P.; Brennan, K.; Brown, N.J.; Bryant, H.E.; et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013, 15, R92. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Debald, M.; Yeghiazaryan, K.; Kuhn, W.; Pešta, M.; Costigliola, V.; Grech, G. Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016, 37, 12941–12957. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Concept: These criteria would aim to encompass studies that examine the potential links between breast cancer and various environmental, lifestyle, and public health factors, as well as studies exploring the broader context of climate change and its impact on health, including breast cancer incidence and outcomes. | Does not align with the inclusion criteria regarding its concepts, as it fails to address how climate change impacts exposure to environmental factors, the incidence of breast cancer, and the associated implications for prevention and management in rural and regional populations. |
Context: All countries; regional, urban, and rural communities. | Reference concerning ozone depletion examined separately from climate change. |
Population: All people and ages. | Without focus on human beings or is laboratory-based. |
Sources of evidence: Peer-reviewed publications comprising reviews (scoping, systematic, narrative, and meta-analytical), viewpoints, opinions, and qualitative and quantitative mixed-method study designs. | The full text is not available in English. |
Full text unavailable or unobtainable. | |
The full text is unavailable, as the publication is based on a research protocol, thesis, book review, conference abstract, book or book chapter, interview, or letter to the editor. |
Genes | N | Positive | Design | Prevalence/ Pathogenic Genes | Cancer Type | Country | Authors | Techniques | Ages |
---|---|---|---|---|---|---|---|---|---|
BRCA1/BRCA2 | 108 | 15 | Cohort | 12% | HBOC | South Africa | Francies, F.Z., 2015 [242] | SS, NGS, MLPA | Less than 50 years |
BRCA1 | 744 | 30 | Cohort | 4% | HBOC | South Africa | van der Merwe, 2020 [243] | NGS | 40 years |
BRCA2 | 744 | 62 | Cohort | 8.5% | HBOC | South Africa | van der Merwe, 2020 [243] | NGS | 40 years |
BRCA1/BRCA2 | 744 | 92 | Cohort | 8.7% | HBOC | South Africa | van der Merwe, 2020 [243] | NGS | 40 years |
BRCA1/BRCA2 | 1600 | 800 | CS | 50% | HBOC | South Africa | van der Merwe, 2024 [244] | NGS | 37.6 |
BRCA1/2 | 645 | 67 | Cohort | 10.4% | HBOC | South Africa | Makhetha, 2024 [245] | NGS | 46 |
BRCA2 | 719 | 280 | CS | 39% | HBOC | South Africa | Schlebusch, C.M., 2010, [246] | NGS | 50 |
BRCA1 | 456 | 50 | CS | 11% | HBOC | South Africa | Schlebusch, C.M., 2010, [246] | NGS | 50 |
BRCA1 | 319 | 80 | Cohort | 25% | HBOC | South Africa | van der Merwe, 2022, [247] | NGS | 45 |
BRCA2 | 319 | 120 | Cohort | 37% | HBOC | South Africa | van der Merwe, 2022 [247] | NGS | 45 |
BRCA1/BRCA2 | 2413 | 481 | Cohort | 16.62% | HBOC | South Africa | van der Merwe, 2022 [247] | NGS, MLPA | 40–49 |
BRCA1/BRCA2 | 260 | 18 | CS | 7% | HBOC | South Africa | Smith, D.C., 2020 [248] | NGS | N/A |
BRCA1/BRCA2 | 108 | 13 | CS | 12% | HBOC | South Africa | Francies, F.Z., 2015 [242] | NGS | 42 |
BRCA1/BRCA2 | 85 | 6 | CS | 7% | HBOC | South Africa | Francies, F.Z., 2015 [242] | Sequencing, MLPA | N/A |
Geographic Distribution of Studies | |
---|---|
North America | 35% |
Europe | 25% |
Asia | 20% |
South America | 10% |
Africa | 5% |
Australia/Oceania | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahasa, P.S.; Milambo, M.J.P.; Nkosi, S.F.; Mukwada, G.; Nyaga, M.M.; Tesfamichael, S.G. The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa. Int. J. Environ. Res. Public Health 2025, 22, 1486. https://doi.org/10.3390/ijerph22101486
Mahasa PS, Milambo MJP, Nkosi SF, Mukwada G, Nyaga MM, Tesfamichael SG. The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa. International Journal of Environmental Research and Public Health. 2025; 22(10):1486. https://doi.org/10.3390/ijerph22101486
Chicago/Turabian StyleMahasa, Pululu Sexton, Muambangu Jean Paul Milambo, Sibusiso Frank Nkosi, Geofrey Mukwada, Martin Munene Nyaga, and Solomon Gebremariam Tesfamichael. 2025. "The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa" International Journal of Environmental Research and Public Health 22, no. 10: 1486. https://doi.org/10.3390/ijerph22101486
APA StyleMahasa, P. S., Milambo, M. J. P., Nkosi, S. F., Mukwada, G., Nyaga, M. M., & Tesfamichael, S. G. (2025). The Relationship Between Climate Change and Breast Cancer and Its Management and Preventative Implications in South Africa. International Journal of Environmental Research and Public Health, 22(10), 1486. https://doi.org/10.3390/ijerph22101486