Effectiveness of Global Postural Reeducation in Postural Changes and Postural Stability in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Procedure
2.2. Processing and Analysis of Data
2.3. Intervention
2.4. Statistics
3. Results
Evolution T0 vs. T1
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pastorelli, F.; Pasquetti, P. Biomechanical analysis and rehabilitation in athletes. Clin. Cases Clin. Cases Min. Bone Metab. 2013, 10, 96. [Google Scholar]
- Huxham, F.E.; Goldie, P.A.; Patla, A.E. Theoretical considerations in balance assessment. Aust. J. Physiother. 2001, 47, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Rougier, P.R.; Genthon, N. Dynamical assessment of weight-bearing asymmetry during upright quiet stance in humans. Gait Posture 2009, 29, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; de Paula Oliveira, T.; Newell, J. Comparison of markerless and marker-based motion capture systems using 95% functional limits of agreement in a linear mixed-effects modelling framework. Sci. Rep. 2023, 13, 22880. [Google Scholar] [CrossRef]
- Blaszczyk, J.W.; Fredyk, A.; Blaszczyk, P.M.; Ashtiani, M. Step Response of Human Motor System as a Measure of Postural Stability in Children. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 895–903. [Google Scholar] [CrossRef]
- Richmond, S.B.; Otto, G.; Dames, K.D. Characterization of trial duration in traditional and emerging postural control measures. J. Biomech. 2023, 147, 111438. [Google Scholar] [CrossRef]
- Lozano-Quijada, C.; Poveda-Pagan, E.J.; Segura-Heras, J.V.; Hernandez-Sanchez, S.; Prieto-Castello, M.J. Changes in Postural Sway After a Single Global Postural Reeducation Session in University Students: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2017, 40, 467–476. [Google Scholar] [CrossRef]
- Blois, C.R.; Specht, L.; Paiz Rodrigues, B.L.; Moraes, M. Efeitos do método Pilates no tratamento das alterações posturais em universitários. Mov. Saúde Revistainspirar. 2016, 9, 31–36. [Google Scholar]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Richmond, S.B.; Dames, K.D.; Goble, D.J.; Fling, B.W. Leveling the playing field: Evaluation of a portable instrument for quantifying balance performance. J. Biomech. 2018, 75, 102–107. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, M.; Kinel, E.; Roncoletta, P. Normative 3D opto-electronic stereo-photogrammetric posture and spine morphology data in young healthy adult population. PLoS ONE 2017, 12, e0179619. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, O. Interrelationship between postural balance and body posture in children and adolescents. J. Phys. Ther. Sci. 2017, 29, 1154–1158. [Google Scholar] [CrossRef]
- Ludwig, O.; Frohlich, M.; Schmitt, E. Therapy of poor posture in adolescents: Sensorimotor training increases the effectiveness of strength training to reduce increased anterior pelvic tilt. Cogent Med. 2016, 3, 1262094. [Google Scholar] [CrossRef]
- Alsalameh, A.M.; Harisi, M.; Alduayji, M.A.; Almutham, A.A.; Mahmood, F.M. Evaluating the relationship between smartphone addiction/overuse and musculoskeletal pain among medical students at Qassim University. J. Fam. Med. Prim. Care 2019, 8, 2953–2959. [Google Scholar] [CrossRef]
- Pacheco, M.P.; Carvalho, P.J.; Cavalheiro, L.; Sousa, F.M. Prevalence of Postural Changes and Musculoskeletal Disorders in Young Adults. Int. J. Environ. Res. Public Health 2023, 20, 7191. [Google Scholar] [CrossRef]
- Gonzalez-Galvez, N.; Marcos-Pardo, P.J.; Trejo-Alfaro, H.; Vaquero-Cristobal, R. Effect of 9-month Pilates program on sagittal spinal curvatures and hamstring extensibility in adolescents: Randomised controlled trial. Sci. Rep. 2020, 10, 9977. [Google Scholar] [CrossRef]
- Hesarikia, H.; Rahimnia, A.; Emami Meybodi, M.K. Differences between male and female sagittal spinopelvic parameters and alignment in asymptomatic pediatric and young adults. Minerva Orthop. Trauma 2018, 69, 44–48. [Google Scholar] [CrossRef]
- Ciric, A.; Causevic, D.; Bejdic, A. Differences in posture status between boys and girls 6 to 9 years of age. Homosporticus 2015, 17, 15–20. [Google Scholar]
- dos Santos, A.M.C.D.; do Amaral, C.P.; Oliveira, M.R.T.O.; de Souza Bastos, V.C.; do Nascimento, L.S.G.; da Cunha, E.F.; de Araújo, M.D.G.R. Alterações posturais da coluna vertebral em indivíduos jovens Universitários: Análise por biofotogrametria computadorizada. Rev. Saúde E Pesqui. 2014, 7, 191–198. [Google Scholar]
- Been, E.; Shefi, S.; Soudack, M. Cervical lordosis: The effect of age and gender. Spine J. 2017, 17, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Dudko, M.V. Characteristic of biogeometric profile of students’ posture and physical fitness in process of physical education. Phys. Educ. Stud. 2015, 19, 10–16. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef]
- Cejudo, A.; Centenera-Centenera, J.M.; Santonja-Medina, F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8654. [Google Scholar] [CrossRef] [PubMed]
- Senthil, S.P.; Vinodhini, R.; Vinosh Kumar, P.; Ambusam, S.; Rajkumar Krishnan, V. Effectiveness of Global Posture Re-education and McKenzie technique in Non-Specific Low Back Pain. Inti J. 2022, 2022, 39. [Google Scholar]
- Paillard, T. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults. Front. Physiol. 2017, 8, 585. [Google Scholar] [CrossRef]
- Souchard, P. Reeducação Postural Global: O Método; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Taylor, D.C.; Dalton, J.D., Jr.; Seaber, A.V.; Garrett, W.E., Jr. Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. Am. J. Sports Med. 1990, 18, 300–309. [Google Scholar] [CrossRef]
- Bonetti, F.; Curti, S.; Mattioli, S.; Mugnai, R.; Vanti, C.; Violante, F.S.; Pillastrini, P. Effectiveness of a ‘Global Postural Reeducation’ program for persistent low back pain: A non-randomized controlled trial. BMC Musculoskelet. Disord. 2010, 11, 285. [Google Scholar] [CrossRef]
- Ferreira, G.E.; Barreto, R.G.; Robinson, C.C.; Plentz, R.D.; Silva, M.F. Global Postural Reeducation for patients with musculoskeletal conditions: A systematic review of randomized controlled trials. Braz. J. Phys. Ther. 2016, 20, 194–205. [Google Scholar] [CrossRef]
- Mendes-Fernandes, T.; Puente-Gonzalez, A.S.; Marquez-Vera, M.A.; Vila-Cha, C.; Mendez-Sanchez, R. Effects of Global Postural Reeducation versus Specific Therapeutic Neck Exercises on Pain, Disability, Postural Control, and Neuromuscular Efficiency in Women with Chronic Nonspecific Neck Pain: Study Protocol for a Randomized, Parallel, Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 10704. [Google Scholar] [CrossRef]
- Castagnoli, C.; Cecchi, F.; Del Canto, A.; Paperini, A.; Boni, R.; Pasquini, G.; Vannetti, F.; Macchi, C. Effects in Short and Long Term of Global Postural Reeducation (GPR) on Chronic Low Back Pain: A Controlled Study with One-Year Follow-Up. Sci. World J. 2015, 2015, 271436. [Google Scholar] [CrossRef] [PubMed]
- Lawand, P.; Lombardi Junior, I.; Jones, A.; Sardim, C.; Ribeiro, L.H.; Natour, J. Effect of a muscle stretching program using the global postural reeducation method for patients with chronic low back pain: A randomized controlled trial. Jt. Bone Spine 2015, 82, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Mendes Fernandes, T.; Mendez-Sanchez, R.; Puente-Gonzalez, A.S.; Martin-Vallejo, F.J.; Falla, D.; Vila-Cha, C. A randomized controlled trial on the effects of “Global Postural Re-education” versus neck specific exercise on pain, disability, postural control, and neuromuscular features in women with chronic non-specific neck pain. Eur. J. Phys. Rehabil. Med. 2023, 59, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Souchard, P.E.; Meli, O.; Sgamma, D.; Pillastrini, P. Reeducação Postural Global. A tradição, o Presente e o Futuro; Summus Editorial: São Paulo, Brazil, 2022. [Google Scholar]
- Dimitrova, E.; Rohleva, M. Global Postural Reeducation in the treatment of postural impairments. Research Kinesiol. 2014, 4, 72–75. [Google Scholar]
- Amorim, C.S.; Gracitelli, M.E.; Marques, A.P.; Alves, V.L. Effectiveness of global postural reeducation compared to segmental exercises on function, pain, and quality of life of patients with scapular dyskinesis associated with neck pain: A preliminary clinical trial. J. Manip. Physiol. Ther. 2014, 37, 441–447. [Google Scholar] [CrossRef]
- Di Ciaccio, E.; Polastri, M.; Bianchini, E.; Gasbarrini, A. Herniated lumbar disc treated with Global Postural Reeducation. A middle-term evaluation. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1072–1077. [Google Scholar]
- Lomas-Vega, R.; Garrido-Jaut, M.V.; Rus, A.; Del-Pino-Casado, R. Effectiveness of Global Postural Re-education for Treatment of Spinal Disorders: A Meta-analysis. Am. J. Phys. Med. Rehabil. 2017, 96, 124–130. [Google Scholar] [CrossRef]
- Agosti, V.; Vitale, C.; Avella, D.; Rucco, R.; Santangelo, G.; Sorrentino, P.; Varriale, P.; Sorrentino, G. Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: A pilot randomized three-dimensional motion analysis study. Neurol. Sci. 2016, 37, 515–522. [Google Scholar] [CrossRef]
- Corwell, B.N.; Davis, N.L. The Emergent Evaluation and Treatment of Neck and Back Pain. Emerg. Med. Clin. N. Am. 2020, 38, 167–191. [Google Scholar] [CrossRef]
- Adorno, M.L.; Brasil-Neto, J.P. Assessment of the quality of life through the SF-36 questionnaire in patients with chronic nonspecific low back pain. Acta Ortop. Bras. 2013, 21, 202–207. [Google Scholar] [CrossRef]
- Beynon, A.M.; Hebert, J.J.; Lebouef-Yde, C.; Walker, B.F. Potential risk factors and triggers for back pain in children and young adults. A scoping review, part I: Incident and episodic back pain. Chiropr. Man Therap. 2019, 27, 58. [Google Scholar] [CrossRef] [PubMed]
- Guastala, F.A.M.G.M.; Klein, P.F.; Leite, V.C.; Cappellazzo, R.; Facci, L.M. Efeitos da reeducação postural global e do isostretching em pacientes com lombalgia crônica não-específi ca: Ensaio clínico aleatório. Fisioter. Mov. Curitiba. 2016, 29, 515–525. [Google Scholar] [CrossRef]
- Soares, P.; Cabral, V.; Mendes, M.; Vieira, R.; Aviolo, G.; de Souza Vale, R.G. Efeitos do Programa Escola de Postura e Reeducacão Postural Global sobre a amplitude de movimento e níveis de dor em pacientes com lombalgia crónica. Rev. Andal. Med. Deporte 2016, 9, 23–28. [Google Scholar] [CrossRef]
- Longo, C.A.; Ferrari, S.; Lanza, A.; Vanti, C.; Stradiotti, P.; Ausenda, C.D. Effects of the “standing posture with flexion of the trunk” on the lumbar multifidus tropism in patients with chronic low back pain. A randomized, controlled pilot study. Sci. Riabil. 2016, 18, 5–12. [Google Scholar]
- O’Sullivan, P. It’s time for change with the management of non-specific chronic low back pain. Br. J. Sports Med. 2012, 46, 224–227. [Google Scholar] [CrossRef]
- Tomkinson, G.R.S.L. An anthropometric method of measuring standing posture with 3D analysis. In Kinanthropometry X; Marfell-Jones, M., Olds, T., Eds.; Routledge: London, UK, 2008; pp. 56–77. [Google Scholar]
- Dimitriadis, Z.; Podogyros, G.; Polyviou, D.; Tasopoulos, I.; Passa, K. The Reliability of Lateral Photography for the Assessment of the Forward Head Posture Through Four Different Angle-Based Analysis Methods in Healthy Individuals. Musculoskelet. Care 2015, 13, 179–186. [Google Scholar] [CrossRef]
- Ribeiro, A.F.M.; Bergmann, A.; Lemos, T.; Pacheco, A.G.; Russo, M.M.; de Oliveira, L.A.S.; de Carvalho Rodrigues, E. Reference Values for Human Posture Measurements Based on Computerized Photogrammetry: A Systematic Review. J. Manip. Physiol. Ther. 2017, 40, 156–168. [Google Scholar] [CrossRef]
- Trombini-Souza, F.; Ribeiro, A.P.; Iunes, D.H.; Monte-Raso, V.V. Correlações entre as estruturas dos membros inferiores. Fisioter. E Pesqui. 2009, 16, 205–210. [Google Scholar] [CrossRef]
- Krawczky, B.; Pacheco, A.G.; Mainenti, M.R. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: A proposal for reference values. J. Manip. Physiol. Ther. 2014, 37, 269–275. [Google Scholar] [CrossRef]
- Carregaro, R.L.S.L.e.G.C.H. Comparação entre dois testes clínicos para avaliar a Flexibilidade dos músculos posteriores da coxa. Rev. Bras. Fisioter. 2007, 11, 139–145. [Google Scholar] [CrossRef]
- de Oliveira, J.M. Statokinesigram normalization method. Behav. Res. Methods 2017, 49, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.F.; Simpson, D.M.; Nadal, J. Calculation of area of stabilometric signals using principal component analysis. Physiol. Meas. 1996, 17, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-de-las-Penas, C.; Alonso-Blanco, C.; Cuadrado, M.L.; Gerwin, R.D.; Pareja, J.A. Trigger points in the suboccipital muscles and forward head posture in tension-type headache. Headache 2006, 46, 454–460. [Google Scholar] [CrossRef]
- Raine, S.; Twomey, L.T. Head and shoulder posture variations in 160 asymptomatic women and men. Arch. Phys. Med. Rehabil. 1997, 78, 1215–1223. [Google Scholar] [CrossRef]
- Ruivo, R.M.; Pezarat-Correia, P.; Carita, A.I. Cervical and shoulder postural assessment of adolescents between 15 and 17 years old and association with upper quadrant pain. Braz. J. Phys. Ther. 2014, 18, 364–371. [Google Scholar] [CrossRef]
- Raine, S.; Twomey, L. Posture of the head, shoulders and thoracic spine in comfortable erect standing. Aust. J. Physiother. 1994, 40, 25–32. [Google Scholar] [CrossRef]
- Gadotti, I.C.; Armijo-Olivo, S.; Silveira, A.; Magee, D. Reliability of the craniocervical posture assessment: Visual and angular measurements using photographs and radiographs. J. Manip. Physiol. Ther. 2013, 36, 619–625. [Google Scholar] [CrossRef]
- Nam, S.H.; Son, S.M.; Kwon, J.W.; Lee, N.K. The Intra- and Inter-rater Reliabilities of the Forward Head Posture Assessment of Normal Healthy Subjects. J. Phys. Ther. Sci. 2013, 25, 737–739. [Google Scholar] [CrossRef]
- Harrison, A.L.; Barry-Greb, T.; Wojtowicz, G. Clinical measurement of head and shoulder posture variables. J. Orthop. Sports Phys. Ther. 1996, 23, 353–361. [Google Scholar] [CrossRef]
- Harrison, D.E.; Harrison, D.D.; Troyanovich, S.J.; Harmon, S. A normal spinal position: It’s time to accept the evidence. J. Manip. Physiol. Ther. 2000, 23, 623–644. [Google Scholar] [CrossRef] [PubMed]
- Sacco, I.; Melo, M.; Rojas, G.; Naki, I.; Burgi, K.; Silveira, L.; Guedes, V.; Kanayama, E.; Vasconcelos, A.; Penteado, D.; et al. Análise biomecânica e cinesiológica de posturas mediante fotografia digital: Estudo de casos. Rev. Bras. Ciênc. Mov. 2003, 11, 25–33. [Google Scholar]
- Vaz, G.; Roussouly, P.; Berthonnaud, E.; Dimnet, J. Sagittal morphology and equilibrium of pelvis and spine. Eur. Spine J. 2002, 11, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Been, E.; Kalichman, L. Lumbar lordosis. Spine J. 2014, 14, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Laouissat, F.; Sebaaly, A.; Gehrchen, M.; Roussouly, P. Classification of normal sagittal spine alignment: Refounding the Roussouly classification. Eur. Spine J. 2018, 27, 2002–2011. [Google Scholar] [CrossRef]
- Candotti, C.T.; Gelain, G.M.; Antoniolli, A.; Araujo, L.M.; Vieira, A.; Loss, J.F. Repeatability and Reproducibility of Postural Variables by Photogrammetry. J. Manip. Physiol. Ther. 2019, 42, 372–378. [Google Scholar] [CrossRef]
- Siqueira, C.M.; Rossi, A.; Shimamoto, C.; Tanaka, C. Balance highly influences flexibility measured by the toe-touch test. Hum. Mov. Sci. 2018, 62, 116–123. [Google Scholar] [CrossRef]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Reproducibility and criterion-related validity of the sit and reach test and toe touch test for estimating hamstring flexibility in recreationally active young adults. Phys. Ther. Sport 2012, 13, 219–226. [Google Scholar] [CrossRef]
- Ekedahl, H.; Jonsson, B.; Frobell, R.B. Fingertip-to-floor test and straight leg raising test: Validity, responsiveness, and predictive value in patients with acute/subacute low back pain. Arch. Phys. Med. Rehabil. 2012, 93, 2210–2215. [Google Scholar] [CrossRef]
- Robinson, H.S.; Mengshoel, A.M. Assessments of lumbar flexion range of motion: Intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine 2014, 39, E270–E275. [Google Scholar] [CrossRef]
- Scoppa, F.; Gallamini, M.; Belloni, G.; Messina, G. Clinical stabilometry standardization: Feet position in the static stabilometric assessment of postural stability. Acta Medica Mediterr. 2017, 33, 707. [Google Scholar]
- Magnusson, S.P.; Simonsen, E.B.; Aagaard, P.; Boesen, J.; Johannsen, F.; Kjaer, M. Determinants of musculoskeletal flexibility: Viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand. J. Med. Sci. Sports 1997, 7, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wilken, J.M.; Rodriguez, K.M.; Brawner, M.; Darter, B.J. Reliability and Minimal Detectible Change values for gait kinematics and kinetics in healthy adults. Gait Posture 2012, 35, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Detsch, C.; Luz, A.M.; Candotti, C.T.; de Oliveira, D.S.; Lazaron, F.; Guimarães, L.K.; Schimanoski, P. [Prevalence of postural changes in high school students in a city in southern Brazil]. Rev. Panam Salud Publica 2007, 21, 231–238. [Google Scholar] [CrossRef]
- Ghandhari, H.; Hesarikia, H.; Ameri, E.; Noori, A. Assessment of normal sagittal alignment of the spine and pelvis in children and adolescents. Biomed. Res. Int. 2013, 2013, 842624. [Google Scholar] [CrossRef]
- Tully, E.A.; Stillman, B.C. Computer-aided video analysis of vertebrofemoral motion during toe touching in healthy subjects. Arch. Phys. Med. Rehabil. 1997, 78, 759–766. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.; Antonino, G.B.; Monte-Silva, K.K.D.; Guerino, M.R.; Ferreira, A.P.L.; das Gracas Rodrigues de Araujo, M. Global Postural Re-education in non-specific neck and low back pain treatment: A pilot study. J. Back Musculoskelet. Rehabil. 2020, 33, 823–828. [Google Scholar] [CrossRef]
- Basso, D.; Corrêa, E.; da Silva, A. Efeito da reeducação postural global no alinhamento corporal e nas condições clínicas de indivíduos com disfunção temporomandibular associada a desvios posturais. Fisioter. Pesqui. 2010, 17, 63–68. [Google Scholar] [CrossRef]
- Júnior, V.; Ronaldo, J.; Carlos, T. Efeitos da reeducação postural global pelo método RPG/RFL na correção postural e no reequilíbrio muscular. Fisioter. Mov. 2008, 21, 127–137. [Google Scholar]
- do Rosario, J.L. Photographic analysis of human posture: A literature review. J. Bodyw. Mov. Ther. 2014, 18, 56–61. [Google Scholar] [CrossRef]
- Masani, K.; Vette, A.H.; Abe, M.O.; Nakazawa, K. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait Posture 2014, 39, 946–952. [Google Scholar] [CrossRef]
Variables Under Study | Anatomical Markers | Calculation |
---|---|---|
Forward head posture [48] | Right Tragus (RTRAG); Spinous process of the 7th cervical vertebra (C7) | Angle C7—RTRAG with horizontal, in the sagittal plane. |
Cervical lordosis [49] | RTRAG; and C7 | Angle C7—RTRAG with vertical, in the sagittal plane. |
Round shoulders [48] | Right and left acromion (RAC, LAC); and C7 | Angle RAC, LAC—C7 with horizontal, in the sagittal plane. |
Shoulders lifted [48] | RAC and LAC | Angle RAC—LAC with horizontal, in the frontal plane. |
Thoracic kyphosis Adapted from [48] | C7, Spinous process of the 7th (T7) and 12th of thoracic vertebrae (T12) | Angle formed between the intersection of a line joining C7 to T7 and a line between T7 and T12 |
lumbar lordosis Adapted from [48] | T12; Third and fifth lumbar vertebrae (L3 L5) | Angle formed between the intersection of a line joining T12 to L3 and a line between L3 and L5 |
Pelvic tilt [48] | Right Anterior Superior Iliac Spine (RIAS) and Right Posterior Superior Iliac Spine (RIPS). | Angle formed between the intersection of a line joining RIPS and a projected line on a transverse plane at the level of RIAS joining RIAS and a point of the line projected perpendicularly from the plane to RIPS |
Knee valgum/Varum [48,50] | Greater trochanter (RFT) Right/left lateral femoral epicondyle (RFLE/RFAL) | Angle formed between the intersection of the line joining RFT, RFLE and RFAL, in the frontal plane. |
Calcaneus Valgus/Varus Adapted from [50,51] | Right/Left Posterior Surface of Calcaneus (RFCC/LFCC) | Angle formed between RFCC and LFCC a line parallel to the ground |
Vertical alignment of the body [7,49,52] | RAC and RFAL | Angle formed between the line between RAC, RFAL and a vertical line drawn perpendicularly to the ground at the height of the lateral malleolus. |
Distance from the right head of 2nd metacarpal (RMHC2) to the ground (cm) [50,53] | RMHC2 | Distance from RMHC2 to the ground. |
Variables | Description | Interpretation |
---|---|---|
Area (cm2) | Area of a Stabilogram | Computes the area of a given statokinesiogram by fitting an ellipse containing 95% of statokinesiogram’s points. |
sdx (cm) | Quantifies the Lateral Sway Amplitude | Calculation of the standard deviation of the lateral displacement of the center of pressure (COP) (variability) |
sdy (cm) | Quantifies the anteroposterior Sway Amplitude | Calculation of the standard deviation of the anteroposterior displacement of the COP (variability) |
xmdfreq (Hz) | Quantifies the Median Frequency of the Lateral Displacement of COP. | Computes the median frequency of the lateral displacement of the COP. |
ymdfreq (Hz) | Quantifies the Median Frequency of the Anteroposterior Displacement of COP. | Compites the median frequency of the anteroposterior displacement of the COP. |
xveloc (cm/s) | Mean lateral velocity of COP displacement | Computes the mean lateral velocity of a given COP displacement. |
yveloc (cm/s) | Mean anteroposterior velocity of COP displacement | Computes the mean front-to-back velocity of a given COP displacement. |
Postures | Sessions | Description (Beginning of the Posture) | Progression |
---|---|---|---|
“Frog on the ground”, | 1–5 and 7 | Supine position with the lower limbs in flexion, abduction, and external rotation, with the soles of the feet together. Active expiratory correction of the thorax; manual traction of the cervical and lumbar regions during expiration with the aim of maintaining the physiological curvatures. | Fulfilled the condition acquired at the beginning of the posture, progressive extension of the hip with external rotation and adduction of the lower limbs, and dorsal flexion of the tibiotalar joint, growing the heels in the direction opposite to the head. Maintenance of self-growth, expiratory work stimulating the qualitative maintenance of the corrections. |
Standing with the back against the wall | 1, 2, 4, 6, 7 and 8 | Standing with back against the wall, lower limbs in flexion, abduction, and external rotation, with the feet abducted at 30°, occipital traction and alignment in the vertical plane of the occiput, mid-dorsal region, and sacrum. Expiratory work, scapula adduction, and stretching of the upper limbs towards the ground. | Fulfilled the condition acquired at the beginning of the posture, progressive extension of the lower limbs with external rotation and adduction, active expiratory work. Maintenance of self-growth with the qualitative maintenance of the corrections. |
Standing in the middle | 1–8 | A posture similar to the previous one, facilitating the integration of postural corrections under gravitational load. | Similar to the previous |
“Frog in the air”, | 1–3, and 6 | Supine position with the lower limbs at 90 degrees of flexion, abduction, and external rotation of the thighs, with the soles of the feet together. Active expiratory correction of the thorax manual traction of the cervical and lumbar regions during expiration with the aim of maintaining the physiological curvatures. | Fulfilled the condition acquired at the beginning of the posture, progressive extension of the knees, keeping the sacrum on the ground, adduction and external rotation of the thighs, dorsiflexion of the ankles, and approximation of the medial malleoli with the feet abducted at 30°. Active expiratory work. Maintenance of self-growth with the qualitative maintenance of the corrections. |
Sitting | 2, 3, 5 and 7 | Seated, supported on the ischial tuberosities, with the lower limbs in flexion, abduction, and external rotation, and the soles of the feet together. Active expiratory correction of the thorax, manual traction of the cervical region during expiration, aligning the occiput, mid-dorsal region, and sacrum in the same vertical plane. | Fulfilled the condition acquired at the beginning of the posture, progressive extension of the knees, avoiding lumbar kyphosis, adduction and external rotation of the thighs, dorsiflexion of the ankles, and approximation of the medial malleoli with the feet abducted at 30°. Active expiratory work. Maintenance of self-growth with the qualitative maintenance of the corrections. Gradual forward trunk flexion, slowly closing the hip angle. |
Standing with the body leaning forward | 4, 5, 6 and 8 | Similar command to the previous posture, with the advantage of load on the lower limbs, which allows for a good stretch. | Similar to the previous one, but with load. |
Variables | Group | N | Mean | SD | p * |
---|---|---|---|---|---|
Age (years) | Experimental | 20 | 19.50 | 1.28 | 0.320 |
Control | 18 | 19.11 | 1.08 | ||
Weight (kg) | Experimental | 20 | 66.50 | 11.12 | 0.133 |
Control | 18 | 60.70 | 12.16 | ||
Height (cm) | Experimental | 20 | 168.10 | 8.98 | 0.563 |
Control | 18 | 166.19 | 11.23 | ||
BMI (kg/m2) | Experimental | 20 | 23.51 | 3.38 | 0.070 |
Control | 18 | 21.77 | 2.14 | ||
* t student test. | |||||
Female | Male | Total | p * | ||
Sex | Experimental | 12 | 8 | 20 | 0.671 |
Control | 12 | 6 | 18 | ||
* Chi-square test. |
Baseline (T0) | Post Intervention (T1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Postural Variables/Degrees | Experimental Mean ± SD | n | Control Mean ± SD | n | p * | Experimental Mean ± SD | n | Control Mean ± SD | n | p * |
Forward head posture | 44.97 ± 4.75 | 19 | 45.34 ± 6.78 | 16 | 1.000 | 47.26 ± 5.11 | 17 | 45.96 ± 8.28 | 14 | 0.230 |
Right Round shoulder | 55.71 ± 22.74 | 20 | 56.57 ± 18.35 | 18 | 0.828 | 54.50 ± 17.16 | 17 | 51.50 ± 18.57 | 14 | 0.625 |
Left Round shoulder | 36.47 ± 15.15 | 20 | 40.92 ± 16.21 | 18 | 0.515 | 42.66 ± 19.07 | 17 | 40.29 ± 13.68 | 14 | 0.984 |
Thoracic kyphosis | 26.94 ± 8.24 | 15 | 26.36 ± 6.92 | 18 | 0.442 | 28.69 ± 6.20 | 15 | 27.40 ± 6.52 | 13 | 0.751 |
Lumbar lordosis | 25.33 ± 11.05 | 19 | 17.86 ± 8.73 | 18 | 0.053 | 23.34 ± 11.14 | 17 | 20.77 ± 11.47 | 13 | 0.621 |
Pelvic tilt | 10.98 ± 6.16 | 19 | 10.75 ± 5.25 | 18 | 0.964 | 13.88 ± 7.46 | 17 | 11.22 ± 3.13 | 14 | 0.246 |
Right Knee valgum | 174.15 ± 2.60 | 20 | 175.73 ± 3.93 | 18 | 0.303 | 175.42 ± 2.34 | 17 | 177.23 ± 4.44 | 13 | 0.094 |
Left Knee valgum | 175.29 ± 3.40 | 20 | 176.08 ± 3.08 | 18 | 0.276 | 176.53 ± 2.15 | 17 | 177.63 ± 3.10 | 13 | 0.245 |
Right Calcaneus Valgus | 4.83 ± 3.71 | 12 | 4.21 ± 3.31 | 10 | 0.821 | 3.96 ± 2.19 | 9 | 5.53 ± 3.63 | 7 | 0.606 |
Left Calcaneus Valgus | 5.12 ± 3.77 | 15 | 5.98 ± 4.33 | 11 | 0.610 | 5.26 ± 3.08 | 11 | 5.99 ± 4.86 | 8 | 1.000 |
Cervical lordosis | 45.03 ± 4.75 | 19 | 44.66 ± 6.78 | 16 | 1.000 | 42.74 ± 5.11 | 17 | 44.04 ± 8.28 | 14 | 0.230 |
Right Shoulder lifted | 1.61 ± 1.44 | 9 | 1.44 ± 1.09 | 6 | 0.776 | 1.59 ± 1.37 | 6 | 1.19 ± 0.57 | 4 | 1.000 |
Left Shoulder lifted | −1.53 ± 0.86 | 11 | −1.97 ± 1.20 | 12 | 0.566 | −1.79 ± 1.23 | 11 | −1.16 ± 0.83 | 10 | 0.251 |
Right Calcaneus Varus | −3.20 ± 2.78 | 7 | −1.68 ± 1.28 | 8 | 0.336 | −2.61 ± 1.73 | 8 | −3.49 ± 1.96 | 7 | 0.536 |
Left Calcaneus Varus | −2.38 ± 1.84 | 4 | −3.51 ± 3.51 | 7 | 0.648 | −1.41 ± 1.09 | 6 | −3.57 ± 2.12 | 6 | 0.093 |
Vertical alignment of body | 1.63 ± 1.09 | 15 | 1.62 ± 1.07 | 18 | 0.873 | 1.03 ± 0.86 | 16 | 1.67 ± 1.02 | 13 | 0.092 |
RHMC2 to floor (cm) | 24.79 ± 10.05 | 20 | 22.61 ± 9.27 | 18 | 0.762 | 24.67 ± 11.05 | 17 | 25.67 ± 13.17 | 14 | 0.681 |
Baseline (T0) | Post Intervention (T1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stabilometry Variables | Experimental Mean ± SD | n | Control Mean ± SD | n | p * | Experimental Mean ± SD | n | Control Mean ± SD | n | p * |
Area (cm2) | 1.37 ± 0.90 | 19 | 1.43 ± 0.68 | 18 | 0.599 | 1.29 ± 0.62 | 17 | 1.33 ± 0.43 | 14 | 0.570 |
sdx (cm) | 0.36 ± 0.17 | 19 | 0.36 ± 0.11 | 18 | 0.558 | 37 ± 0.14 | 17 | 0.34 ± 0.06 | 14 | 0.769 |
sdy (cm) | 0.20 ± 0.04 | 19 | 0.21 ± 0.06 | 18 | 0.461 | 0.19 ± 0.04 | 17 | 0.21 ± 0.05 | 14 | 0.230 |
xmdfreq (Hz) | 0.22 ± 0.07 | 19 | 0.22 ± 0.07 | 18 | 0.893 | 0.22 ± 0.07 | 17 | 0.22 ± 0.06 | 14 | 0.953 |
ymdfreq (Hz) | 0.33 ± 0.11 | 19 | 0.36 ± 0.13 | 18 | 0.343 | 0.36 ± 0.12 | 17 | 0.34 ± 0.11 | 14 | 0.953 |
xveloc (cm/s) | 14.90 ± 2.27 | 19 | 16.15 ± 3.17 | 18 | 0.298 | 14.46 ± 2.40 | 17 | 15.05 ± 2.54 | 14 | 0.625 |
yveloc (cm/s) | 21.80 ± 3.09 | 19 | 23.22 ± 4.46 | 18 | 0.538 | 21.03 ± 3.18 | 17 | 22.14 ± 3.73 | 14 | 0.518 |
Experimental | Control | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Postural Variables/Degrees | Baseline (T0) Mean ± SD | n | Post Intervention (T1) Mean ± SD | n | p * | Baseline (T0) Mean ± SD | n | Post Intervention (T1) Mean ± SD | n | p * |
Forward head posture | 45.56 ± 4.75 | 16 | 47.45 ± 5.22 | 16 | 0.179 | 46.31 ± 6.86 | 12 | 45.92 ± 8.91 | 12 | 0.239 |
Right Round shoulder | 57.29 ± 5.22 | 17 | 54.50 ± 17.16 | 17 | 0.309 | 54.66 ± 18.47 | 14 | 51.50 ± 18.57 | 14 | 0.300 |
Left Round shoulder | 37.13 ± 16.34 | 17 | 42.66 ± 19.07 | 17 | 0.277 | 40.68 ± 17.59 | 14 | 40.29 ± 13.68 | 14 | 0.594 |
Thoracic kyphosis | 26.62 ± 9.56 | 11 | 28.70 ± 6.38 | 11 | 0.594 | 26.56 ± 8.04 | 13 | 27.40 ± 6.52 | 13 | 0.463 |
Lumbar lordosis | 26.16 ± 11.48 | 16 | 21.99 ± 11.48 | 16 | 0.278 | 18.07 ± 9.43 | 13 | 20.77 ± 11.47 | 13 | 0.279 |
Pelvic Tilt | 10.57 ± 5.65 | 16 | 14.37 ± 7.42 | 16 | 0.056 | 10.65 ± 5.98 | 14 | 11.22 ± 3.13 | 14 | 0.875 |
Right Knee valgum | 174.63 ± 2.38 | 17 | 175.42 ± 2.38 | 17 | 0.177 | 176.37 ± 4.38 | 13 | 177.23 ± 4.44 | 13 | 0.133 |
Left Knee valgum | 175.71 ± 3.44 | 17 | 176.53 ± 3.44 | 17 | 0.177 | 176.49 ± 3.34 | 13 | 177.63 ± 3.10 | 13 | 0.033 ᵵ |
Right Calcaneus Valgus | 4.23 ± 3.95 | 5 | 4.36 ± 2.55 | 5 | 0.893 | 4.72 ± 4.57 | 5 | 4.99 ± 4.08 | 5 | 0.686 |
Left Calcaneus Valgus | 4.76 ± 2.68 | 7 | 4.46 ± 1.85 | 7 | 0.866 | 7.22 ± 4.72 | 6 | 6.72 ± 5.46 | 6 | 0.917 |
Cervical lordosis | 44.44 ± 4.75 | 16 | 42.55 ± 5.22 | 16 | 0.179 | 43.69 ± 6.86 | 12 | 44.08 ± 8.91 | 12 | 0.239 |
Right Shoulder lifted | 1.86 ± 1.69 | 5 | 1.84 ± 1.37 | 5 | 0.893 | 1.87 ± 0.84 | 3 | 1.41 ± 0.43 | 3 | 0.285 |
Left Shoulder lifted | −1.73 ± 0.82 | 9 | −1.91 ± 1.23 | 9 | 0.859 | −2.07 ± 0.43 | 8 | −1.28 ± 0.86 | 8 | 0.161 |
Right Calcaneus Varus | −2.77± 2.05 | 3 | −3.13 ± 2.76 | 3 | 0.593 | −0.98 ± 1.09 | 3 | −3.44 ± 2.44 | 3 | 0.109 |
Left Calcaneus Varus | −0.10 | 1 | −0.39 | 1 | 0.317 | −4.25 ± 4.42 | 4 | −4.13 ± 2.28 | 4 | 1.000 |
Vertical alignment of body | 1.50 ± 0.96 | 12 | 1.29 ± 0.82 | 12 | 0.480 | 1.70 ± 1.13 | 13 | 1.67 ± 1.02 | 13 | 0.753 |
RHMC2 to floor (cm) | 25.56 ± 10.35 | 17 | 24.67 ± 11.05 | 17 | 0.653 | 23.93 ± 9.55 | 14 | 25.67 ± 13.17 | 14 | 0.245 |
Experimental | Control | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stabilometry Variables | Baseline (T0) Mean ± SD | n | Post Intervention (T1) Mean ± SD | n | p * | Baseline (T0) Mean ± SD | n | Post Intervention (T1) Mean ± SD | n | p * |
Area (cm2) | 1.44 ± 0.95 | 16 | 1.30 ± 0.64 | 16 | 0.918 | 1.46 ± 0.67 | 14 | 1.33 ± 0.43 | 14 | 0.638 |
sdx (cm) | 0.38 ± 0.18 | 16 | 0.37 ± 0.14 | 16 | 0.756 | 0.38 ± 0.11 | 14 | 0.34 ± 0.06 | 14 | 0.397 |
sdy (cm) | 0.20 ± 0.04 | 16 | 0.19 ± 0.04 | 16 | 0.469 | 0.21 ± 0.05 | 14 | 0.21 ± 0.05 | 14 | 0.363 |
xmdfreq (Hz) | 0.20 ± 0.06 | 16 | 0.22 ± 0.06 | 16 | 0.379 | 0.21 ± 0.06 | 14 | 0.22 ± 0.06 | 14 | 0.875 |
ymdfreq (Hz) | 0.33 ± 0.11 | 16 | 0.35 ± 0.13 | 16 | 0.569 | 0.39 ± 0.13 | 14 | 0.34 ± 0.11 | 14 | 0.272 |
xveloc (cm/s) | 14.86 ± 2.41 | 16 | 14.65 ± 2.34 | 16 | 0.215 | 15.26 ± 2.63 | 14 | 15.05 ± 2.54 | 14 | 0.221 |
yveloc (cm/s) | 21.70 ± 3.25 | 16 | 21.31 ± 3.04 | 16 | 0.044 ᵵ | 21.90 ± 3.67 | 14 | 22.14 ± 3.73 | 14 | 0.331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, M.P.; Morais, S.; Carvalho, P.J.; Cavalheiro, L.; Sousa, F. Effectiveness of Global Postural Reeducation in Postural Changes and Postural Stability in Young Adults. Int. J. Environ. Res. Public Health 2025, 22, 101. https://doi.org/10.3390/ijerph22010101
Pacheco MP, Morais S, Carvalho PJ, Cavalheiro L, Sousa F. Effectiveness of Global Postural Reeducation in Postural Changes and Postural Stability in Young Adults. International Journal of Environmental Research and Public Health. 2025; 22(1):101. https://doi.org/10.3390/ijerph22010101
Chicago/Turabian StylePacheco, Maria Paula, Sara Morais, Paulo José Carvalho, Luís Cavalheiro, and Filipa Sousa. 2025. "Effectiveness of Global Postural Reeducation in Postural Changes and Postural Stability in Young Adults" International Journal of Environmental Research and Public Health 22, no. 1: 101. https://doi.org/10.3390/ijerph22010101
APA StylePacheco, M. P., Morais, S., Carvalho, P. J., Cavalheiro, L., & Sousa, F. (2025). Effectiveness of Global Postural Reeducation in Postural Changes and Postural Stability in Young Adults. International Journal of Environmental Research and Public Health, 22(1), 101. https://doi.org/10.3390/ijerph22010101