Food Consumption Inequalities in Primary Care in a Large Metropolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
2.2. Study Sample
2.3. Data Collection
2.4. Variables Studied
2.4.1. Explanatory Variable of Main Interest: Health Vulnerability Index (HVI) of the Census Sector in Which the User Resides
2.4.2. Outcome Variable: Food Consumption According to the NOVA Classification
2.4.3. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de orçamentos familiares 2017–2018: Análise do consumo alimentar pessoal no Brasil. In Coordenação de Trabalho e Rendimento; IBGE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Organização Pan-Americana da Saúde (OPAS). Alimentação Saudável. 2019. Available online: https://www.paho.org/pt/topicos/alimentacao-saudavel (accessed on 30 June 2023).
- Pinho-Gomes, A.C.; Knight, A.; Critchley, J.; Pennington, M. Addressing the low consumption of fruit and vegetables in England: A cost-effectiveness analysis of public policies. J. Epidemiol. Community Health 2021, 75, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Marchese, L.; Livingstone, K.M.; Woods, J.L.; Wingrove, K.; Machado, P. Ultra-processed food consumption, socio-demographics and diet quality in Australian adults. Public Health Nutr. 2022, 25, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Horino, M.; Liu, S.Y.; Lee, E.Y.; Kawachi, I.; Pabayo, R. State-level income inequality and the odds for meeting fruit and vegetable recommendations among US adults. PLoS ONE 2020, 15, e0238577. [Google Scholar] [CrossRef] [PubMed]
- Fisberg, R.M.; Leme, A.C.B.; Previdelli, Á.; de Mello, A.V.; Martinez, A.G.; Sales, C.H.; Gómez, G.; Kovalskys, I.; Herrera-Cuenca, M.; Sanabria, L.Y.C.; et al. Contribution of food groups to energy, grams and nutrients-to-limit: The Latin American Study of Nutrition and Health/Estudio Latino Americano de Nutrición y Salud (ELANS). Public Health Nutr. 2021, 24, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
- Saes, M.; Neves, R.G.; Machado, K.P.; Flores, T.R. Desigualdades socioeconômicas no consumo alimentar da população idosa brasileira: Pesquisa Nacional de Saúde, 2019. Ciênc Saúde Coletiva 2019, 27, 2621–2628. [Google Scholar] [CrossRef] [PubMed]
- Canuto, R.; Fanton, M.; Lira, P.I.C. Iniquidades sociais no consumo alimentar no Brasil: Uma revisão crítica dos inquéritos nacionais. Ciênc Saúde Coletiva 2019, 24, 3193–3212. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.D.; Lopes, M.S.; de Freitas, P.P.; Campos, S.F.; de Menezes, M.C.; Lopes, A.C.S. Monotony in the consumption of fruits and vegetables and food environment characteristics. Rev. Saúde Pública (ONLINE) 2019, 53, 63. [Google Scholar] [CrossRef]
- Munialo, C.D.; Mellor, D.D. A review of the impact of social disruptions on food security and food choice. Food Sci. Nutr. 2023, 12, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Prefeitura de Belo Horizonte. Academias da Cidade. Criado em 01/02/2018 e Atualizado em 19/01/2024. 2024. Available online: https://prefeitura.pbh.gov.br/saude/informacoes/atencao-a-saude/promocao-da-saude/academia-da-cidade (accessed on 29 February 2024).
- Ministério da Saúde. Portaria nº 2.681, de 7 de Novembro de 2013. Redefine o Programa Academia da Saúde no Âmbito do Sistema Único de Saúde (SUS); Ministério da Saúde: Brasília, Brazil, 2013. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt2681_07_11_2013.html (accessed on 2 August 2022).
- de Menezes, M.C.; de Lima Costa, B.V.; Ferreira, N.L.; de Freitas, P.P.; de Deus Mendonca, R.; Lopes, M.S.; de Araujo, M.L.; Ferraz Guimarães, L.M.; Souza Lopes, A.C. Methodological course of a community controlled trial in health care services: A translational epidemiological research on Nutrition. Demetra 2017, 12, 1203–1222. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3, Revised; Oxford University Press: New York, NY, USA, 2013; 528p. [Google Scholar]
- Prefeitura de Belo Horizonte. Índice de Vulnerabilidade da Saúde, 2012; Prefeitura de Belo Horizonte: Belo Horizonte, Brazil, 2013.
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Campos, S.F.; dos Santos, L.C.; Lopes, M.S.; de Freitas, P.P.; Lopes, A.C. Consumption of ultra-processed foods and nutritional profile in a health promotion service of primary care. Public Health Nutr. 2021, 24, 5113–5126. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Meller, F.; dos Santos, L.P.; Miranda, V.I.A.; Tomasi, C.D.; Soratto, J.; Quadra, M.R.; Schäfer, A.A. Desigualdades nos comportamentos de risco para doenças crônicas não transmissíveis: Vigitel, 2019. Cad. Saúde Pública 2022, 38, e00273520. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.S.; Caiaffa, W.T.; de Souza Andrade, A.C.; Malta, D.C.; Barber, S.; de Lima Friche, A.A. Disparities in food consumption between economically segregated urban neighbourhoods. Public Health Nutr. 2019, 23, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpoor, A.R.; Bergen, N.; Kirkby, K.; Schlotheuber, A.; Antiporta, D.A.; Mac Feely, S. WHO’s health inequality data repository. Bull. World Health Organ 2023, 101, 298. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa Nacional de Saúde 2019: Percepção do estado de saúde, estilos de vida, doenças crônicas e saúde bucal. In Coordenação de Trabalho e Rendimento; IBGE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2019: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico: Estimativas Sobre Frequência e Distribuição Sociodemográfica de Fatores de Risco e Proteção para Doenças Crônicas nas Capitais dos 26 Estados Brasileiros e no Distrito Federal em 2019 [Recurso Eletrônico]/Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis; Ministério da Saúde: Brasília, Brazil, 2020.
- Costa, C.S.; Steele, E.M.; de Faria, F.R.; Monteiro, C.A. Score of ultra-processed food consumption and its association with sociodemographic factors in the Brazilian National Health Survey, 2019. Cad. Saúde Pública 2022, 38 (Suppl. S1), e00119421. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.B.; Andrade, G.C.; Cruz, G.L.D.; Rauber, F.; Louzada, M.L.D.C.; Claro, R.M.; Monteiro, C.A. Três décadas da disponibilidade domiciliar de alimentos segundo a NOVA–Brasil, 1987–2018. Rev. Saude Publica 2022, 56, 75. [Google Scholar] [CrossRef] [PubMed]
- Zapata, M.E.; Rovirosa, A.; Carmuega, E. Consumo de energía y nutrientes críticos según clasificación NOVA en la Argentina, tendencia temporal y diferencias según nivel de ingreso. Cad. Saúde Pública 2022, 38, e00252021. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, L.G.; Steele, E.M.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, M.; Leclerc, B.S.; Louzada, M.L.; Monteiro, C.A.; Batal, M.; Moubarac, J.C. Consumption of ultra-processed foods and obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.W.; Fulay, A.P.; Parnarouskis, L.; Steele, E.M.; Gearhardt, A.N.; Wolfson, J.A. Food insecurity and ultra-processed food consumption: The modifying role of participation in the Supplemental Nutrition Assistance Program (SNAP). Am. J. Clin. Nutr. 2022, 116, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Moubarac, J.C.; Martins, A.P.; Claro, R.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr. 2013, 16, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Granado, F.S.; Maia, E.G.; Mendes, L.; Claro, R.M. Reduction of traditional food consumption in Brazilian diet: Trends and forecasting of bean consumption (2007–2030). Public Health Nutr. 2021, 24, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. Guia Alimentar para a População Brasileira, 2nd ed.; Ministério da Saúde: Brasília, Brazil, 2014.
- Louzada, M.L.C.; Costa, J.C.; Costa, C.S.; Wendt, A.; Azeredo, C.M. Mudanças nas desigualdades socioeconômicas no consumo alimentar entre adultos brasileiros em um período de 10 anos. Frente. Nutr. 2022, 9, 1020987. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.C.S.; Lopes, M.S.; Duarte, C.K.; Freitas, P.P. Longitudinal effect of nutritional intervention on body weight: A randomized controlled trial. Nutrition 2021, 93, 111436. [Google Scholar] [CrossRef] [PubMed]
- Earnshaw, V.A.; Karpyn, A. Understanding stigma and food inequity: A conceptual framework to inform research, intervention, and policy. Transl. Behav. Med. 2020, 10, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.S.; Martiniano, M.O.; de Freitas, P.P.; Carvalho, M.C.R.; Sales, D.M.; Lopes, A.C. Comércio de alimentos para consumo imediato no entorno do Programa Academia da Saúde: Uma análise segundo desigualdades. Ciênc. Saúde Coletiva 2022, 27, 3283–3294. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. In Secretária de Atenção Priméria à Saúde. Brasil tem 105 Milhões de Brasileiros Cadastrados na Atenção Primária. Publicado em 24/06/2020.; 2020. Available online: https://aps.saude.gov.br/noticia/8997 (accessed on 29 February 2024).
Variable | Total (N = 3.056) | Health Vulnerability Index (HVI) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 313; 10.2%) | Middle (n = 1733; 56.7%) | High/Very High (n = 1010; 33.0%) | |||||||
n | Value | n | Value | n | Value | n | Value | ||
Sex, % | 0.505 | ||||||||
Male | 372 | 12.2 | 44 | 14.1 | 211 | 12.2 | 117 | 11.6 | |
Female | 2684 | 87.8 | 269 | 85.9 | 1522 | 87.8 | 893 | 88.4 | |
Age (years), median (P25–P75) | 3056 | 58 (49–65) | 313 | 61 (53–68) a | 1733 | 58 (50–65) b | 1010 | 56 (47–63) c | <0.001 ** |
Marital status †, % | <0.001 * | ||||||||
Married | 1866 | 61.1 | 149 | 47.6 | 1106 | 63.8 | 611 | 60.6 | |
Separated/Divorced | 258 | 8.4 | 33 | 10.5 | 129 | 7.4 | 96 | 9.5 | |
Single | 446 | 14.6 | 78 | 24.9 | 221 | 12.7 | 147 | 14.6 | |
Widower | 485 | 15.9 | 53 | 16.9 | 277 | 16.0 | 155 | 15.4 | |
Professional occupation, % | <0.001 * | ||||||||
From home | 879 | 28.8 | 64 | 20.4 | 532 | 30.7 | 283 | 28.0 | |
Retired/Pensioner | 1126 | 36.8 | 146 | 46.7 | 640 | 36.9 | 340 | 33.7 | |
Unemployed | 62 | 2.0 | 7 | 2.2 | 32 | 1.8 | 23 | 2.3 | |
Employee | 988 | 32.3 | 96 | 30.7 | 529 | 30.5 | 363 | 36.0 | |
Education (years), average (P25–P75) | 3056 | 8 (4–11) | 313 | 11 (5–15) a | 1733 | 8 (4–11) b | 1010 | 5 (4–10) c | <0.001 ** |
Per capita household income &, median (P25–P75) | 2783 | 678.0 (433.3–1017.0) | 289 | 1000.0 (633.3–2.000.0) a | 1562 | 700.0 (466.7–1.078.0) b | 932 | 600.0 (362.0–850.0) c | <0.001 ** |
Time in PAS, median (P25–P75) | 3056 | 16.7 (7.1–30.6) | 313 | 11.1 (4.5–18.2) a | 1733 | 16.9 (8.4–30.5) b | 1010 | 17.9 (6.4–34.6) c | <0.001 ** |
Variable | Total (N = 3.056) | Health Vulnerability Index (HVI) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 313; 10.2%) | Middle (n = 1733; 56.7%) | High/Very High (n = 1010; 33.0%) | |||||||
n | Value | n | Value | n | Value | n | Value | ||
Diabetes mellitus, % | 517 | 16.9 | 62 | 19.8 | 271 | 15.6 | 184 | 18.2 | 0.215 |
Arterial hypertension, % | 1626 | 53.2 | 169 | 54.0 | 922 | 53.2 | 535 | 53.0 | 0.955 |
Health perception, % | <0.001 * | ||||||||
Very bad/Bad | 17 | 0.6 | 0 | 0.0 | 7 | 0.4 | 10 | 1.0 | |
Regular | 773 | 25.3 | 54 | 17.3 | 441 | 25.4 | 278 | 27.5 | |
Good very good | 2265 | 74.1 | 259 | 82.7 | 1285 | 74.1 | 721 | 71.5 | |
Quality of life &, % | 0.002 * | ||||||||
Very bad/Bad | 77 | 2.5 | 6 | 1.9 | 35 | 2.0 | 36 | 3.6 | |
Regular | 545 | 17.8 | 49 | 15.6 | 286 | 16.5 | 210 | 20.8 | |
Good very good | 2433 | 79.6 | 258 | 82.4 | 1412 | 81.5 | 763 | 75.6 | |
BMI (kg/m2) †, median (P25-P75) | 2918 | 27.2 (24.3–30.5) | 300 | 26.7 (24.1–29.8) a | 1660 | 27.1 (24.2–30.5) b | 958 | 27.7 (24.6–30.8) c | <0.001 ** |
Nutritional status †, % | 0.022 * | ||||||||
Low weight | 17 | 0.6 | 3 | 1.0 | 13 | 0.7 | 1 | 0.1 | |
Eutrophy | 845 | 27.6 | 98 | 31.3 | 488 | 28.1 | 259 | 25.6 | |
Overweight | 1229 | 40.2 | 129 | 41.2 | 702 | 40.6 | 398 | 39.4 | |
Obesity | 827 | 28.3 | 70 | 23.3 | 457 | 27.5 | 300 | 31.3 |
Variable | Total (N = 3.056) | Health Vulnerability Index (HVI) | p-Value * | ||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 313; 10.2%) | Middle (n = 1733; 56.7%) | High/Very High (n = 1010; 33.0%) | |||||||
n | Value | n | Value | n | Value | n | Value | ||
Energy consumption (kcal) | |||||||||
Total | 1429.7 | 550.5 | 1497.9 a | 617.6 | 1444.7 a | 544.5 | 1382.9 b | 535.4 | 0.001 |
Culinary preparations | 873.6 | 398.3 | 887.8 | 461.6 | 874.7 | 391.1 | 867.3 | 389.6 | 0.719 |
Processed foods | 152 | 130.6 | 159.9 | 132.6 | 157.0 a | 132.8 | 140.9 b | 125.7 | 0.004 |
Ultra-processed foods | 404.0 | 302.0 | 450.0 a | 333.7 | 412.9 a | 306.6 | 374.6 b | 280.5 | <0.001 |
% of dietary energy | |||||||||
Culinary preparations | 61.6 | 14.9 | 59.7 a | 15.7 | 61.1 b | 14.8 | 63.2 c | 14.5 | <0.001 |
Processed foods | 10.9 | 9.0 | 11.2 | 9.4 | 11.2 | 9.0 | 10.4 | 8.9 | 0.119 |
Ultra-processed foods | 27.4 | 14.9 | 29.0 a | 15.6 | 27.8 b | 15.0 b | 26.3 c | 14.6 | 0.005 |
Model * | Culinary Preparations | Processed Foods | Ultra-Processed Foods | |||
---|---|---|---|---|---|---|
β (95%CI) | p-Value | β (95%CI) | p-Value | β (95%CI) | p-Value | |
Unadjusted model | ||||||
low HVI | ref. | - | ref. | - | ref. | - |
middle HVI | 1.3 (−0.4; 3.0) | 0.150 | −0.0 (−1.1; 1.0) | 0.921 | −1.2 (−3.0; 0.5) | 0.172 |
high/very high HVI | 3.4 (1.6; 5.3) | <0.001 | −0.7 (−1.8; 0.3) | 0.193 | −2.7 (−4.6; −0.8) | 0.005 |
Model 1 | ||||||
low HVI | ref. | - | ref. | - | ref. | - |
middle HVI | 1.0 (−0.7; 2.8) | 0.249 | 0.2 (−0.8; 1.3) | 0.659 | −1.2 (−3.0; 0.4) | 0.157 |
high/very high HVI | 3.0 (1.1; 5.0) | 0.002 | −0.2 (−1.4; 0.9) | 0.689 | −2.8 (−4.7; −0.9) | 0.004 |
Model 2 | ||||||
low HVI | ref. | - | ref. | - | ref. | - |
middle HVI | 0.9 (−0.8; 2.7) | 0.318 | 0.3 (−0.7; 1.4) | 0.510 | −1.2 (−3.0; 0.5) | 0.163 |
high/very high HVI | 2.9 (0.9; 4.8) | 0.003 | −0.0 (−1.2; 1.1) | 0.881 | −2.8 (−4.7; −0.8) | 0.004 |
Model 3 | ||||||
low HVI | ref. | - | ref. | - | ref. | - |
middle HVI | 0.7 (−1.1; 2.5) | 0.446 | 0.4 (−0.6; 1.5) | 0.456 | −1.1 (−2.9; 0.6) | 0.225 |
high/very high HVI | 2.5 (0.5; 4.5) | 0.011 | 0.0 (−1.1; 1.2) | 0.980 | −2.5 (−4.5; −0.5) | 0.011 |
Model 4 | ||||||
low HVI | ref. | - | ref. | - | ref. | - |
middle HVI | 1.0 (−0.7; 2.8) | 0.271 | 0.5 (−0.5; 1.6) | 0.339 | −1.5 (−3.3; 0.2) | 0.093 |
high/very high HVI | 2.7 (0.7; 4.7) | 0.007 | 0.0 (−1.2; 1.2) | 0.992 | −2.7 (−4.7; −0.7) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, M.S.; dos Santos, P.L.C.; Lopes, A.C.S. Food Consumption Inequalities in Primary Care in a Large Metropolis. Int. J. Environ. Res. Public Health 2024, 21, 935. https://doi.org/10.3390/ijerph21070935
Lopes MS, dos Santos PLC, Lopes ACS. Food Consumption Inequalities in Primary Care in a Large Metropolis. International Journal of Environmental Research and Public Health. 2024; 21(7):935. https://doi.org/10.3390/ijerph21070935
Chicago/Turabian StyleLopes, Mariana Souza, Priscila Lenita Candida dos Santos, and Aline Cristine Souza Lopes. 2024. "Food Consumption Inequalities in Primary Care in a Large Metropolis" International Journal of Environmental Research and Public Health 21, no. 7: 935. https://doi.org/10.3390/ijerph21070935
APA StyleLopes, M. S., dos Santos, P. L. C., & Lopes, A. C. S. (2024). Food Consumption Inequalities in Primary Care in a Large Metropolis. International Journal of Environmental Research and Public Health, 21(7), 935. https://doi.org/10.3390/ijerph21070935