Effect of Detraining on Muscle Strength, Functional Capacity, Mental Health, and Body Composition in Individuals with Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detraining Protocol
2.2. Procedures
2.2.1. Muscle Strength
2.2.2. Functional State
2.2.3. Perception of Mental State: Anxiety, Depression, and Mental Distress
2.2.4. Body Composition
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akkurt, H.; Karapolat, H.U.; Kirazli, Y.; Kose, T. The effects of upper extremity aerobic exercise in patients with spinal cord injury: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2017, 53, 219–227. [Google Scholar] [CrossRef]
- Li, C.; Wu, Z.; Zhou, L.; Shao, J.; Hu, X.; Xu, W.; Ren, Y.; Zhu, X.; Ge, W.; Zhang, K.; et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct. Target. Ther. 2022, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
- Filipcic, T.; Sember, V.; Pajek, M.; Jerman, J. Quality of Life and Physical Activity of Persons with Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 9148. [Google Scholar] [CrossRef] [PubMed]
- Alves Rodrigues, J.; Torres Pereira, E.; Salgado Lopes, J.; DA Fonseca Silva, M.V.; Resende, N.M.; Fernandes DA Silva, S.; Aidar, F.J.; Patrocínio DE Oliveira, C.E.; Costa Moreira, O. Effects of circuit resistance training on muscle power, functional agility, and bones’ mineral content in people with spinal injury. J. Sports Med. Phys. Fit. 2021, 61, 505–511. [Google Scholar] [CrossRef]
- Santos, L.V.; Pereira, E.T.; Reguera-García, M.M.; Oliveira, C.E.P.; Moreira, O.C. Resistance Training and Muscle Strength in people with Spinal cord injury: A systematic review and meta-analysis. J. Bodyw. Mov. Ther. 2022, 29, 154–160. [Google Scholar] [CrossRef]
- Staśkiewicz, W.; Grochowska-Niedworok, E.; Zydek, G.; Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Jaruga-Sękowska, S.; Kowalski, O.; Kardas, M. The Assessment of Body Composition and Nutritional Awareness of Football Players According to Age. Nutrients 2023, 15, 705. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Aragão-Santos, J.C.; Pantoja-Cardoso, A.; Dos-Santos, A.C.; Behm, D.G.; de Moura, T.R.; Da Silva-Grigoletto, M.E. Effects of twenty-eight months of detraining imposed by the COVID-19 pandemic on the functional fitness of older women experienced in concurrent and functional training. Arch. Gerontol. Geriatr. 2023, 111, 105005. [Google Scholar] [CrossRef]
- World Mental Health Report: Transforming Mental Health for All. World Health Organization: Geneva, Switzerland, 2022. [CrossRef]
- Bjerregaard, P.; Ottendahl, C.B.; Jensen, T.; Nørtoft, K.; Jørgensen, M.E.; Larsen, C.V.L. Muscular strength, mobility in daily life and mental wellbeing among older adult Inuit in Greenland. The Greenland population health survey 2018. Int. J. Circumpolar. Health 2023, 82, 2184751. [Google Scholar] [CrossRef]
- Singh, V.; Mitra, S. Psychophysiological impact of spinal cord injury: Depression, coping and heart rate variability. J. Spinal Cord. Med. 2022, 46, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Mahindru, A.; Patil, P.; Agrawal, V. Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus 2023, 15, e33475. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.; Marocolo, M.; de Souza, H.L.R.; Arriel, R.A.; Campos, Y.; Mazini, M.; Junior, R.P.; Figueiredo, T.; Louro, H.; Pereira, A. Three-Month vs. One-Year Detraining Effects after Multicomponent Exercise Program in Hypertensive Older Women. Int. J. Environ. Res. Public Health 2022, 19, 2871. [Google Scholar] [CrossRef] [PubMed]
- Filho, M.M.; Venturini, G.R.D.O.; Moreira, O.C.; Leitão, L.; Mira, P.A.C.; de Castro, J.B.P.; Aidar, F.J.; Novaes, J.D.S.; Vianna, J.M.; Caputo Ferreira, M.E. Effects of Different Types of Resistance Training and Detraining on Functional Capacity, Muscle Strength, and Power in Older Women: A Randomized Controlled Study. J. Strength. Cond. Res. 2022, 36, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Pan, T.; Jiang, Y.; Shen, Y. Effects of Short-and Long-Term Detraining on Maximal Oxygen Uptake in Athletes: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2022, 2022, 2130993. [Google Scholar] [CrossRef] [PubMed]
- Skiba, G.H.; Andrade, S.F.; Rodacki, A.F. Effects of functional electro-stimulation combined with blood flow restriction in affected muscles by spinal cord injury. Neurol. Sci. 2022, 43, 603–613. [Google Scholar] [CrossRef]
- Frotzler, A.; Coupaud, S.; Perret, C.; Kakebeeke, T.H.; Hunt, K.J.; Eser, P. Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: A small cohort study. J. Rehabil. Med. Off. J. UEMS Eur. Board. Phys. Rehabil. Med. 2009, 41, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Gurney, A.B.; Robergs, R.A.; Aisenbrey, J.; Cordova, J.C.; McClanahan, L. Detraining from total body exercise ergometry in individuals with spinal cord injury. Spinal Cord. 1998, 36, 782–789. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Khalil, R.E.; Gill, R.; Khan, R.; Adler, R.A. Effects of dose de-escalation following testosterone treatment and evoked resistance exercise on body composition, metabolic profile, and neuromuscular parameters in persons with spinal cord injury. Physiol. Rep. 2021, 9, e15089. [Google Scholar] [CrossRef]
- Robergs, R.A.; Appenzeller, O.; Qualls, C.; Aisenbrey, J.; Krauss, J.; Kopriva, L.; DePaepe, J. Increased endothelin and creatine kinase after electrical stimulation of paraplegic muscle. J. Appl. Physiol. 1993, 75, 2400–2405. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; Thomas, E.; Padua, E. Physical Exercise for Health and Performance Post-Pandemic COVID-19 Era, a Renewed Emphasis on Public Health. Int. J. Environ. Res. Public Health 2022, 19, 6475. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Martínez, A.; Caballero-García, A.; Roche, E.; Pérez-Valdecantos, D.; Noriega, D.C. Effects and Causes of Detraining in Athletes Due to COVID-19: A Review. Int. J. Environ. Res. Public Health 2022, 19, 5400. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, E.S.F.; Cunha, G.M. Conceitos básicos de epidemiologia e estatística para a leitura de ensaios clínicos controlados. Rev. Bras. Psiquiatr. 2005, 27, 146–251. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Spineti, J.; Figueiredo, T.; de Salles, B.F.; Assis, M.; Fernandes, L.; Novaes, J.; Simão, R. Comparação entre diferentes modelos de periodização sobre a força e espessura muscular em uma sequência dos menores para os maiores grupamentos musculares. Rev. Bras. Med. Esporte 2013, 19, 280–286. [Google Scholar] [CrossRef]
- Moreira, O.C.; Cardozo, R.M.B.; Vicente, M.A.; de Matos, D.G.; Mazini Filho, M.L.; Guimarães, M.P.; da Silva, S.F.; Jeffreys, I.; Aidar, F.J.; de Oliveira, C.E.P. Acute effect of stretching prior to resistance training on morphological, functional and activation indicators of skeletal muscle in young men. Sport. Sci. Health 2022, 18, 193–202. [Google Scholar] [CrossRef]
- Gearhart, R.F., Jr.; Lagally, K.M.; Riechman, S.E.; Andrews, R.D.; Robertson, R.J. Safety of using the adult OMNI Resistance Exercise Scale to determine 1-RM in older men and women. Percept. Mot. Ski. 2011, 113, 671–676. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Greguol, M.; Silveira Böhme, M. Scientific authenticity of an agility test for wheelchair subjects. Rev. Paul. Educ. Física 2003, 17, 41. [Google Scholar]
- Baptista, M.N.; Carneiro, A.M. Validity of the depression scale related to anxiety and occupational stress. Estud. Psicol. 2011, 28, 345–352. [Google Scholar] [CrossRef]
- Gorenstein, C.; Andrade, L.H.S.G. Beck depression inventory: Psychometric properties of the portuguese version. Rev. Psiquiatr. Clín. 1998, 25, 245–250. [Google Scholar] [CrossRef]
- de Oliveira, G.N.M.; de Araujo Filho, G.M.; Kummer, A.; Salgado, J.V.; Portela, E.J.; Sousa-Pereira, S.R.; Teixeira, A.L. Inventário de Depressão de Beck (BDI) e Escala de Avaliação de Depressão de Hamilton (HAM-D) em pacientes com epilepsia. J. Bras. Psiquiatr. 2011, 60, 131–134. [Google Scholar] [CrossRef]
- Jacobs, Ú.; De Castro, M.S.; Fuchs, F.D.; Ferreira, M.B. The influence of cognition, anxiety and psychiatric disorders over treatment adherence in uncontrolled hypertensive patients. PLoS ONE 2011, 6, e22925. [Google Scholar] [CrossRef]
- Moreira, O.C.; Oliveira, C.E.P.; De Paz, J.A. Dual energy X-ray absorptiometry (DXA) reliability and intraobserver reproducibility for segmental body composition measuring. Nutr. Hosp. 2018, 35, 340–345. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Smith-Ryan, A.E.; Blue, M.N.M.; Mock, M.G.; Trexler, E.T. Influence of segmental body composition and adiposity hormones on resting metabolic rate and substrate utilization in overweight and obese adults. J. Endocrinol. Investig. 2017, 40, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Moreira, O.C.; de Oliveira, C.E.; Candia-Luján, R.; Romero-Pérez, E.M.; de Paz Fernandez, J.A. Métodos de evaluación de la masa muscular: Una revisión sistemática de ensayos controlados aleatorios. J. Nutr. Hosp. 2015, 32, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.S.; Truax, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 1991, 59, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.A.R.; Aguiar, A.; Prette, Z.A. Calculando a Significância Clínica e o Índice de Mudança Confiável em Pesquisa-Intervenção; EDUFSCar: São Carlos, SP, Brasil, 2009. [Google Scholar]
- Lindenau, J.D.-R.; Guimarães, L.S.P. Calculando o tamanho de efeito no SPSS. Clin. Biomed. Res. 2012, 32, 363–381. [Google Scholar]
- O’Brien, L.C.; Wade, R.C.; Segal, L.; Chen, Q.; Savas, J.; Lesnefsky, E.J.; Gorgey, A.S. Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiol. Rep. 2017, 5, e13080. [Google Scholar] [CrossRef]
- Chen, H.T.; Wu, H.J.; Chen, Y.J.; Ho, S.Y.; Chung, Y.C. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp. Gerontol. 2018, 112, 112–118. [Google Scholar] [CrossRef]
- Araujo, J.S.; de Medeiros, R.C.D.S.C.; da Silva, T.A.L.; de Medeiros, D.C.; de Medeiros, J.A.; Dos Santos, I.K.; Wilde, P.; Cabral, B.G.A.T.; Medeiros, R.M.V.; Dantas, P.M.S. Effect of Training and Detraining in the Components of Physical Fitness in People Living With HIV/AIDS. Front. Physiol. 2021, 12, 586753. [Google Scholar] [CrossRef]
- Häkkinen, K.; Newton, R.U.; Walker, S.; Häkkinen, A.; Krapi, S.; Rekola, R.; Koponen, P.; Kraemer, W.J.; Haff, G.G.; Blazevich, A.J.; et al. Effects of Upper Body Eccentric versus Concentric Strength Training and Detraining on Maximal Force, Muscle Activation, Hypertrophy and Serum Hormones in Women. J. Sports Sci. Med. 2022, 21, 200–213. [Google Scholar] [CrossRef]
- Gomez-Illan, R.; Reina, R.; Barbado, D.; Sabido, R.; Moreno-Navarro, P.; Roldan, A. Effects of Maximal Strength Training on Perceived-Fatigue and Functional Mobility in Persons with Relapsing-Remitting Multiple Sclerosis. Medicina 2020, 56, 718. [Google Scholar] [CrossRef] [PubMed]
- Peev, N.; Komarov, A.; Osorio-Fonseca, E.; Zileli, M. Rehabilitation of Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020, 17, 820–832. [Google Scholar] [CrossRef]
- Martin Ginis, K.A.; van der Scheer, J.W.; Latimer-Cheung, A.E.; Barrow, A.; Bourne, C.; Carruthers, P.; Bernardi, M.; Ditor, D.S.; Gaudet, S.; de Groot, S.; et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. Spinal Cord. 2018, 56, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Iturricastillo, A.; Garcia-Tabar, I.; Reina, R.; Garcia-Fresneda, A.; Carmona, G.; Perez-Tejero, J.; Yanci, J. Influence of upper-limb muscle strength on the repeated change of direction ability in international-level wheelchair basketball players. Res. Sports Med. 2022, 30, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Hwang, U.J.; Kwon, O.Y. Effect of electrical stimulation training and detraining on abdominal muscle function. J. Back. Musculoskelet. Rehabil 2023, 36, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Schott, N.; Johnen, B.; Holfelder, B. Effects of free weights and machine training on muscular strength in high-functioning older adults. Exp. Gerontol. 2019, 122, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, S.C.; Chen, C.N.; Hsu, C.W.; Zhou, W.S.; Chien, K.Y. Training Session and Detraining Duration Affect Lower Limb Muscle Strength Maintenance in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2022, 30, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Frizziero, A.; Salamanna, F.; Della Bella, E.; Vittadini, F.; Gasparre, G.; Nicoli Aldini, N.; Masiero, S.; Fini, M. The Role of Detraining in Tendon Mechanobiology. Front. Aging Neurosci. 2016, 8, 43. [Google Scholar] [CrossRef]
- Sapega, A.A.; Drillings, G. The Definition and Assessment of Muscular Power. J. Orthop. Sports Phys. Ther. 1983, 5, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Blocquiaux, S.; Gorski, T.; Van Roie, E.; Ramaekers, M.; Van Thienen, R.; Nielens, H.; Delecluse, C.; De Bock, K.; Thomis, M. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp. Gerontol. 2020, 133, 110860. [Google Scholar] [CrossRef] [PubMed]
- Iturricastillo, A.; Granados, C.; Reina, R.; Sarabia, J.M.; Romarate, A.; Yanci, J. Velocity and Power-Load Association of Bench Press Exercise in Wheelchair Basketball Players and Their Relationships With Field-Test Performance. Int. J. Sports Physiol. Perform. 2019, 14, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Ferreira da Silva, C.M.A.; de Sá, K.S.G.; Bauermann, A.; Borges, M.; de Castro Amorim, M.; Rossato, M.; Gorla, J.I.; de Athayde Costa E Silva, A.D. Wheelchair skill tests in wheelchair Basketball: A systematic review. PLoS ONE 2022, 17, e0276946. [Google Scholar] [CrossRef]
- Fréz, A.; Souza, A.; Bim, C. Functional performance of wheelchair basketball players with spinal cord injury. Acta Fisiátrica 2015, 22, 141–144. [Google Scholar] [CrossRef]
- Ozmen, T.; Yuktasir, B.; Yildirim, N.U.; Yalcin, B.; Willems, M.E. Explosive strength training improves speed and agility in wheelchair basketball athletes. Rev. Bras. Med. Esporte 2014, 20, 97–100. [Google Scholar] [CrossRef]
- Silveira, M.D.; de Athayde Costa e Silva, A.; Godoy, P.S.; Calegari, D.R.; de Araújo, P.R.; Gorla, J.I. Correlação entre Dois Testes de Agilidade Adaptados: Handebol em Cadeira de Rodas. Soc. Bras. Atividade Mot. Adapt. 2012, 13, 43–48. [Google Scholar] [CrossRef]
- Leitão, L.; Marocolo, M.; de Souza, H.L.R.; Arriel, R.A.; Vieira, J.G.; Mazini, M.; Figueiredo, T.; Louro, H.; Pereira, A. Multicomponent Exercise Program for Improvement of Functional Capacity and Lipidic Profile of Older Women with High Cholesterol and High Triglycerides. Int. J. Environ. Res. Public Health 2021, 18, 10731. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, I.H. Effects on training and detraining on physical function, control of diabetes and anthropometrics in type 2 diabetes; a randomized controlled trial. Physiother. Theory Pract. 2015, 31, 83–88. [Google Scholar] [CrossRef]
- Blasco-Lafarga, C.; Cordellat, A.; Forte, A.; Roldán, A.; Monteagudo, P. Short and Long-Term Trainability in Older Adults: Training and Detraining Following Two Years of Multicomponent Cognitive-Physical Exercise Training. Int. J. Environ. Res. Public Health 2020, 17, 5984. [Google Scholar] [CrossRef]
- Ribeiro Neto, F.; Loturco, I.; Henrique Lopes, G.; Rodrigues Dorneles, J.; Irineu Gorla, J.; Gomes Costa, R.R. Correlations Between Medicine Ball Throw With Wheelchair Mobility and Isokinetic Tests in Basketball Para-Athletes. J. Sport. Rehabil. 2022, 31, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Donyaei, A.; Kiani, E.; Bahrololoum, H.; Moser, O. Effect of combined aerobic-resistance training and subsequent detraining on brain-derived neurotrophic factor (BDNF) and depression in women with type 2 diabetes mellitus: A randomized controlled trial. Diabet. Med. 2023, 41, e15188. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.A.; da Silva Santos, A.M.; Maldonado, A.J.; de Moura, H.P.D.S.N.; Rossi, P.A.Q.; Neves, L.M.; Dos Santos, M.A.P.; Machado, D.C.D.; Ribeiro, S.L.G.; Rossi, F.E. Detraining and retraining in badminton athletes following 1-year COVID-19 pandemic on psychological and physiological response. Sport. Sci. Health 2022, 18, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Tollár, J.; Vetrovsky, T.; SZéPHELYI, K.; Csutorás, B.; Prontvai, N.; Ács, P.; Hortobágyi, T. Effects of 2-Year-Long Maintenance Training and Detraining on 558 Subacute Ischemic Stroke Patients’ Clinical-Motor Symptoms. Med. Sci. Sports Exerc. 2023, 55, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Sipos, D.; Borbély, G.; Áfra, G.; Reichardt-Varga, E.; Sántha, G.; Nieboer, W.; Tamási, K.; Tollár, J. Detraining Slows and Maintenance Training Over 6 Years Halts Parkinsonian Symptoms-Progression. Front. Neurol. 2021, 12, 737726. [Google Scholar] [CrossRef]
- Vindegaard, N.; BENROS, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Shin, J.W.; Kim, T.; Lee, B.S.; Kim, O. Factors Affecting Metabolic Syndrome in Individuals with Chronic Spinal Cord Injury. Ann. Rehabil. Med. 2022, 46, 24–32. [Google Scholar] [CrossRef]
- van der Scheer, J.W.; Totosy de Zepetnek, J.O.; Blauwet, C.; Brooke-Wavell, K.; Graham-Paulson, T.; Leonard, A.N.; Webborn, N.; Goosey-Tolfrey, V.L. Assessment of body composition in spinal cord injury: A scoping review. PLoS ONE 2021, 16, e0251142. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.C.; Bugaresti, J.M. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord. 2005, 43, 513–518. [Google Scholar] [CrossRef]
- McMillan, D.W.; Nash, M.S.; Gater, D.R., Jr.; Valderrábano, R.J. Neurogenic Obesity and Skeletal Pathology in Spinal Cord Injury. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N., Jr.; Waters, R.L.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. 2003, 95, 2398–2407. [Google Scholar] [CrossRef]
- de Jesus Leite, M.A.F.; Mariano, I.M.; Dechichi, J.G.C.; Giolo, J.S.; Gonçalves, Á.C.; Puga, G.M. Exercise training and detraining effects on body composition, muscle strength and lipid, inflammatory and oxidative markers in breast cancer survivors under tamoxifen treatment. Life Sci. 2021, 284, 119924. [Google Scholar] [CrossRef]
- Amarante do Nascimento, M.; Nunes, J.P.; Pina, F.L.C.; Ribeiro, A.S.; Carneiro, N.H.; Venturini, D.; Barbosa, D.S.; Mayhew, J.L.; Cyrino, E.S. Comparison of 2 Weekly Frequencies of Resistance Training on Muscular Strength, Body Composition, and Metabolic Biomarkers in Resistance-Trained Older Women: Effects of Detraining and Retraining. J. Strength Cond. Res. 2022, 36, 1437–1444. [Google Scholar] [CrossRef]
- Kemmler, W.; Schoene, D.; Kohl, M.; von Stengel, S. Changes in Body Composition and Cardiometabolic Health After Detraining in Older Men with Osteosarcopenia: 6-Month Follow-Up of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST) Study. Clin. Interv. Aging 2021, 16, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, F.B.; Coswig, V.S.; Cabistany, L.D.; Orcy, R.B.; Gentil, P. Effects of exercise cessation on adipose tissue physiological markers related to fat regain: A systematic review. SAGE Open Med. 2020, 8, 2050312120936956. [Google Scholar] [CrossRef] [PubMed]
- van der Scheer, J.W.; Martin Ginis, K.A.; Ditor, D.S.; Goosey-Tolfrey, V.L.; Hicks, A.L.; West, C.R.; Wolfe, D.L. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review. Neurology 2017, 89, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Filho, E.d.A.; Santos, M.A.; Silva, A.T.; Farah, B.Q.; Costa, M.d.C.; Campos, F.d.A.; Falcão, A.P. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status. Einstein 2016, 14, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Bauman, W.A.; Spungen, A.M. Carbohydrate and lipid metabolism in chronic spinal cord injury. J. Spinal Cord. Med. 2001, 24, 266–277. [Google Scholar] [CrossRef]
- De Avila, J.A.; Melloni, M.A.S.; Pascoa, M.A.; Cirolini, V.X.; Barbeta, C.J.O.; de Avila, R.A.; Gonçalves, E.M.; Guerra-Junior, G. Effect of 7 Months of Physical Training and Military Routine on the Bone Mass of Young Adults. Mil. Med. 2019, 184, e353–e359. [Google Scholar] [CrossRef] [PubMed]
EV2019 | EV2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | Minimum | Maximum | Mean | SD | Median | Minimum | Maximum | |
MVIC (Kg) | 16.70 | 5.03 | 17.75 | 8.80 | 21.20 | 19.00 | 6.14 | 16.00 | 13.60 | 28.80 |
1RM (Kg) | 24.50 | 9.22 | 24.50 | 13.00 | 35.00 | 22.60 | 8.08 | 23.00 | 12.00 | 33.00 |
MP40 (Watts) | 89.24 | 51.59 | 86.86 | 26.18 | 159.35 | 69.38 | 38.57 | 59.18 | 35.76 | 134.32 |
MP60 (Watts) | 88.12 | 42.17 | 85.48 | 26.07 | 134.45 | 66.24 | 13.19 | 74.62 | 44.67 | 74.87 |
MP80 (Watts) | 77.35 | 37.78 | 77.29 | 20.98 | 122.03 | 80.55 | 26.31 | 86.43 | 45.63 | 111.69 |
Zigzag (s) | 32.55 | 5.17 | 30.41 | 29.45 | 42.93 | 27.10 | 4.81 | 24.68 | 23.10 | 34.46 |
Anxiety | 5.40 | 4.39 | 4.00 | 1.00 | 11.00 | 8.50 | 4.12 | 8.00 | 4.00 | 14.00 |
Depression | 6.00 | 3.39 | 8.00 | 1.00 | 9.00 | 4.75 | 3.86 | 4.50 | 1.00 | 9.00 |
TBM (Kg) | 63.57 | 15.22 | 59.50 | 45.00 | 87.20 | 67.30 | 10.48 | 67.10 | 57.50 | 82.40 |
LM (Kg) | 37.53 | 10.14 | 36.29 | 27.23 | 53.22 | 39.87 | 8.76 | 37.54 | 28.11 | 50.08 |
FM (kg) | 23.77 | 56.00 | 24.58 | 16.28 | 30.93 | 24.86 | 4.42 | 26.81 | 18.35 | 29.31 |
BMC (Kg) | 2.28 | 0.59 | 2.36 | 1.47 | 3.09 | 2.36 | 0.52 | 2.37 | 1.64 | 3.03 |
T-score (sd) | −1.50 | 1.04 | −1.85 | −2.50 | 0.30 | −1.22 | 0.82 | −1.50 | −2.20 | 0.00 |
Z-score (sd) | −0.82 | 0.90 | −1.20 | −1.50 | 0.90 | −0.64 | 1.06 | −1.30 | −1.50 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almada, L.; Santos, L.; Freitas, K.; Rodrigues, J.; Diniz, E.; Mazini-Filho, M.; Leitão, L.; Pereira, E.; Oliveira, C.; Moreira, O. Effect of Detraining on Muscle Strength, Functional Capacity, Mental Health, and Body Composition in Individuals with Spinal Cord Injury. Int. J. Environ. Res. Public Health 2024, 21, 900. https://doi.org/10.3390/ijerph21070900
Almada L, Santos L, Freitas K, Rodrigues J, Diniz E, Mazini-Filho M, Leitão L, Pereira E, Oliveira C, Moreira O. Effect of Detraining on Muscle Strength, Functional Capacity, Mental Health, and Body Composition in Individuals with Spinal Cord Injury. International Journal of Environmental Research and Public Health. 2024; 21(7):900. https://doi.org/10.3390/ijerph21070900
Chicago/Turabian StyleAlmada, Lucas, Lucas Santos, Karla Freitas, Joel Rodrigues, Elizângela Diniz, Mauro Mazini-Filho, Luís Leitão, Eveline Pereira, Cláudia Oliveira, and Osvaldo Moreira. 2024. "Effect of Detraining on Muscle Strength, Functional Capacity, Mental Health, and Body Composition in Individuals with Spinal Cord Injury" International Journal of Environmental Research and Public Health 21, no. 7: 900. https://doi.org/10.3390/ijerph21070900
APA StyleAlmada, L., Santos, L., Freitas, K., Rodrigues, J., Diniz, E., Mazini-Filho, M., Leitão, L., Pereira, E., Oliveira, C., & Moreira, O. (2024). Effect of Detraining on Muscle Strength, Functional Capacity, Mental Health, and Body Composition in Individuals with Spinal Cord Injury. International Journal of Environmental Research and Public Health, 21(7), 900. https://doi.org/10.3390/ijerph21070900