Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.1.1. Population
2.1.2. Intervention
2.1.3. Comparison
2.1.4. Outcome
2.2. Literature Identification
2.3. Selection Process
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Meta-Analysis: Elite Endurance Compared to Healthy, Inactive Controls
3.2. Meta-Analysis: Elite Endurance Compared to Elite Power
4. Discussion
4.1. The I* Allele and Elite Endurance
4.2. The D* Allele and Elite Endurance
5. Potential Causes of Insignificant Associations
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilber, R.L.; Pitsiladis, Y.P. Kenyan and Ethiopian Distance Runners: What Makes Them So Good? Int. J. Sports Physiol. Perform. 2012, 7, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Rusko, H.; Tikkanen, H.; Peltonen, J.E. Altitude and Endurance Training. J. Sports Sci. 2011, 22, 928–945. [Google Scholar] [CrossRef] [PubMed]
- Pitsiladis, Y.P.; Onywera, V.O.; Geogiades, E.; O’connel, W.; Boit, M.K. The Dominance of Kenyans in Distance Running. Equine Comp. Exerc. Physiol. 2007, 1, 285–291. [Google Scholar] [CrossRef]
- Silva, H.H.; Silva, M.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes: Review and future perspectives. J. Sports Med. Phys. Fit. 2022, 62, 418–434. [Google Scholar]
- Ahmetov, I.I.; Williams, A.G.; Popov, D.V.; Lyubaeva, E.V.; Hakimullina, A.M.; Fedotovskaya, O.N.; Mozhayskaya, I.A.; Vinogradova, O.L.; Astratenkova, I.V.; Montgomery, H.E.; et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet. 2009, 126, 751–761. [Google Scholar] [CrossRef]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V. The association of gene polymorphisms with athlete status in Ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef]
- Williams, A.G.; Folland, J.P. Similarly of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 2008, 586, 113–121. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Gomez-Gallego, F.; Chicharro, J.L.; Hoyos, J.; Celaya, K.; Córdova, A.; Villa, G.; Alonso, J.M.; Barriopedro, M.; Perez, M.; et al. Is there an association between ACE and CKMM polymorphisms and cycling performance status during 3-week races? Int. J. Sports Med. 2005, 26, 442–447. [Google Scholar] [CrossRef]
- Lucia, A.; Gomez-Gallego, F.; Santiago, C.; Bandres, F.; Earnest, C.; Rabadan, M.; Alonso, J.M.; Hoyos, J.; Córdova, A.; Villa, G.; et al. ACTN3 genotype in professional endurance cyclists. Int. J. Sports Med. 2006, 27, 880–884. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Astrakenkova, I.V.; Popov, D.V.; Vinogradova, O.L.; Rogozkin, V.A. The ACTN3 R577X polymorphism in Russian endurance athletes. Br. J. Sports Med. 2010, 44, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.J.; September, A.V.; Xenophontos, S.L.; Cariolou, M.A.; Anastassiades, L.C.; Noakes, T.D.; Collins, M. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann. Hum. Genet. 2007, 71, 777–781. [Google Scholar] [CrossRef]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef]
- Sayed-Tabatabaei, F.A.; Oostra, B.A.; Isaacs, A.; Van Duijn, C.M.; Witteman, J.C.M. ACE polymorphisms. Circ. Res. 2006, 98, 1123–1133. [Google Scholar] [CrossRef]
- Jones, A.; Montgomery, H.E.; Woods, D.R. Human performance: A role for the ACE genotype? Exerc. Sport Sci. Rev. 2002, 30, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.Q.; Sievers, R.E.; Browne, A.E.; Lee, R.J.; Chatterjee, K.; Grossman, W.; Karliner, J.S.; Parmley, W.W. Comparative effects of aspirin with ACE inhibitor or angiotensin receptor blocker on myocardial infarction and vascular function. J. Renin-Angiotensin-Aldosterone Syst. 2003, 4, 31–37. [Google Scholar] [CrossRef]
- Carluccio, M.; Soccio, M.; De Caterina, R. Aspects of gene polymorphisms in cardiovascular disease: The renin-angiotensin system. Eur. J. Clin. Investig. 2001, 31, 476–488. [Google Scholar] [CrossRef]
- Cambien, F.; Poirier, O.; Lecerf, L.; Evans, A.; Cambou, J.P.; Arveiler, D.; Luc, G.; Bard, J.M.; Bara, L.; Ricard, S.; et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992, 359, 641–644. [Google Scholar] [CrossRef]
- Mattu, R.K.; Needham, E.W.; Galton, D.J.; Frangos, E.; Clark, A.J.; Caulfield, M. A DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation 1995, 91, 270–274. [Google Scholar] [CrossRef]
- Reynolds, M.V.; Bristow, M.R. Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 1993, 342, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Woods, D.R. Skeletal muscle RAS and exercise performance. Int. J. Biochem. Cell Biol. 2003, 35, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Cassis, L.A.; Police, S.B.; Yiannikouris, F.; Thatcher, S.E. Local adipose tissue renin-angiotensin system. Curr. Hypertens. Rep. 2008, 10, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 1992, 51, 197–205. [Google Scholar]
- Brown, N.J.; Blais, C., Jr.; Gandhi, S.K.; Aam, A. ACE insertion/deletion genotype affects bradykinin metabolism. J. Cardiovasc. Pharmacol. 1998, 32, 373–377. [Google Scholar] [CrossRef]
- Gainer, J.V.; Stein, C.M.; Neal, T.; Vaughan, D.E.; Brown, N.J. Interactive effect of ethnicity and ACE insertion/deletion polymorphism on vascular reactivity. Hypertension 2001, 37, 46–51. [Google Scholar] [CrossRef]
- Barley, J.; Blackwood, A.; Carter, N.D.; Crews, D.E.; Cruickshank, J.K.; Jeffery, S.; Ogunlesi, A.O.; Sagnella, G.A. Angiotensin converting enzyme insertion/deletion polymorphism: Association with ethnic origin. J. Hypertens. 1994, 12, 955–957. [Google Scholar] [CrossRef]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2014. Available online: https://api.semanticscholar.org/CorpusID:79550924 (accessed on 1 March 2023).
- Little, J.; Higgins, J.P.; Ioannidis, J.P.; Moher, D.; Gagnon, F.; von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)—An extension of the STROBE statement. Genet. Epidemiol. 2009, 33, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Martorell-Marugan, J.; Toro-Dominguez, D.; Alarcon-Riquelme, M.E.; Carmona-Saez, P. MetaGenyo: A web tool for meta-analysis of genetic association studies. BMC Bioinform. 2017, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Rücker, G.; Schwarzer, G.; Carpenter, J.R.; Schumacher, M. Undue reliance on I 2 in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 2008, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Chapter 10: Analysing Data and Undertaking Metanalyses. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; version. 6.3 (updated February 2022); Cochrane: London, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 20 March 2023).
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ACE I allele–the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Rankinen, T.; Wolfarth, B.; Simoneau, J.A.; Maier-Lenz, D.; Rauramaa, R.; Rivera, M.A.; Boulay, M.R.; Chagnon, Y.C.; Pérusse, L.; Keul, J.; et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J. Appl. Physiol. 2000, 88, 1571–1575. [Google Scholar] [CrossRef]
- Alvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernández-García, B.; Rodríguez, C.; Braga, S.; et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef]
- Nazarov, I.B.; Woods, D.R.; Montgomery, H.E.; Shneider, O.V.; Kazakov, V.I.; Tomilin, N.V. And Rogozkin, V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet. 2001, 9, 797–801. [Google Scholar] [CrossRef]
- Woods, D.; Hickman, M.; Jamshidi, Y.; Brull, D.; Vassiliou, V.; Jones, A.; Humphries, S.; Montgomery, H. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 2001, 108, 230–232. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Krupecki, K.; Maciejewska, A.; Sawczuk, M. The angiotensin converting enzyme gene I/D polymorphism in Polish rowers. Int. J. Sports Med. 2009, 30, 624–627. [Google Scholar] [CrossRef]
- Shenoy, S.; Tandon, S.; Sandhu, J.; Bhanwer, A.S. Association of angiotensin converting enzyme gene polymorphism and Indian Army triathletes’ performance. Asian J. Sports Med. 2010, 1, 143–150. [Google Scholar] [CrossRef]
- Ash, G.I.; Scott, R.A.; Deason, M.; Dawson, T.A.; Wolde, B.; Bekele, Z.; Teka, S.; Pitsiladis, Y.P. No association between ACE gene variation and endurance athlete status in Ethiopians. Med. Sci. Sports Exerc. 2011, 43, 590–597. [Google Scholar] [CrossRef]
- Wang, G.; Mikami, E.; Chiu, L.L.; De Perini, A.; Deason, M.; Fuku, N.; Miyachi, M.; Kaneoka, K.; Murakami, H.; Tanaka, M.; et al. Association analysis of ACE and ACTN3 in elite Caucasian and East Asian swimmers. Med. Sci. Sports Exerc. 2013, 45, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Grenda, A.; Leońska-Duniec, A.; Kaczmarczyk, M.; Ficek, K.; Król, P.; Cięszczyk, P.; Żmijewski, P. Interaction between ACE I/D and ACTN3 R557X polymorphisms in Polish competitive swimmers. J. Hum. Kinet. 2014, 42, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, S.; Ahmad Alipour, A.; Salehi, M. Evaluation of ACE gene I/D polymorphism in Iranian elite athletes. Adv. Biomed. Res. 2014, 3, 207. [Google Scholar]
- Flück, M.; Kramer, M.; Fitze, D.P.; Kasper, S.; Franchi, M.V.; Valdivieso, P. Cellular Aspects of Muscle Specialization Demonstrate Genotype–Phenotype Interaction Effects in Athletes. Front. Physiol. 2019, 10, 526. [Google Scholar] [CrossRef]
- Neto, S.L.; Herrera, J.J.; Rosa, T.S.; De Almeida, S.S.; Silva, G.C.; Ferreira, C.E.; Dos Santos, M.A.; Silvino, V.O.; De Melo, G.F. Interaction Between ACTN3 (R577X), ACE (I/D), and BDKRB2 (−9/+9) Polymorphisms and Endurance Phenotypes in Brazilian Long-Distance Swimmers. J. Strength Cond. Res. 2022, 36, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Elliott, H.L.; Morton, J.J.; Connell, J.M. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin-converting enzyme. Hypertension 1995, 25, 1266–1269. [Google Scholar] [CrossRef]
- Montgomery, H.; Clarkson, P.; Barnard, M.; Bell, J.; Brynes, A.; Hajnal, J.; Hemingway, H.; Mercer, D.; Jarman, P.; Marshall, R.; et al. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 1999, 353, 541–545. [Google Scholar] [CrossRef]
- Coiro, V.; Volpi, R.; Capretti, L.; Caffarri, G.; Colla, R.; Giuliani, N.; Chiodera, P. Stimulation of ACTH and GH release by angiotensin II in normal men is mediated by the AT1 receptor subtype. Regul. Pept. 1998, 74, 27–30. [Google Scholar] [CrossRef]
- Valdivieso, P.; Vaughan, D.; Laczko, E.; Brogioli, M.; Waldron, S.; Rittweger, J.; Flück, M. The metabolic response of skeletal muscle to endurance exercise is modified by the ACE-I/D gene polymorphism and training state. Front. Physiol. 2017, 8, 993. [Google Scholar] [CrossRef]
- Williams, A.G.; Rayson, M.P.; Jubb, M.; World, M.; Woods, D.R.; Hayward, M.; Martin, J.; Humphries, S.E.; Montgomery, H.E. The ACE gene and muscle performance. Nature 2000, 403, 614. [Google Scholar] [CrossRef] [PubMed]
- Bijker, K.; De Groot, G.; Hollander, A.P. Delta efficiencies of running and cycling. Med. Sci. Sports Exerc. 2000, 33, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mahajan, P.B. Can genotype determine the sports phenotype? A paradigm shift in sports medicine. J. Basic Clin. Physiol. Pharmacol. 2015, 27, 333–339. [Google Scholar] [CrossRef]
- Williams, A.G.; Day, S.H.; Folland, J.P.; Gohlke, P.; Dhamrait, S.; Montgomery, H.E. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med. Sci. Sports Exerc. 2005, 37, 944–948. [Google Scholar]
- Charbonneau, D.E.; Hanson, E.D.; Ludlow, A.T.; Delmonico, M.J.; Hurley, B.F.; Roth, S.M. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med. Sci. Sports Exerc. 2008, 40, 677–683. [Google Scholar] [CrossRef]
- Mckenzie, C.A.; Julier, C.; Forrester, T.; Mcfarlane-Anderson, N.; Keavney, B.; Lathrop, G.M.; Ratcliffe, P.J.; Farrall, M. Segregation and linkage analysis of serum angiotensin I-converting enzyme levels: Evidence for two quantitative-trait loci. Am. J. Hum. Genet. 1995, 57, 1426–1435. [Google Scholar]
- Vaughan, D.; Huber-Abel, F.A.; Graber, F.; Hoppeler, H.; Flück, M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur. J. Appl. Physiol. 2013, 113, 1719–1729. [Google Scholar] [CrossRef] [PubMed]
- Mathes, S.; Van Ginkel, S.; Vaughan, D.; Valdivieso, P.; Flück, M. Gene-pharmacological effects on exercise-induced muscle gene expression in healthy men. Anat. Physiol. 2015, S5, 5. [Google Scholar]
- Lucía, A.; Hoyos, J.; Chicharro, J.L. Physiology of professional road cycling. Sports Med. 2001, 31, 325–337. [Google Scholar] [CrossRef]
- Coyle, E.F.; Coggan, A.R.; Hopper, M.K.; Walters, T.J. Determinants of endurance in well-trained cyclists. J. Appl. Physiol. 1988, 64, 2622–2630. [Google Scholar] [CrossRef]
- Noakes, T.D. Implications of exercise testing for prediction of athletic performance: A contemporary perspective. Med. Sci. Sports Exerc. 1988, 20, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Hoyos, J.; Perez, M.; Santalla, A.; Chicharro, J.L. Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med. Sci. Sports Exerc. 2002, 34, 2079–2084. [Google Scholar] [PubMed]
- Raleigh, S.M. Epigeneitc regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J. Appl. Physiol. 2012, 112, 1082–1083. [Google Scholar] [CrossRef] [PubMed]
- Jacques, M.; Eynon, N.; Hanson, E.D. Genetics and Sprint, Strength, and Power Performance: Candidate Gene Versus Genome-Wide Association Study Approaches. In Nutrition and Enhanced Sports Performance: Muscle Building, Endurance, and Strength, 2nd ed.; Bagchi, D., Nair, S., Sen, C.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 371–383. [Google Scholar] [CrossRef]
- Guth, L.M.; Roth, S.M. Genetic influence on athletic performance. Curr. Opin. Paediatr. 2013, 25, 653–658. [Google Scholar] [CrossRef]
- Venezia, A.C.; Roth, S.M. The scientific and ethical challenges of using genetic information to predict sport performance. In Routledge Handbook of Sport and Exercise Systems Genetics, 1st ed.; Lightfoot, J.T., Hubal, M., Roth, S., Eds.; Routledge: London, UK, 2019; pp. 442–452. [Google Scholar] [CrossRef]
(a) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study ID | Background | Elite Endurance Athletes | Controls | Elite Power Athletes | Results | |||||||||
Lead Author (Year) | Population | Sport | Size | Age (Mean/Range) | Female % | Size | Age (Mean/Range) | Female % | Sport | Size | Age (Mean/Range) | Female % | Summary Statistic (Endurance Athletes vs. Controls) | Summary Statistic (Endurance vs. Power) |
Gayagay (1998) [36] | AUS | ROW | 64 | Not stated | 33 | 114 | <65 | 34 | N/A | I allele increased in athletes (p < 0.02) | N/A | |||
Myerson (1999) [13] | GBR | RUN | 71 | Not stated | Not stated | 1906 | Not stated | Not stated | RUN | 20 | Not stated | Not stated | I allele increased white athletes (p = 0.039) | I allele increased with distance run (p = 0.009) |
Rankinen (2000) [37] | CAN/DEU/FIN/USA | XC-SKI BITHLN NC RUN CYC | 192 | Not stated | 0 | 189 | Not stated | 0 | N/A | No significant differences | N/A | |||
Alvarez (2000) [38] | ESP | CYC RUN | 45 | 21–35 | 0 | 400 | <55 | 38 | N/A | Excess of II/ID genotypes in athletes (p = 0.0008) | N/A | |||
Nazarov (2001) [39] | RUS | SWIM RUN XC-SKI TRITHLN | 111 | Not stated | Not stated | 449 | 18–45 | 40 | SWIM RUN | 30 | Not stated | Not stated | No significant differences | I allele increased with event duration (p = 0.032) |
Woods (2001) [40] | Not stated | SWIM | 21 | Not stated | Not stated | 1248 | 19.7 ± 2.5 | Not stated | SWIM | 35 | Not stated | Not stated | No significant differences | D allele increased in short distance athletes |
Lucia (2005) [9] | ESP | CYC RUN | 77 | 26–27 | 0 | 119 | 42 ± 12 | 0 | N/A | Excess of DD genotype in cyclists (p < 0.05) and II genotype in runners (p < 0.05) | N/A | |||
Cieszczyk (2009) [41] | POL | ROW | 30 | Not stated | 0 | 115 | 19–23 | 0 | N/A | I allele increased in athletes (p = 0.038) | N/A | |||
Shenoy (2010) [42] | IND | TRITHLN | 29 | 20–25 | 0 | 101 | 20–25 | Not stated | N/A | I allele increased in athletes (p = 0.02) | N/A | |||
Ash (2011) [43] | ETH | RUN | 76 | Not stated | 42 | 410 | Not stated | 11 | RUN THROW JUMP | 38 | Not stated | 53 | No significant differences | No significant differences |
Drozdovska (2013) [6] | UKR | XC-SKI ROW | 84 | Not stated | Not stated | 283 | 14–54 | 43 | RUN SWIM JUMP THROW | 108 | Not stated | Not stated | No significant differences | No significant differences |
Wang (2013) [44] | EUR/CMNWLTH/USA/RUS/JPN/TWN | SWIM | 230 | Not stated | 32 | 2492 | Not stated | Not stated | SWIM | 296 | Not stated | 41 | No significant differences | N/A |
Grenda (2014) [45] | POL | SWIM | 49 | 20.3 ± 2.7 | 51 | 379 | 22.6 | 41 | SWIM | 147 | 20.3 ± 2.7 | 46 | I allele increased in athletes | ID (p = 0.009) and II (p = 0.0002) genotypes increased in endurance |
Shahmoradi (2014) [46] | IRN | CYC | 37 | 18–40 | 0 | 163 | 18–40 | 0 | WTLIFT RUN JUMP THROW | 87 | 18–40 | 0 | I allele increased in athletes (0.03) | Increased D allele in endurance (p = 0.045) |
Fluck (2019) [47] | Not stated | CYC RUN | 30 | 30.1 ± 5.7 | Not stated | 63 | 29.5 | Not stated | SHTPUT WTLIFT | 17 | 25.4 ± 10.1 | Not stated | No significant differences | No significant differences |
Neto (2022) [48] | BRA | SWIM | 7 | 19–30 | Not stated | 681 | Not stated | Not stated | SWIM | 19 | 18–20 | Not stated | Lower frequency of DD genotypes (p = 0.006) | Lower frequency of DD genotypes (p = 0.004) |
(b) | ||||||||||||||
Endurance vs. Controls | ||||||||||||||
Study | Discipline | II_Athlete | ID_Athlete | DD_Athlete | II_Control | ID_Control | DD_Control | |||||||
Neto (2022) [48] | Swimming | 2 | 4 | 1 | 150 | 320 | 211 | |||||||
Shahmoradi (2014) [46] | Cycling | 6 | 15 | 16 | 27 | 73 | 63 | |||||||
Grenda (2014) [45] | Swimming | 43 | 51 | 6 | 75 | 188 | 116 | |||||||
Cieszczyk (2009) [41] | Rowing | 7 | 18 | 5 | 22 | 58 | 35 | |||||||
Nazarov (2001) [39] | Swimming | 12 | 20 | 4 | 105 | 235 | 109 | |||||||
Fluck (2019) [47] | Mixed | 8 | 15 | 7 | 9 | 30 | 24 | |||||||
Drozdovksa (2013) [6] | Mixed | 22 | 41 | 21 | 71 | 150 | 62 | |||||||
Shenoy (2010) [42] | Triathlon | 14 | 13 | 2 | 26 | 54 | 21 | |||||||
Alvarez (2000) [38] | Cycling | 7 | 13 | 5 | 62 | 182 | 156 | |||||||
Rankinen (2000) [37] | Mixed | 51 | 89 | 52 | 37 | 90 | 62 | |||||||
Woods (2001) [40] | Swimming | 8 | 22 | 26 | 301 | 615 | 332 | |||||||
Lucia (2005) [9] | Cycling | 10 | 15 | 25 | 23 | 55 | 41 | |||||||
Ash (2011) [43] | Running | 12 | 34 | 30 | 36 | 187 | 185 | |||||||
Wang (2013) [44] | Swimming | 17 | 33 | 20 | 301 | 615 | 332 | |||||||
Gayagay (1998) [36] | Rowing | 19 | 35 | 10 | 20 | 58 | 36 | |||||||
Myerson (1999) [13] | Running | 23 | 35 | 13 | 457 | 953 | 496 | |||||||
Nazarov (2001) [39] | Running | 4 | 9 | 4 | 105 | 235 | 109 | |||||||
Alvarez (2000) [38] | Running | 5 | 12 | 3 | 62 | 182 | 156 | |||||||
Lucia (2005) [9] | Running | 11 | 7 | 9 | 23 | 55 | 41 | |||||||
Endurance vs. Power | ||||||||||||||
Study | Discipline | II_Endurance | ID_Endurance | DD_Endurance | II_Power | ID_Power | DD_Power | |||||||
Neto (2022) [48] | Swimming | 2 | 4 | 1 | 3 | 10 | 6 | |||||||
Shahmoradi (2014) [46] | Cycling | 6 | 15 | 16 | 21 | 45 | 21 | |||||||
Grenda (2014) [45] | Swimming | 43 | 51 | 6 | 30 | 80 | 37 | |||||||
Nazarov (2001) [39] | Swimming | 12 | 20 | 4 | 1 | 8 | 7 | |||||||
Fluck (2019) [47] | Mixed | 8 | 15 | 7 | 3 | 8 | 6 | |||||||
Drozdovksa (2013) [6] | Mixed | 22 | 41 | 21 | 28 | 49 | 31 | |||||||
Ash (2011) [43] | Running | 12 | 34 | 30 | 4 | 14 | 20 | |||||||
Wang (2013) [44] | Swimming | 17 | 33 | 20 | 25 | 52 | 53 | |||||||
Myerson (1999) [13] | Running | 23 | 35 | 13 | 3 | 8 | 9 | |||||||
Nazarov (2001) [39] | Running | 4 | 9 | 4 | 1 | 5 | 8 | |||||||
Woods (2001) [40] | Swimming | 3 | 10 | 8 | 5 | 12 | 18 |
Model | Discipline. | Number of Studies | OR | 95%CI | p-Value |
---|---|---|---|---|---|
Recessive model (II vs. ID+DD) | |||||
Cycling | 3 | 1.28 | 0.76–2.16 | 0.342 | |
Rowing | 2 | 1.69 | 0.95–3.03 | 0.072 | |
Running | 5 | 1.73 | 1.23–2.42 | 0.001 | |
Swimming | 5 | 1.33 | 0.67–2.62 | 0.413 | |
Triathlon | 1 | 2.69 | 1.15–6.32 | 0.023 | |
Dominant model (II+ID vs. DD) | |||||
Cycling | 3 | 0.96 | 0.42–2.20 | 0.930 | |
Rowing | 2 | 2.38 | 1.27–4.44 | 0.007 | |
Running | 5 | 1.39 | 1.00–1.93 | 0.047 | |
Swimming | 5 | 1.64 | 0.57–4.72 | 0.358 | |
Triathlon | 1 | 3.54 | 0.78–16.12 | 0.102 |
Model | Discipline. | Number of Studies | OR | 95%CI | p-Value |
---|---|---|---|---|---|
Recessive model (II vs. ID+DD) | |||||
Cycling | 1 | 0.61 | 0.22–1.66 | 0.331 | |
Running | 3 | 2.21 | 0.96–5.09 | 0.061 | |
Swimming | 5 | 2.27 | 1.49–3.45 | <0.001 | |
Dominant model (II+ID vs. DD) | |||||
Cycling | 1 | 0.42 | 0.18–0.94 | 0.036 | |
Running | 3 | 2.45 | 1.37–4.40 | 0.003 | |
Swimming | 5 | 2.75 | 1.71–4.41 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommers, L.; Akam, L.; Hunter, D.J.; Bhatti, J.S.; Mastana, S. Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2024, 21, 1439. https://doi.org/10.3390/ijerph21111439
Sommers L, Akam L, Hunter DJ, Bhatti JS, Mastana S. Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2024; 21(11):1439. https://doi.org/10.3390/ijerph21111439
Chicago/Turabian StyleSommers, Lydia, Liz Akam, David John Hunter, Jasvinder Singh Bhatti, and Sarabjit Mastana. 2024. "Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 21, no. 11: 1439. https://doi.org/10.3390/ijerph21111439
APA StyleSommers, L., Akam, L., Hunter, D. J., Bhatti, J. S., & Mastana, S. (2024). Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 21(11), 1439. https://doi.org/10.3390/ijerph21111439