Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials
Abstract
1. Introduction
2. Materials and Methods
3. Chemical Absorption
4. Indirect Mineral Carbonation
5. Direct Mineral Carbonation
5.1. Ashes
5.2. Steel-Making Slag
Waste/Residue | Calcium Content | Maximum CO2 Removal | Reference |
---|---|---|---|
Ash bottom | 22–53% | 23.5 mL/g | [42] |
Palm oil ash | 9.65% | 53% reduction | [44] |
Wood ash | 24–46% | 200 g/kg 115 g/kg | [50] [48] |
Steel-making slag | 15–42% | 180 g/kg | [58] |
Basic oxygen furnace slag | 35–56% | 300 g/kg | [65] |
Air pollution control residues | 38% Ca(OH) 28% CaClOH | - | [29] |
Stabilized wastewater anaerobic sludge | 35.1% | 127.2 g/kg | [66] |
5.3. Air Pollution Control Residues
5.4. Wastewater Anaerobic Sludge
6. Types of Reactors Used for Biogas Upgrading
7. Conclusions and Perspectives on Alternative Upgrading Biogas Technologies Using Wastes
- the amount of waste that should be delivered for the biogas upgrading facility;
- the distance between the upgrading facility and the facility delivering the waste;
- the costs of treatment of the wastewater that is eventually produced;
- the possibility of the regeneration of the reagents used in the process;
- the characteristic of the carbonated waste and the possibility of its application.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogasproduction plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S.N.; Chakraborty, A.K.; Mathew, A.K.; Chaudhury, S. An Overview of Physico-Chemical Mechanisms of Biogas Production by Microbial Communities: A Step towards Sustainable Waste Management. 3 Biotech 2016, 6, 72. [Google Scholar] [CrossRef][Green Version]
- Soreanu, G.; Béland, M.; Falletta, P.; Edmonson, K.; Svoboda, L.; Al-Jamal, M.; Seto, P. Approaches concerning siloxane removal from biogas—A review. Can. Biosyst. Eng. 2011, 53, 8.1–8.18. [Google Scholar]
- Persson, M.; Jönsson, O.; Wellinger, A. Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. International Energy Agency IEA Bioenergy. 2006. Available online: http://www.iea-biogas.net/_download/publi-task37/upgrading_report_final.pdf (accessed on 18 March 2023).
- Nizami, A.S.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Zhao, Q.; Leonhardt, E.; MacConnell, C.; Frear, C.; Chen, S. Purification technologies for biogas generated by anaerobic digestion. Climate friendly farming, compressed biomethane. In CSANR Research Report 2010-001 (Chapter 9); CSANR Center for Sustaining Agriculture and Natural Resources: Wenatchee, WA, USA, 2010; pp. 1–24. [Google Scholar]
- Karne, H.; Mahajan, U.; Ketkar, U.; Kohade, A.; Khadilkar, P.; Mishra, A. A Review on Biogas Upgradation Systems. Mater. Today Proc. 2023, 72, 775–786. [Google Scholar] [CrossRef]
- Feroskhan, M.; Ismail, S. A Review on the Purification and Use of Biogas in Compression Ignition Engines. Int. J. Automot. Mech. Eng. 2017, 14, 4383–4400. [Google Scholar] [CrossRef]
- Adnan, A.I.; Yin Ong, M.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering 2019, 6, 92. [Google Scholar] [CrossRef][Green Version]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A Review on the State-of-the-Art of Physical/Chemical and Biological Technologies for Biogas Upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef][Green Version]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev. 2014, 43, 8049. [Google Scholar] [CrossRef][Green Version]
- Wilcox, J.; Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.; Stramazzo, A.; Zingaretti, D. Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements. Front. Energy Res. 2016, 3, 56. [Google Scholar] [CrossRef][Green Version]
- Fei, Z.; Bao, Q.; Zheng, X.; Zhang, L.; Wang, X.; Wei, Y.; Yan, S.; Ji, L. Glycinate-Looping Process for Efficient Biogas Upgrading and Phytotoxicity Reduction of Alkaline Ashes. J. Clean. Prod. 2022, 338, 130565. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Zheng, X.; Feng, L.; He, Q.; Wei, Y.; Yan, S. Simultaneous CO2 Absorption, Mineralisation and Carbonate Crystallisation Promoted by Amines in a Single Process. J. CO2 Util. 2021, 51, 101653. [Google Scholar] [CrossRef]
- Tippayawong, N.; Thanompongchart, P. Biogas Quality Upgrade by Simultaneous Removal of CO2 and H2S in a Packed Column Reactor. Energy 2010, 35, 4531–4535. [Google Scholar] [CrossRef]
- Mamun, M.R.; Karim, M.R.; Rahman, M.M.; Asiri, A.M.; Torii, S. Methane Enrichment of Biogas by Carbon Dioxide Fixation with Calcium Hydroxide and Activated Carbon. J. Taiwan Inst. Chem. Eng. 2016, 58, 476–481. [Google Scholar] [CrossRef]
- Katariya, H.G.; Patolia, H.P. Methane Enrichment in Biogas by Using Aqueous Solutions of Alkaline Salts. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Chinea, L.; Slopiecka, K.; Bartocci, P.; Alissa Park, A.H.; Wang, S.; Jiang, D.; Fantozzi, F. Methane Enrichment of Biogas Using Carbon Capture Materials. Fuel 2023, 334, 126428. [Google Scholar] [CrossRef]
- Rattanaya, T.; Manmeen, A.; Kongjan, P.; Bunyakan, C.; Reungsang, A.; Prasertsit, K.; Lombardi, L.; Jariyaboon, R. Upgrading Biogas to Biomethane Using Untreated Groundwater-NaOH Absorbent: Pilot-Scale Experiment and Scale-up Estimation for a Palm Oil Mill. J. Water Process Eng. 2021, 44, 102405. [Google Scholar] [CrossRef]
- Maile, O.I.; Tesfagiorgis, H.; Muzenda, E. Possible Absorbent Regeneration in Biogas Purification and Upgrading: A Review. In The Nexus: Energy, Environment and Climate Change. Green Energy and Technology; Filho, L.W., Surroop, D., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Sun, Y.; Cakstins, J.; Sun, C.; Snape, C.E. Parametric Study on the Regeneration Heat Requirement of an Amine-Based Solid Adsorbent Process for Post-Combustion Carbon Capture. Appl. Energy 2016, 168, 394–405. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Y. A Comprehensive Model for Regeneration Process of CO2 Capture Using Aqueous Ammonia Solution. Int. J. Greenh. Gas Control 2014, 29, 22–34. [Google Scholar] [CrossRef]
- Leonzio, G. Recovery of Metal Sulphates and Hydrochloric Acid from Spent Pickling Liquors. J. Clean. Prod. 2016, 129, 417–426. [Google Scholar] [CrossRef]
- Librandi, P.; Costa, G.; de Souza, A.C.B.; Stendardo, S.; Luna, A.S.; Baciocchi, R. Carbonation of Steel Slag: Testing of the Wet Route in a Pilot-Scale Reactor. Energy Procedia 2017, 114, 5381–5392. [Google Scholar] [CrossRef]
- Said, A.; Mattila, H.P.; Järvinen, M.; Zevenhoven, R. Production of Precipitated Calcium Carbonate (PCC) from Steelmaking Slag for Fixation of CO2. Appl. Energy 2013, 112, 765–771. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Gavasci, R.; Lombardi, L.; Zingaretti, D. Regeneration of a Spent Alkaline Solution from a Biogas Upgrading Unit by Carbonation of APC Residues. Chem. Eng. J. 2012, 179, 63–71. [Google Scholar] [CrossRef]
- Baciocchi, R.; Carnevale, E.; Costa, G.; Lombardi, L.; Olivieri, T.; Paradisi, A.; Zanchi, L.; Zingaretti, D. Pilot-Scale Investigation of an Innovative Process for Biogas Upgrading with CO2 Capture and Storage. Energy Procedia 2013, 37, 6026–6034. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Liu, J.; Hu, X.; Chang, J.; Zhang, T.; Shi, C. Utilization of accelerated carbonation to enhance the application of steel slag: A review. J. Sustain. Cement-Based Mater. 2022, 12, 471–486. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.; Prigiobbe, V. Comparison of Different Reaction Routes for Carbonation of APC Residues. Energy Procedia 2009, 1, 4851–4858. [Google Scholar] [CrossRef][Green Version]
- Lombardi, L.; Carnevale, E. Economic Evaluations of an Innovative Biogas Upgrading Method with CO2 Storage. Energy 2013, 62, 88–94. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Reina, T.R.; Zhang, Z.; Vilches, L.F.; Navarrete, B. Understanding the Effect of Ca and Mg Ions from Wastes in the Solvent Regeneration Stage of a Biogas Upgrading Unit. Sci. Total Environ. 2019, 691, 93–100. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Reina, T.R.; Rodríguez-Galán, M.; Navarrete, B.; Vilches, L.F. Synergizing Carbon Capture and Utilization in a Biogas Upgrading Plant Based on Calcium Chloride: Scaling-up and Profitability Analysis. Sci. Total Environ. 2021, 758, 143645. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Reina, T.R.; Vilches, L.F.; Navarrete, B. Synergizing Carbon Capture Storage and Utilization in a Biogas Upgrading Lab-Scale Plant Based on Calcium Chloride: Influence of Precipitation Parameters. Sci. Total Environ. 2019, 670, 59–66. [Google Scholar] [CrossRef]
- Arti, M.; Youn, M.H.; Park, K.T.; Kim, H.J.; Kim, Y.E.; Jeong, S.K. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 2017, 31, 763–769. [Google Scholar] [CrossRef]
- Galvez-Martos, J.L.; Elhoweris, A.; Morrison, J.; Al-Horr, Y. Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines. J. CO2 Util. 2018, 27, 161–169. [Google Scholar] [CrossRef]
- Erdogan, N.; Eken, H.A. Precipitated calcium carbonate production, synthesis and properties. Phys. Probl. Min. Process 2017, 53, 57–68. [Google Scholar]
- Dong, C.; Song, X.; Li, Y.; Liu, C.; Chen, H.; Yu, J. Impurity ions effect on CO2 mineralization via coupled reaction-extraction-crystallization process of CaCl2 waste liquids. J. CO2 Util. 2018, 27, 115–128. [Google Scholar] [CrossRef]
- Wiles, C.C. Municipal Solid Waste Combustion Ash: State-of-the-Knowledge. J. Hazard. Mater. 1996, 47, 325–344. [Google Scholar] [CrossRef]
- Costa, G.; Baciocchi, R.; Polettini, A.; Pomi, R.; Hills, C.D.; Carey, P.J. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ. Monit. Assess 2007, 135, 55–75. [Google Scholar] [CrossRef]
- Mostbauer, P.; Lenz, S.S.; Lechner, P. MSWI bottom ash for upgrading of biogas and landfill gas. Environ. Technol. 2008, 29, 757–764. [Google Scholar] [CrossRef]
- del Valle-Zermeño, R.; Romero-Güiza, M.S.; Chimenos, J.M.; Formosa, J.; Mata-Alvarez, J.; Astals, S. Biogas Upgrading Using MSWI Bottom Ash: An Integrated Municipal Solid Waste Management. Renew. Energy 2015, 80, 184–189. [Google Scholar] [CrossRef]
- Yao, Z.; Prabhakar, A.K.; Cadiam Mohan, B.; Wang, C.H. An Innovative Accelerated Carbonation Process for Treatment of Incineration Bottom Ash and Biogas Upgrading. Waste Manag. 2022, 144, 203–209. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Influence of Waste Input and Combustion Technology on MSWI Bottom Ash Quality. Waste Manag. 2007, 27, 1403–1407. [Google Scholar] [CrossRef]
- Rattanaya, T.; Kongjan, P.; Cheewasedtham, C.; Bunyakan, C.; Yuso, P.; Cheirsilp, B.; Jariyaboon, R. Application of Palm Oil Mill Waste to Enhance Biogas Upgrading and Hornwort Cultivation. J. Environ. Manag. 2022, 309, 114678. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Value-Added Utilization of Oil Palm Ash: A Superior Recycling of the Industrial Agricultural Waste. J. Hazard. Mater. 2009, 172, 523–531. [Google Scholar] [CrossRef]
- Chavez, R.-H.; Guadarrama, J.J. Biogas Treatment by Ashes from Incineration Processes. Clean Technol. Environ. Policy 2015, 17, 1291–1300. [Google Scholar] [CrossRef]
- Lombardi, L.; Costa, G.; Spagnuolo, R. Accelerated Carbonation of Wood Combustion Ash for CO2 Removal from Gaseous Streams and Storage in Solid Form. Environ. Sci. Pollut. Res. 2018, 25, 35855–35865. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Biasioli, F.; Lombardi, L. Wood Ash Biomethane Upgrading System: A Case Study. Renew. Energy 2022, 182, 702–712. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Petrova, N.L. Mineral Carbonation of Biomass Ashes in Relation to Their CO2 Capture and Storage Potential. ACS Omega 2021, 6, 14598–14611. [Google Scholar] [CrossRef]
- Andersson, J.; Nordberg, A. Biogas Upgrading Using Ash from Combustion of Wood Fuels: Laboratory Experiments. Energy Environ. Res. 2017, 7, 38–47. [Google Scholar] [CrossRef][Green Version]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C.; Mecha, A.C. Potential of wood ash in purification of biogas. Energy Sustain. Dev. 2021, 65, 45–52. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J. Hazard. Mater. 2010, 174, 334–343. [Google Scholar] [CrossRef]
- Koch, R.; Sailer, G.; Paczkowski, S.; Pelz, S.; Poetsch, J.; Müller, J.; Frusteri, F. Lab-Scale Carbonation of Wood Ash for CO2-Sequestration. Energies 2021, 14, 7371. [Google Scholar] [CrossRef]
- Doucet, F.J. Effective CO2-Specific Sequestration Capacity of Steel Slags and Variability in Their Leaching Behavior in View of Industrial Mineral Carbonation. Min. Eng. 2010, 23, 262–269. [Google Scholar] [CrossRef]
- Chen, B.; Yoon, S.; Zhang, Y.; Han, L.; Choi, Y. Reduction of Steel Slag Leachate PH via Humidification Using Water and Aqueous Reagents. Sci. Total Environ. 2019, 671, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheidt, E.; Postila, H.; Leiviskä, T. Removal of Metals from Wastewaters by Mineral and Biomass-Based Sorbents Applied in Continuous-Flow Continuous Stirred Tank Reactors Followed by Sedimentation. Sci. Total Environ. 2020, 700, 135079. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Lowry, G.V.; Keith, D.W. Using CaO- and MgO-Rich Industrial Waste Streams for Carbon Sequestration. Energy Convers. Manag. 2005, 46, 687–699. [Google Scholar] [CrossRef]
- Truong, M.V.; Nguyen, L.N.; Li, K.; Fu, Q.; Johir, M.A.H.; Fontana, A.; Nghiem, L.D. Biomethane Production from Anaerobic Co-Digestion and Steel-Making Slag: A New Waste-to-Resource Pathway. Sci. Total Environ. 2020, 738, 139764. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Bartolomeo, E.; Polettini, A.; Pomi, R. Wet versus slurry carbonation of EAF steel slag. Greenh. Gas Sci. Technol. 2011, 1, 312–319. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Fixation of CO2 by Carbonating Calcium Derived from Blast Furnace Slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Teir, S.; Eloneva, S.; Fogelholm, C.J.; Zevenhoven, R. Dissolution of Steelmaking Slags in Acetic Acid for Precipitated Calcium Carbonate Production. Energy 2007, 32, 528–539. [Google Scholar] [CrossRef]
- Chang, E.E.; Chen, C.H.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C. Performance Evaluation for Carbonation of Steel-Making Slags in a Slurry Reactor. J. Hazard. Mater. 2011, 186, 558–564. [Google Scholar] [CrossRef]
- Proctor, D.M.; Fehling, K.A.; Shay, E.C.; Wittenborn, J.L.; Green, J.J.; Avent, C.; Bigham, R.D.; Connolly, M.; Lee, B.; Shepker, T.O.; et al. Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags. Environ. Sci. Technol. 2000, 34, 1576–1582. [Google Scholar] [CrossRef]
- Motz, H.; Geiseler, J. Products of Steel Slags an Opportunity to Save Natural Resources. Waste Manag. 2001, 21, 285–293. [Google Scholar] [CrossRef]
- Sarperi, L.; Surbrenat, A.; Kerihuel, A.; Chazarenc, F. The Use of an Industrial By-Product as a Sorbent to Remove CO2 and H2S from Biogas. J. Environ. Chem. Eng. 2014, 2, 1207–1213. [Google Scholar] [CrossRef]
- Chetri, J.K.; Reddy, K.R.; Grubb, D.G. Carbon-Dioxide and Hydrogen-Sulfide Removal from Simulated Landfill Gas Using Steel Slag. J. Environ. Eng. 2020, 146, 12. [Google Scholar] [CrossRef]
- Zieliński, M.; Karczmarczyk, A.; Kisielewska, M.; Dębowski, M. Possibilities of Biogas Upgrading on a Bio-Waste Sorbent Derived from Anaerobic Sewage Sludge. Energies 2022, 15, 6461. [Google Scholar] [CrossRef]
- Mostbauer, P.; Lombardi, L.; Olivieri, T.; Lenz, S. Pilot Scale Evaluation of the BABIU Process—Upgrading of Landfill Gas or Biogas with the Use of MSWI Bottom Ash. Waste Manag. 2014, 34, 125–133. [Google Scholar] [CrossRef]
- Madhania, S.; Kusdianto, K.; Machmudah, S.; Nurtono, T.; Widiyastuti, W.; Winardi, S. Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor. AIP Conf. Proc. 2020, 2197, 120003. [Google Scholar] [CrossRef]
- Wang, W.; Hu, M.; Zheng, Y.; Wang, P.; Ma, C. CO2 fixation in Ca2/Mg-rich aqueous solutions through enhanced carbonate precipitation. Ind. Eng. Chem. Res. 2011, 50, 8333–8339. [Google Scholar] [CrossRef]
- Tran, L.; Le, T.; Nguyen, T.; Tran, Q.; Le, X.; Pham, M.; Lam, V.; Van Do, M. Simultaneous removal efficiency of H2S and CO2 by high-gravity rotating packed bed: Experiments and simulation. Open Chem. 2021, 19, 288–298. [Google Scholar] [CrossRef]
- Aghel, B.; Gouran, A.; Behaien, S.; Vaferi, B. Experimental and Modeling Analyzing the Biogas Upgrading in the Microchannel: Carbon Dioxide Capture by Seawater Enriched with Low-Cost Waste Materials. Environ. Technol. Innov. 2022, 27, 102770. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusanowska, P.; Zieliński, M.; Dębowski, M. Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. Int. J. Environ. Res. Public Health 2023, 20, 5687. https://doi.org/10.3390/ijerph20095687
Rusanowska P, Zieliński M, Dębowski M. Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. International Journal of Environmental Research and Public Health. 2023; 20(9):5687. https://doi.org/10.3390/ijerph20095687
Chicago/Turabian StyleRusanowska, Paulina, Marcin Zieliński, and Marcin Dębowski. 2023. "Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials" International Journal of Environmental Research and Public Health 20, no. 9: 5687. https://doi.org/10.3390/ijerph20095687
APA StyleRusanowska, P., Zieliński, M., & Dębowski, M. (2023). Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. International Journal of Environmental Research and Public Health, 20(9), 5687. https://doi.org/10.3390/ijerph20095687