Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Input and Pre-Processing
2.2. Data Augmentation
2.3. Object Detection
2.4. Ensemble Modelling
2.5. Test-Time Augmentation
2.6. Transfer Learning
2.7. The Experimental Setup
2.8. Evaluation Metrics
3. Results
3.1. Model Ensemble and Test-Time Augmentation
3.2. Transfer Learning
4. Discussion
Limitations
5. Conclusions
- An ensemble model, created using various YOLO computer vision models, and transferred to VGG16 methods of deep learning, can generate accurate predictions in diagnosing smooth surface caries from free-hand photography.
- Ensembles of computer vision algorithms, that undergo augmentation and transfer learning, can lead to the formation of inexpensive digital diagnostic markers, that practitioners can use to screen and monitor progression of carious lesions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Listl, S.; Galloway, J.; Mossey, P.A.; Marcenes, W. Global economic impact of dental diseases. J. Dent. Res. 2015, 94, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Maru, A.M.; Narendran, S. Epidemiology of dental caries among adults in a rural area in India. J. Contemp. Dent. Pract. 2012, 13, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Narang, U. Emerging market innovations: Unique and differential drivers, practitioner implications, and research agenda. J. Acad. Mark. Sci. 2020, 48, 1030–1052. [Google Scholar] [CrossRef]
- Al-Jallad, N.; Ly-Mapes, O.; Hao, P.; Ruan, J.; Ramesh, A.; Luo, J.; Wu, T.T.; Dye, T.; Rashwan, N.; Ren, J.; et al. Artificial intelligence-powered smartphone application, AICaries, improves at-home dental caries screening in children: Moderated and unmoderated usability test. PLoS Digit. Health 2022, 1, e0000046. [Google Scholar] [CrossRef]
- Farook, T.H.; Bin Jamayet, N.; Asif, J.A.; Din, A.S.; Mahyuddin, M.N.; Alam, M.K. Development and virtual validation of a novel digital workflow to rehabilitate palatal defects by using smartphone-integrated stereophotogrammetry (SPINS). Sci. Rep. 2021, 11, 8469. [Google Scholar] [CrossRef]
- Thanh, M.T.G.; Van Toan, N.; Ngoc, V.T.N.; Tra, N.T.; Giap, C.N.; Nguyen, D.M. Deep learning application in dental caries detection using intraoral photos taken by smartphones. Appl. Sci. 2022, 12, 5504. [Google Scholar] [CrossRef]
- Farook, T.H.; Rashid, F.; Bin Jamayet, N.; Abdullah, J.Y.; Dudley, J.; Alam, M.K. A virtual analysis of the precision and accuracy of 3-dimensional ear casts generated from smartphone camera images. J. Prosthet. Dent. 2021, 128, 830–836. [Google Scholar] [CrossRef]
- Hackam, D.G.; Redelmeier, D.A. Translation of research evidence from animals to humans. JAMA 2006, 296, 1727–1732. [Google Scholar] [CrossRef]
- Heimerl, K.; Menon, A.; Hasan, S.; Ali, K.; Brewer, E.; Parikh, T. Analysis of smartphone adoption and usage in a rural community cellular network. In Proceedings of the Seventh International Conference on Information and Communication Technologies and Development, Singapore, 15–18 May 2015; pp. 1–4. [Google Scholar]
- Rashid, F.; Bin Jamayet, N.; Farook, T.H.; Al-Rawas, M.; Barman, A.; Johari, Y.; Noorani, T.Y.; Abdullah, J.Y.; Eusufzai, S.Z.; Alam, M.K. Color variations during digital imaging of facial prostheses subjected to unfiltered ambient light and image calibration techniques within dental clinics: An in vitro analysis. PLoS ONE 2022, 17, e0273029. [Google Scholar] [CrossRef]
- Li, S.; Wang, X. YOLOv5-based Defect Detection Model for Hot Rolled Strip Steel. J. Phys. Conf. Ser. 2022, 2171, 012040. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Khanagar, S.B.; Alfouzan, K.; Awawdeh, M.; Alkadi, L.; Albalawi, F.; Alfadley, A. Application and Performance of Artificial Intelligence Technology in Detection, Diagnosis and Prediction of Dental Caries (DC)—A Systematic Review. Diagnostics 2022, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Farook, T.H.; Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A systematic review. J. Oral Rehabil. 2023; Early View. [Google Scholar] [CrossRef]
- Farook, T.H.; Rashid, F.; Alam, M.K.; Dudley, J. Variables influencing the device-dependent approaches in digitally analysing jaw movement—A systematic review. Clin. Oral Investig. 2022, 27, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Norgeot, B.; Quer, G.; Beaulieu-Jones, B.K.; Torkamani, A.; Dias, R.; Gianfrancesco, M.; Arnaout, R.; Kohane, I.S.; Saria, S.; Topol, E.; et al. Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist. Nat. Med. 2020, 26, 1320–1324. [Google Scholar] [CrossRef]
- Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated caries detection with smartphone color photography using machine learning. Health Inform. J. 2021, 27, 14604582211007530. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.; Nguyen, Q.; Tong, M.; Vu, M.; Lim, J.; Kuo, R. Proof-of-Concept Study on an Automatic Computational System in Detecting and Classifying Occlusal Caries Lesions from Smartphone Color Images of Unrestored Extracted Teeth. Diagnostics 2021, 11, 1136. [Google Scholar] [CrossRef]
- Casado-García, Á.; Domínguez, C.; García-Domínguez, M.; Heras, J.; Inés, A.; Mata, E.; Pascual, V. CLoDSA: A tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC Bioinform. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- van Dyk, D.A.; Meng, X.-L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [Google Scholar] [CrossRef]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; IEEE: Toulouse, France, 2018; pp. 117–122. [Google Scholar]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf. Process. Landf. 2015, 40, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Li, Y.; Li, Y.; Wang, J.M.; Lin, D.; Ye, W. Tooth decay diagnosis using back propagation neural network. In Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; IEEE: Toulouse, France, 2006; pp. 3956–3959. [Google Scholar]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425. [Google Scholar] [CrossRef]
- Hung, M.; Voss, M.W.; Rosales, M.N.; Li, W.; Su, W.; Xu, J.; Bounsanga, J.; Ruiz-Negron, B.; Lauren, E.; Licari, F.W. Application of machine learning for diagnostic prediction of root caries. Gerodontology 2019, 36, 395–404. [Google Scholar] [CrossRef]
- Srivastava, M.M.; Kumar, P.; Pradhan, L.; Varadarajan, S. Detection of tooth caries in bitewing radiographs using deep learning. arXiv 2017, arXiv:1711.07312. [Google Scholar]
- Ghaedi, L.; Gottlieb, R.; Sarrett, D.C.; Ismail, A.; Belle, A.; Najarian, K.; Hargraves, R.H. An automated dental caries detection and scoring system for optical images of tooth occlusal surface. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Toulouse, France, 2014; pp. 1925–1928. [Google Scholar]
- Farook, T.H.; Bin Jamayet, N.; Abdullah, J.Y.; Alam, M.K. Machine learning and intelligent diagnostics in dental and orofacial pain management: A systematic review. Pain Res. Manag. 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kuang, W.; Li, Y.; Li, Y.-J.; Ye, W.-P. Clinical X-ray image based tooth decay diagnosis using SVM. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; IEEE: Toulouse, France, 2007; pp. 1616–1619. [Google Scholar]
- Gugnani, N.; Pandit, I.K.; Srivastava, N.; Gupta, M.; Sharma, M. International caries detection and assessment system (ICDAS): A new concept. Int. J. Clin. Pediatr. Dent. 2011, 4, 93. [Google Scholar] [CrossRef]
- Berdouses, E.D.; Koutsouri, G.D.; Tripoliti, E.E.; Matsopoulos, G.K.; Oulis, C.J.; Fotiadis, D.I. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Comput. Biol. Med. 2015, 62, 119–135. [Google Scholar] [CrossRef]
- Sonavane, A.; Kohar, R. Dental cavity detection using yolo. In Data Analytics and Management: ICDAM 2021; Springer: Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 141–152. [Google Scholar]
- Peters, M.C.; McLean, M.E. Minimally Invasive Operative Care: II. Contemporary Techniques and Materials: An Overview. J. Adhes. Dent. 2001, 3, 17–31. [Google Scholar] [PubMed]
- Kohara, E.K.; Abdala, C.G.; Novaes, T.F.; Braga, M.M.; Haddad, A.E.; Mendes, F.M. Is it feasible to use smartphone images to perform telediagnosis of different stages of occlusal caries lesions? PLoS ONE 2018, 13, e0202116. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, P.; Che, C.; Jin, B. Rdfnet: A fast caries detection method incorporating transformer mechanism. Comput. Math. Methods Med. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Kositbowornchai, S.; Siriteptawee, S.; Plermkamon, S.; Bureerat, S.; Chetchotsak, D. An artificial neural network for detection of simulated dental caries. Int. J. Comput. Assist. Radiol. Surg. 2006, 1, 91–96. [Google Scholar] [CrossRef]
- Ling, C.X.; Sheng, V.S. Cost-sensitive learning and the class imbalance problem. Encycl. Mach. Learn. 2008, 2011, 231–235. [Google Scholar]
- Tawiah, C.A.; Sheng, V.S. A study on multi-label classification. In Industrial Conference on Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 137–150. [Google Scholar]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model | Classification | Precision | Recall | Test [email protected] |
---|---|---|---|---|
YOLO v5n | Visible change without cavitation | 0.30 | 0.40 | 0.28 |
Visible change with microcavitation | 0.76 | 0.54 | 0.65 | |
Visible change with cavitation | 0.72 | 0.88 | 0.87 | |
Overall | 0.59 | 0.60 | 0.60 | |
YOLO v5s | Visible change without cavitation | 0.60 | 0.54 | 0.41 |
Visible change with microcavitation | 0.89 | 0.64 | 0.72 | |
Visible change with cavitation | 0.80 | 0.75 | 0.86 | |
Overall | 0.76 | 0.64 | 0.66 | |
YOLO v5m | Visible change without cavitation | 0.55 | 0.54 | 0.39 |
Visible change with microcavitation | 0.99 | 0.58 | 0.69 | |
Visible change with cavitation | 0.85 | 0.75 | 0.86 | |
Overall | 0.80 | 0.62 | 0.65 | |
YOLO v5l | Visible change without cavitation | 0.55 | 0.54 | 0.56 |
Visible change with microcavitation | 0.94 | 0.62 | 0.74 | |
Visible change with cavitation | 0.91 | 0.75 | 0.83 | |
Overall | 0.80 | 0.64 | 0.71 | |
YOLO v5x | Visible change without cavitation | 0.52 | 0.43 | 0.53 |
Visible change with microcavitation | 0.82 | 0.58 | 0.69 | |
Visible change with cavitation | 0.95 | 0.88 | 0.92 | |
Overall | 0.76 | 0.63 | 0.71 |
Model | Classification | Precision | Recall | Test [email protected] |
---|---|---|---|---|
YOLO v5n | Visible change without cavitation | 0.38 | 0.46 | 0.47 |
Visible change with microcavitation | 0.66 | 0.58 | 0.61 | |
Visible change with cavitation | 0.82 | 0.75 | 0.84 | |
Overall | 0.62 | 0.60 | 0.64 | |
YOLO v5s | Visible change without cavitation | 0.60 | 0.54 | 0.49 |
Visible change with microcavitation | 0.77 | 0.63 | 0.70 | |
Visible change with cavitation | 0.99 | 0.75 | 0.81 | |
Overall | 0.77 | 0.64 | 0.67 | |
YOLO v5m | Visible change without cavitation | 0.48 | 0.57 | 0.50 |
Visible change with microcavitation | 0.87 | 0.63 | 0.72 | |
Visible change with cavitation | 0.83 | 0.88 | 0.91 | |
Overall | 0.73 | 0.69 | 0.71 | |
YOLO v5l | Visible change without cavitation | 0.63 | 0.52 | 0.48 |
Visible change with microcavitation | 0.93 | 0.71 | 0.75 | |
Visible change with cavitation | 1.00 | 0.82 | 0.89 | |
Overall | 0.85 | 0.68 | 0.71 | |
YOLO v5x | Visible change without cavitation | 0.54 | 0.46 | 0.46 |
Visible change with microcavitation | 0.83 | 0.61 | 0.67 | |
Visible change with cavitation | 0.99 | 0.75 | 0.92 | |
Overall | 0.79 | 0.61 | 0.68 | |
YOLO model ensemble (v5m + v5l) | Visible change without cavitation | 0.51 | 0.54 | 0.50 |
Visible change with microcavitation | 0.94 | 0.71 | 0.74 | |
Visible change with cavitation | 0.87 | 0.87 | 0.91 | |
Overall | 0.77 | 0.71 | 0.72 |
Model | Classification | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|
VGG16 | Visible change without cavitation | 0.76 | 0.93 | 0.84 | |
Visible change with microcavitation | 0.91 | 0.83 | 0.87 | ||
Visible change with cavitation | 0.99 | 0.88 | 0.93 | ||
Overall | 0.89 | 0.88 | 0.88 | 86.96% | |
Resnet50 | Visible change without cavitation | 0.64 | 0.64 | 0.64 | |
Visible change with microcavitation | 0.88 | 0.92 | 0.90 | ||
Visible change with cavitation | 0.71 | 0.62 | 0.67 | ||
Overall | 0.75 | 0.73 | 0.74 | 78.26% | |
Resnet101 | Visible change without cavitation | 0.73 | 0.79 | 076 | |
Visible change with microcavitation | 0.88 | 0.92 | 0.90 | ||
Visible change with cavitation | 0.99 | 0.75 | 0.86 | ||
Overall | 0.87 | 0.82 | 0.84 | 84.78% | |
Alexnet | Visible change without cavitation | 0.68 | 0.93 | 0.79 | |
Visible change with microcavitation | 0.95 | 0.83 | 0.89 | ||
Visible change with cavitation | 0.83 | 0.62 | 0.71 | ||
Overall | 0.82 | 0.80 | 0.80 | 82.60% | |
Densenet121 | Visible change without cavitation | 0.75 | 0.86 | 0.80 | |
Visible change with microcavitation | 0.91 | 0.88 | 0.89 | ||
Visible change with cavitation | 0.86 | 0.75 | 0.80 | ||
Overall | 0.84 | 0.83 | 0.83 | 84.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tareq, A.; Faisal, M.I.; Islam, M.S.; Rafa, N.S.; Chowdhury, T.; Ahmed, S.; Farook, T.H.; Mohammed, N.; Dudley, J. Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model. Int. J. Environ. Res. Public Health 2023, 20, 5351. https://doi.org/10.3390/ijerph20075351
Tareq A, Faisal MI, Islam MS, Rafa NS, Chowdhury T, Ahmed S, Farook TH, Mohammed N, Dudley J. Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model. International Journal of Environmental Research and Public Health. 2023; 20(7):5351. https://doi.org/10.3390/ijerph20075351
Chicago/Turabian StyleTareq, Abu, Mohammad Imtiaz Faisal, Md. Shahidul Islam, Nafisa Shamim Rafa, Tashin Chowdhury, Saif Ahmed, Taseef Hasan Farook, Nabeel Mohammed, and James Dudley. 2023. "Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model" International Journal of Environmental Research and Public Health 20, no. 7: 5351. https://doi.org/10.3390/ijerph20075351
APA StyleTareq, A., Faisal, M. I., Islam, M. S., Rafa, N. S., Chowdhury, T., Ahmed, S., Farook, T. H., Mohammed, N., & Dudley, J. (2023). Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model. International Journal of Environmental Research and Public Health, 20(7), 5351. https://doi.org/10.3390/ijerph20075351