Social Inequities in Exposure to Traffic-Related Air and Noise Pollution at Public Schools in Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dependent Variables
2.2. Independent Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolte, G.; Tamburlini, G.; Kohlhuber, M. Environmental inequalities among children in Europe—evaluation of scientific evidence and policy implications. Eur. J. Public Health 2010, 20, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrigan, P.J.; Rauh, V.A.; Galvez, M.P. Environmental justice and the health of children. Mt. Sinai J. Med. 2010, 77, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.E.; Collins, T.W. Lifetime cancer risks from hazardous air pollutants in US public school districts. J. Epidemiol. Community Health 2019, 73, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J. Children’s exposure to vehicular pollution: Environmental injustice in Texas, USA. Environ. Res. 2022, 204, 112008. [Google Scholar] [CrossRef] [PubMed]
- National Center for Education Statistics, ElSi Table Generator edited Department of Education, Washington, D.C. Available online: https://nces.ed.gov/ccd/elsi/tablegenerator.aspx (accessed on 15 December 2022).
- Appatova, A.S.; Ryan, P.H.; LeMasters, G.K.; Grinshpun, S.A. Proximal exposure of public schools and students to major roadways: A nationwide US survey. J. Environ. Plan. Manag. 2008, 51, 631–646. [Google Scholar] [CrossRef]
- Kweon, B.-S.; Mohai, P.; Lee, S.; Sametshaw, A.M. Proximity of public schools to major highways and industrial facilities, and students’ school performance and health hazards. Environ. Plan B Urban Anal. City Sci. 2018, 45, 312–329. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Nadybal, S. Social disparities in exposure to noise at public schools in the contiguous United States. Environ. Res. 2019, 175, 257–265. [Google Scholar] [CrossRef]
- Hauptman, M.; Gaffin, J.M.; Petty, C.R.; Sheehan, W.J.; Lai, P.S.; Coull, B.; Gold, D.R.; Phipanakul, W. Proximity to major roadways and asthma symptoms in the school inner-city asthma study. J. Clin. Immunol. 2020, 145, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.; Martin, R.; Van Kempen, E.; Alfred, T.; Head, J.; Davies, H.W.; Stansfeld, S.A. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: The RANCH project. Am. J. Epidemiol. 2006, 163, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Shield, B.; Dockrell, J. The effects of classroom noise on children’s academic attainments of primary school children. J. Acoust. Soc. Am. 2008, 123, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Mohai, P.; Kweon, B.-S.; Lee, S.; Ard, K. Air pollution around schools is linked to poorer student health and academic performance. Health Aff. 2011, 30, 852–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grineski, S.E.; Clarke-Reyna, S.E.; Collins, T.W. School-based exposure to hazardous air pollutants and grade point average: A multi-level study. Environ. Res. 2015, 147, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grineski, S.E.; Collins, T.W.; Adkins, D.E. Hazardous air pollutants are associated with worse performance in reading, math, and science among US primary schoolchildren. Environ. Res. 2020, 181, 108925. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Eitland, E.; Kloog, I.; Schwartz, J.; Allen, J. Impact of particulate matter exposure and surrounding “Greenness” on chronic absenteeism in Massachusetts public schools. Int. J. Environ. Res. Public Health 2017, 14, 207. [Google Scholar] [CrossRef] [Green Version]
- Jerrett, M.; Shankardass, K.; Berhane, K.; Gauderman, W.J.; Künzli, N.; Avol, E.; Gilliand, F.; Lurmann, F.; Molitar, J.N.; Molitor, J.T.; et al. Traffic-related air pollution and asthma onset in children: A prospective cohort study with individual exposure measurement. Environ. Health Perspect. 2008, 116, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, J. The neurological effects of air pollution in children. Eur. Respir. J. 2008, 32, 535–537. [Google Scholar] [CrossRef]
- Gehring, U.; Gruzieva, O.; Agius, R.M.; Beelen, R.; Custovic, A.; Cyrys, J.; Eeftens, M.; Flexeder, C.; Fuertes, E.; Heinrich, J.; et al. Air pollution exposure and lung function in children: The ESCAPE project. Environ. Health Perspect. 2013, 121, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Klatte, M.; Bergström, K.; Lachmann, T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front. Psychol. 2013, 4, 578. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Basner, M.; Clark, C.; Hansell, A.; Hileman, J.I.; Janssen, S.; Shepherd, K.; Sparrow, V. Aviation noise impacts: State of the science. Noise Health 2017, 19, 41–50. [Google Scholar] [CrossRef]
- van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-temporal regression kriging for modelling urban NO2 concentrations. Int. J. Geogr. Inf. Sci. 2020, 34, 851–865. [Google Scholar] [CrossRef] [Green Version]
- Chatkin, J.; Correa, L.; Santos, U. External environmental pollution as a risk factor for asthma. Clin. Rev. Allergy Immunol. 2021, 62, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Ran, Z.; Wang, X.; Wu, Q.; Zhan, N.; Yi, Z.; Jin, T. Traffic-related organic and inorganic air pollution and risk of development of childhood asthma: A meta-analysis. Environ. Res. 2021, 194, 110493. [Google Scholar] [CrossRef]
- Gunier, R.B.; Hertz, A.; von Behren, J.; Reynolds, P. Traffic density in California: Socioeconomic and ethnic differences among potentially exposed children. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 240–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.S.; Smorodinsky, S.; Kim, J.J.; McLaughlin, R.; Ostro, B. Proximity of California public schools to busy roads. Environ. Health Perspect. 2004, 112, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, J.; Zandbergen, P.A. Children at risk: Measuring racial/ethnic disparities in potential exposure to air pollution at school and home. J. Epidemiol. Community Health 2007, 61, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, S.L.; Eliot, M.N.; Carlson, L.; Finn, J.; MacIntosh, D.L.; Suh, H.H.; Wellenius, G.A. Proximity of US schools to major roadways: A nationwide assessment. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Gaffron, P.; Niemeier, D. School locations and traffic emissions—Environmental (in)justice findings using a new screening method. Int. J. Environ. Res. Publ. Health 2015, 12, 2009–2025. [Google Scholar] [CrossRef] [Green Version]
- Grineski, S.E.; Collins, T.W. Geographic and social disparities in exposure to air neurotoxicants at U.S. public schools. Environ. Res. 2018, 161, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, M.J.; Ford, B.; Anenberg, S.C.; Cooper, M.J.; Fischer, E.V.; Hammer, M.S.; Magzamen, S.; Martin, R.V.; van Donkelaar, A.; Volckens, J.; et al. Disparities in air pollutants across racial, ethnic, and poverty groups at US public schools. GeoHealth 2022, e2022GH000672. [Google Scholar] [CrossRef]
- These States Have the Most Children Living in Poverty. USA Today. 13 November. Available online: https://www.usatoday.com/story/money/2020/11/13/how-many-children-live-in-poverty-in-your-state/114707092/ (accessed on 15 December 2022).
- Roadway Pollution Putting 80,000 Area Schoolkids at Risk. Houston Chronicle. Available online: https://www.houstonchronicle.com/news/science-environment/article/Roadway-pollution-putting-80-000-area-schoolkids-5085251.php (accessed on 15 December 2022).
- Texas Education Agency Public Open Data Site. Available online: https://schoolsdata2-tea-texas.opendata.arcgis.com/ (accessed on 15 December 2022).
- Brook, J.R.; Burnett, R.T.; Dann, T.F.; Cakmak, S.; Goldberg, M.S.; Fan, X.; Wheeler, A.J. Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S36–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Brook, J.R. Evaluating multipollutant exposure and urban air quality: Pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ. Health Perspect. 2014, 122, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. Highresolution air pollution mapping with Google Street View cars: Exploiting big data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Bechle, M.; Hankey, S.; Sheppard, L.; Szpiro, A.A.; Marshall, J.D. Concentrations of criteria pollutants in the contiguous U.S., 1979 – 2015: Role of prediction model parsimony in integrated empirical geographic regression. PLoS ONE 2020, 15, e0228535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, J.; Collins, T.W.; Grineski, S.E.; Aun, J.J. Air pollution exposure disparities in US public housing developments. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.W.; Nadybal, S.; Grineski, S.E. Sonic injustice: Disparate residential exposures to transport noise from road and aviation sources in the continental United States. J. Trans. Geo. 2020, 82, 102604. [Google Scholar] [CrossRef]
- US Department of Transportation National Transportation Noise Map. Available online: https://www.bts.gov/geospatial/national-transportation-noise-map (accessed on 15 December 2022).
- Méline, J.; Van Hulst, A.; Thomas, F.; Karusisi, N.; Chaix, B. Transportation noise and annoyance related to road traffic in the French RECORD study. Int. J. Health Geogr. 2013, 12, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Rural-Urban Commuting Area Codes. Available online: https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ (accessed on 15 December 2022).
- Pastor, M.; Morello-Frosch, R.; Sadd, J.L. Breathless: Schools, air toxics, and environmental justice in California. Policy Stu. J. 2006, 34, 337–362. [Google Scholar] [CrossRef] [Green Version]
- Nega, T.H.; Chihara, L.; Smith, K.; Jayaraman, M. Traffic noise and inequality in the twin cities, Minnesota. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 601–619. [Google Scholar] [CrossRef]
- Casey, J.A.; Morello-Frosch, R.; Mennitt, D.J.; Fristrup, K.; Ogburn, E.L.; James, P. Race/ethnicity, socioeconomic status, residential segregation, and spatial variation in noise exposure in the contiguous United States. Environ. Health Perspect. 2017, 125. [Google Scholar] [CrossRef] [Green Version]
- Perera, F.P. Children are likely to suffer most from our fossil fuel addiction. Environ. Health Perspect. 2008, 116, 987–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenson, C.; Wheeler, A.J.; Carver, A.; Donaire-Gonzalez, D.; Alvarado-Molina, M.; Nieuwenhuijsen, M.; Tham, R. The impact of traffic-related air pollution on child and adolescent academic Performance: A systematic review. Environ. Int. 2021, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
Min. | Max. | Mean | SD | |
---|---|---|---|---|
Dependent variables: | ||||
Air pollution exposure: mean NO2 concentration in parts per billion in census block group of school location: 2011–2015 | 1.327 | 17.676 | 6.338 | 2.664 |
Noise exposure: road noise level in A-weighted decibels (dB(A)) within 500 meters of school: 2016 | 0.000 | 62.828 | 48.919 | 13.977 |
Independent variables: | ||||
Total number of students | 1 | 5947 | 634 | 523 |
% Students: White | 0.000 | 100.000 | 50.930 | 29.687 |
% Students: Hispanic or Latino | 0.000 | 100.000 | 50.930 | 29.687 |
% Students: Black or African-American | 0.000 | 100.000 | 12.085 | 16.132 |
% Students: Asian or Pacific Islander | 0.000 | 84.570 | 3.110 | 7.042 |
% Students: multi-racial or other minority race | 0.000 | 33.333 | 2.688 | 2.384 |
% Students: free or reduced lunch eligible | 0.000 | 99.849 | 55.262 | 26.708 |
Highest grade served: pre-elementary (early education–1st) | 0.000 | 1.000 | 0.003 | n/a |
Highest grade served: elementary (2nd–6th) | 0.000 | 1.000 | 0.530 | n/a |
Metropolitan (RUCA code of census tract: 1–3) | 0.000 | 1.000 | 0.800 | n/a |
Micropolitan (RUCA code of census tract: 4–6) | 0.000 | 1.000 | 0.090 | n/a |
Q1: Lowest 25% | Q2 | Q3 | Q4: Highest 25% | Q4-Other Schools 1 | Q4–Q1: Difference | |
---|---|---|---|---|---|---|
NO2 concentration in parts per billion: | ||||||
% Students: White | 49.36% | 34.06% | 22.92% | 14.71% | −18.49% ** | −34.64% ** |
% Students: Hispanic or Latino | 39.46% | 47.63% | 52.42% | 65.11% | 17.49% ** | 25.65% ** |
% Students: Black or African-American | 6.75% | 11.27% | 16.00% | 13.74% | 1.63% ** | 6.99% ** |
% Students: Asian or Pacific Islander | 1.46% | 4.02% | 5.85% | 4.36% | 0.21% ** | 2.90% ** |
% Students: multi-racial or other minority | 2.97% | 3.02% | 2.82% | 2.08% | −0.85% ** | −0.89% ** |
% Students: free or reduced lunch eligible | 46.74% | 45.66% | 51.65% | 65.06% | 16.70% ** | 18.32% ** |
Road noise level in dB(A): | ||||||
% Students: White | 30.45% | 26.25% | 27.89% | 28.13% | −0.01% | −2.32% ** |
% Students: Hispanic or Latino | 50.41% | 52.06% | 53.03% | 54.13% | 3.50% ** | 3.07% ** |
% Students: Black or African-American | 12.11% | 11.02% | 11.98% | 15.18% | 2.30% ** | 3.72% ** |
% Students: Asian or Pacific Islander | 4.18% | 4.78% | 4.45% | 3.39% | −1.09% ** | −0.79% ** |
% Students: multi-racial or other minority | 2.85% | 2.71% | 2.65% | 2.56% | −0.18% ** | −0.28% ** |
% Students: free or reduced lunch eligible | 51.16% | 53.00% | 53.82% | 53.77% | 1.11% ** | 2.61% ** |
Beta | Lower 95% CI | Upper 95% CI | Exp(Beta) | p-Value | |
---|---|---|---|---|---|
Total number of students | 0.006 | −0.005 | 0.017 | 1.006 | 0.294 |
% Students: Hispanic or Latino | 0.307 | 0.279 | 0.336 | 1.359 | <0.001 |
% Students: Black or African-American | 0.163 | 0.135 | 0.192 | 1.177 | <0.001 |
% Students: Asian or Pacific Islander | 0.114 | 0.091 | 0.137 | 1.121 | <0.001 |
% Students: multi-racial/other minority | 0.048 | 0.026 | 0.069 | 1.049 | <0.001 |
% Students: free/reduced lunch eligible | −0.065 | −0.094 | −0.036 | 0.937 | <0.001 |
Pre-elementary school | 0.053 | 0.012 | 0.094 | 1.054 | 0.011 |
Elementary school | 0.022 | 0.002 | 0.042 | 1.022 | 0.030 |
Metropolitan | 0.316 | 0.267 | 0.366 | 1.372 | <0.001 |
Micropolitan | 0.017 | −0.034 | 0.069 | 1.017 | 0.509 |
Intercept | 1.535 | 1.499 | 1.572 | <0.001 | |
Scale | 0.017 |
Beta | Lower 95% CI | Upper 95% CI | Exp(Beta) | p-Value | |
---|---|---|---|---|---|
Total number of students | 0.001 | −0.005 | 0.008 | 1.001 | 0.719 |
% Students: Hispanic or Latino | −0.015 | −0.032 | 0.002 | 0.985 | 0.088 |
% Students: Black or African-American | −0.002 | −0.013 | 0.009 | 0.998 | 0.757 |
% Students: Asian or Pacific Islander | 0.005 | −0.006 | 0.015 | 1.005 | 0.364 |
% Students: multi-racial/other minority | −0.007 | −0.018 | 0.005 | 0.993 | 0.259 |
% Students: free/reduced lunch eligible | 0.037 | 0.019 | 0.055 | 1.038 | <0.001 |
Pre-elementary school | −0.012 | −0.043 | 0.019 | 0.988 | 0.463 |
Elementary school | −0.039 | −0.054 | −0.025 | 0.962 | <0.001 |
Metropolitan | 0.033 | 0.003 | 0.064 | 1.034 | 0.031 |
Micropolitan | 0.018 | −0.016 | 0.053 | 1.018 | 0.301 |
Intercept | 3.882 | 3.854 | 3.910 | <0.001 | |
Scale | 2.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, J.; Aun, J.J. Social Inequities in Exposure to Traffic-Related Air and Noise Pollution at Public Schools in Texas. Int. J. Environ. Res. Public Health 2023, 20, 5308. https://doi.org/10.3390/ijerph20075308
Chakraborty J, Aun JJ. Social Inequities in Exposure to Traffic-Related Air and Noise Pollution at Public Schools in Texas. International Journal of Environmental Research and Public Health. 2023; 20(7):5308. https://doi.org/10.3390/ijerph20075308
Chicago/Turabian StyleChakraborty, Jayajit, and Jacob J. Aun. 2023. "Social Inequities in Exposure to Traffic-Related Air and Noise Pollution at Public Schools in Texas" International Journal of Environmental Research and Public Health 20, no. 7: 5308. https://doi.org/10.3390/ijerph20075308
APA StyleChakraborty, J., & Aun, J. J. (2023). Social Inequities in Exposure to Traffic-Related Air and Noise Pollution at Public Schools in Texas. International Journal of Environmental Research and Public Health, 20(7), 5308. https://doi.org/10.3390/ijerph20075308