Mental Health and Personality Characteristics of University Students at Risk of Smartphone Overdependence
Abstract
1. Introduction
1.1. Smartphone Overdependence
1.2. Smartphone Overdependence and Mental Health
1.3. Smartphone Overdependence and Multiphasic Personality Inventory (MMPI-II-RF)
- How do scores on MMPI-2-RF scales differ between a smartphone overdependence group and a general user group?
- What are the relationships between smartphone overdependence and scores on the MMPI-2-RF scales?
- Which of the MMPI-2-RF scales can predict smartphone overdependence?
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Smartphone Overdependence Scale
2.2.2. Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF)
2.3. Statistical Analysis
3. Results
3.1. Rate of Smartphone Overdependence
3.2. Mental Health and Personality Characteristics of Smartphone Overdependence Group
3.3. Correlation between Smartphone Overdependence and MMPI-2-RF Scale Scores
3.4. Association of MMPI-2-RF Scales with Smartphone Overdependence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Science and ICT; Korea Information Society Agency. 2021 Smartphone Overdependence Survey; Ministry of Science and ICT: Seoul, Republic of Korea, 2022.
- Ministry of Science and ICT; Korea Internet Promotion Agency. 2021 Internet Usage Survey; Ministry of Science and ICT: Seoul, Republic of Korea, 2022.
- Lee, Y.C.; Kim, N.H.; Kwon, S.J.; Kim, B.S. The effects of adult attachment and covert narcissism on smartphone addiction in college students. Emot. Sci. 2020, 23, 103–112. [Google Scholar] [CrossRef]
- Seo, G.S.; Bang, S.Y. The relationship between smartphone addiction, life stress, and family communication in nursing students. J. Korean Soc. Ind. Sci. Technol. 2017, 18, 398–407. [Google Scholar]
- Yoo, T.J.; Kim, S.S. The effect of parenting attitude perceived by college students on depression and smartphone addiction. J. Psychiatr. Nurs. 2015, 24, 127–135. [Google Scholar]
- Choi, J.O. The effect of college students’ academic stress on smartphone overdependence-multimediate effects of job stress and depression. Youth Facil. Environ. 2017, 15, 65–73. [Google Scholar]
- Lee, S.R.; Kim, H.S. The effect of college students’ smartphone overdependence on college life adjustment: Focusing on the mediating effect of self-efficacy and the moderating effect of social support. Reg. World 2017, 41, 157–183. [Google Scholar]
- Jang, S.H.; Ha, Y.M. The effects of college students’ self-determination, depression, self-esteem, and impulsiveness on smartphone overdependence. Digit. Converg. Res. 2019, 17, 269–280. [Google Scholar]
- Seo, B.K.; Cha, S.S. The effect of depression in college students on smartphone overdependence: Focusing on the mediating effect of self-efficacy. J. Korean Contents Soc. 2020, 20, 478–486. [Google Scholar]
- Lee, S.R.; Kim, H.S.; Park, H.S. A study on the mediating effect of smartphone addiction in the relationship between college students’ anxiety and school life adjustment. J. Korean Comput. Inf. Soc. 2021, 26, 169–176. [Google Scholar]
- Ahn, J.A. College students’ smartphone use behavior and addiction: The effects of depression and impulsivity on addiction, and the effects of addiction on interpersonal relationships and satisfaction with college life. Media Sci. Res. 2016, 16, 128–162. [Google Scholar]
- Seong, J.M. Stress factors affecting smartphone addiction in college students: Moderating effects of social support and self-esteem. Ment. Health Soc. Work. 2014, 42, 5–32. [Google Scholar]
- Sellbom, M.; Wygant, D.B.; Ben-Porath, Y.S. Forensic Applications of the MMPI-2-RF: A Casebook; College of Minnesota Press: Minneapolis, MN, USA, 2018. [Google Scholar]
- Griffiths, M.D. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef]
- Korea Information Society Agency. Smartphone Overdependence Policy Report; Korea Information Society Agency: Daegu, Republic of Korea, 2016.
- Internet Addiction Prevention Center. Available online: https://www.iapc.or.kr/eng/index.do (accessed on 2 December 2022).
- Perales, J.C.; King, D.L.; Navas, J.F.; Schimmenti, A.; Sescousse, G.; Starcevic, V.; van Holst, R.J.; Billieux, J. Learning to lose control: A process-based account of behavioral addiction. Neurosci. Biobehav. Rev. 2020, 108, 771–780. [Google Scholar] [CrossRef]
- Sassover, E.; Weinstein, A. Should compulsive sexual behavior (CSB) be considered as a behavioral addiction? A debate paper presenting the opposing view. J. Behav. Addict. 2022, 11, 166–179. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. ICD-11 for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en#http%3a%2f%2fid.who.int%2ficd%2fentity%2f1448597234 (accessed on 2 December 2022).
- Lee, Y.S. The effects of self-efficacy and depression on smartphone overdependence in nursing students. Humanit. Soc. Sci. 2021, 12, 3027–3040. [Google Scholar]
- Song, H.S. The Effect of Smartphone Use Motivation on Smartphone Addiction in College Students: Focusing on the Moderating Effects of Self-Regulation and Adult Attachment. Ph.D. Thesis, Chon Buk National College, Jeonju, Republic of Korea, 2016. [Google Scholar]
- Hwang, K.H.; Yu, Y.S.; Cho, O.H. Upper extremity pain, anxiety, depression, and interpersonal relationships according to the degree of smartphone addiction in college students. Korea Contents Assoc. 2021, 12, 365–375. [Google Scholar] [CrossRef]
- Joo, H.J.; Jeon, H.S.; Park, M.K. The effects of stress, self-efficacy, and self-control on smartphone addiction in college students. Digital Converg. Res. 2019, 17, 395–407. [Google Scholar]
- Sung, M.H.; Nam, H.R. The effects of stress coping style, interpersonal ability, and self-esteem on smartphone addiction in nursing students. J. Korean Soc. Ind. Sci. Technol. 2017, 18, 61–70. [Google Scholar]
- Yoo, J.H.; Cheon, E.Y.; Kim, H.J. Effects of Empathy, Self-control, and Smartphone Dependency on Interpersonal Relationship in Nursing Students. Journal of the Korean Academia-industrial cooperation Society. 2020, 21, 82–90. [Google Scholar]
- Ben-Porath, Y.S.; Tellegen, A. MMPI-2RF: Manual for Administration, Scoring, and Interpretation; College of Minnesota Press: Minneapolis, MN, USA, 2008/2011. [Google Scholar]
- Butcher, J.N.; Graham, J.R.; Ben-Porath, Y.S.; Tellegen, A.; Dahlstrom, W.G.; Kaemmer, B. MMPI-2; The University of Minnesota: Minneapolis, MN, USA, 1989. [Google Scholar]
- Ben-Porath, Y.S. Interpreting the MMPI-2RF; College of Minnesota Press: Minneapolis, MN, USA, 2012. [Google Scholar]
- Lim, J.Y. Multidimensional personality test II (MMPI-2) profiles of college students at risk of Internet game addiction. Asian Educ. Res. 2005, 6, 21–32. [Google Scholar]
- Seo, B.K.; Lee, S.H. A study on the MMPI-2 profile of adults at risk of Internet addiction. J. Korean Contents Soc. 2017, 17, 88–99. [Google Scholar]
- Jung, K.C. The relationship between mental health, internet addiction and smartphone addiction in college students. J. Korean Contents Soc. 2016, 16, 655–665. [Google Scholar] [CrossRef]
- Butcher, J.N.; Williams, C.L.; Graham, J.R.; Archer, R.P.; Tellegen, A.; Ben-Porath, Y.S.; Kaemmer, B. MMPI-A; The University of Minnesota: Minneapolis, MN, USA, 1992. [Google Scholar]
- Lim, J.Y.; Kim, M.S. MMPI-A profiles of adolescents at high risk of Internet addiction. Korean J. Psychol. Women 2002, 7, 93–108. [Google Scholar]
- Lim, J.Y. Psychological characteristics of adolescents at risk of Internet addiction and alcohol abuse: Focusing on the MMPI-A. Korean J. Clin. Psychol. 2009, 28, 629–638. [Google Scholar]
- Guglielmucci, F.; Granieri, A. Personality profiles and problematic Internet use: A study with a sample of Italian adolescents. Clin. Neuropsychiatry 2017, 14, 94–103. [Google Scholar]
- Corey, D.M.; Ben-Porath, Y.S. Assessing Police and Other Public Safety Personnel Using the MMPI-2-RF: A Practical Guide; College of Minnesota Press: Minneapolis, MN, USA, 2018. [Google Scholar]
- Cho, S.H.; Jeon, S.J. Factors related to smartphone addiction in college students. Stress 2016, 24, 13–22. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.S. A study on gender differences in smartphone application types and smartphone addiction. J. Internet Electron. Commer. 2015, 15, 213–227. [Google Scholar]
- Kliestik, T.; Scott, J.; Musa, H.; Suler, P. Addictive Smartphone Behavior, Anxiety Symptom Severity, and Depressive Stress. Anal. Metaphys. 2020, 19, 45–51. [Google Scholar] [CrossRef]
- Nuri, C.; Direktör, C.; Arnavut, A. The mediation effects of smartphone addiction on relationship between aggression and nomophobia. World J. Educ. Technol. Curr. Issues 2021, 13, 106–114. [Google Scholar] [CrossRef]
- Kim, M.O.; Kim, H.; Kim, K.; Ju, S.; Choi, J.; Yu, M.I. Smartphone addiction:(focused depression, aggression and impulsion) among college students. Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Yilmaz, R.; Sulak, S.; Griffiths, M.D.; Yilmaz, F.G.K. An Exploratory Examination of the Relationship Between Internet Gaming Disorder, Smartphone Addiction, Social Appearance Anxiety and Aggression Among Undergraduate Students. J. Affect. Disord. Rep. 2023, 11, 100483. [Google Scholar] [CrossRef]
Smartphone Overdependence User Group (N = 163) | Smartphone General User Group (N = 609) | Total (N = 772) | χ2/t | ||
---|---|---|---|---|---|
sex | male | 45 (15.7) | 241 (84.3) | 286 (37.0) | 7.894 ** |
female | 118 (24.3) | 368 (75.7) | 486 (63.0) | ||
smartphone overdependence | 25.83 (2.04) | 18.61 (3.51) | 20.14 (4.40) | 25.15 *** | |
control failure | 9.19 (1.07) | 6.51 (1.70) | 7.08 (1.93) | 19.08 *** | |
salience | 8.23 (1.19) | 5.89 (1.40) | 6.38 (1.66) | 19.59 *** | |
problematic results | 8.41 (1.15) | 6.21 (1.61) | 6.67 (1.82) | 15.76 *** |
MMPI-2-RF Scales | Smartphone Overdependence User Group | Smartphone General User Group | t | |
---|---|---|---|---|
(N = 163) | (N = 609) | |||
M (SD) | M (SD) | |||
Higher-Order (H-O) Scales | EID | 52.28 (13.03) | 44.14 (10.32) | 71.12 *** |
THD | 44.01 (6.76) | 42.02 (5.41) | 15.57 *** | |
BXD | 47.01 (7.35) | 43.55 (6.45) | 34.97 *** | |
Restructured Clinical (RC) Scales | RCd | 51.40 (11.75) | 43.69 (9.81) | 72.91 *** |
RC1 | 48.00 (9.39) | 44.80 (7.40) | 21.28 *** | |
RC2 | 48.99 (8.91) | 45.39 (8.13) | 24.21 *** | |
RC3 | 44.63 (7.34) | 41.21 (6.75) | 31.94 *** | |
RC4 | 45.17 (7.09) | 41.32 (6.33) | 45.24 *** | |
RC6 | 44.39 (7.30) | 41.55 (6.00) | 26.18 *** | |
RC7 | 52.33 (10.40) | 46.03 (8.13) | 68.07 *** | |
RC8 | 46.55 (8.45) | 44.17 (6.40) | 15.43 *** | |
RC9 | 46.82 (7.63) | 44.12 (7.12) | 17.94 *** | |
Specific Problems | ||||
Somatic/Cognitive Scales | MLS | 50.76 (9.46) | 47.05 (8.38) | 23.89 *** |
GIC | 49.89 (10.94) | 46.64 (8.81) | 15.70 *** | |
HPC | 48.02 (10.72) | 44.72 (8.04) | 18.58 *** | |
NUC | 49.82 (8.38) | 47.33 (7.07) | 14.66 *** | |
COG | 52.02 (11.95) | 44.78 (8.39) | 78.80 *** | |
Internalizing Scales | SUI | 45.93 (7.11) | 43.85 (5.46) | 16.22 *** |
HLP | 48.10 (10.30) | 42.77 (7.06) | 59.25 *** | |
SFD | 53.88 (11.58) | 48.21 (10.47) | 36.09 *** | |
NFC | 53.40 (10.14) | 46.92 (8.42) | 69.65 *** | |
STW | 56.64 (12.65) | 48.72 (10.81) | 35.78 *** | |
AXY | 47.05 (7.43) | 44.32 (5.66) | 25.93 *** | |
ANP | 50.58 (11.27) | 46.30 (9.60) | 23.71 *** | |
BRF | 49.01 (8.60) | 45.82 (7.25) | 22.94 *** | |
MSF | 50.77 (11.24) | 48.88 (10.03) | 4.33 * | |
Externalizing Scales | JCP | 46.78 (7.22) | 44.37 (6.62) | 16.36 *** |
SUB | 44.42 (6.78) | 43.09 (5.91) | 6.13 * | |
AGG | 48.77 (9.52) | 44.32 (7.48) | 40.29 *** | |
ACT | 47.06 (8.05) | 45.36 (8.06) | 5.75 * | |
Interpersonal Scales | FML | 47.05 (10.60) | 42.54 (7.91) | 35.73 *** |
IPP | 53.81 (11.24) | 52.73 (10.62) | 1.30 | |
SAV | 51.63 (12.93) | 48.59 (11.06) | 9.01 ** | |
SHY | 56.56 (12.68) | 51.21 (10.98) | 28.56 *** | |
DSF | 49.26 (10.37) | 46.39 (9.26) | 11.75 *** | |
Interest Scales | AES | 51.42 (9.35) | 51.47 (9.58) | 0.004 |
MEC | 43.69 (7.65) | 45.27 (8.60) | 4.54 * | |
Personality Psychopathology Five (PSY-5) Scales, Revised | AGGR_r | 45.45 (9.03) | 45.09 (7.64) | 0.26 |
PSYC_r | 43.69 (7.09) | 41.91 (5.97) | 10.53 *** | |
DISC_r | 45.93 (7.12) | 44.15 (7.27) | 7.75 ** | |
NEGE_r | 54.59 (12.14) | 47.88 (10.39) | 49.83 *** | |
INTR_r | 49.66 (9.37) | 47.34 (9.26) | 8.06 ** |
MMPI-2-RF Scales | r | |
---|---|---|
Higher-Order (H-O) Scales | EID | 0.333 *** |
THD | 0.154 *** | |
BXD | 0.252 *** | |
Restructured Clinical (RC) Scales | RCd | 0.357 *** |
RC1 | 0.192 *** | |
RC2 | 0.176 *** | |
RC3 | 0.219 *** | |
RC4 | 0.246 *** | |
RC6 | 0.178 *** | |
RC7 | 0.351 *** | |
RC8 | 0.185 *** | |
RC9 | 0.242 *** | |
Specific Problems | ||
Somatic/Cognitive Scales | MLS | 0.195 *** |
GIC | 0.135 *** | |
HPC | 0.160 *** | |
NUC | 0.132 *** | |
COG | 0.332 *** | |
Internalizing Scales | SUI | 0.158 *** |
HLP | 0.237 *** | |
SFD | 0.232 *** | |
NFC | 0.356 *** | |
STW | 0.275 *** | |
AXY | 0.176 *** | |
ANP | 0.277 *** | |
BRF | 0.223 *** | |
MSF | 0.107 ** | |
Externalizing Scales | JCP | 0.123 *** |
SUB | 0.107 ** | |
AGG | 0.265 *** | |
ACT | 0.162 *** | |
Interpersonal Scales | FML | 0.225 *** |
IPP | 0.019 | |
SAV | 0.094 ** | |
SHY | 0.223 *** | |
DSF | 0.109 ** | |
Interest Scales | AES | −0.043 |
MEC | −0.134 *** | |
PSY-5 (Personality Psychopathology Five) Scales, Revised | AGGR_r | 0.031 |
PSYC_r | 0.150 *** | |
DISC_r | 0.112 ** | |
NEGE_r | 0.330 *** | |
INTR_r | 0.087 * |
OR (95% CI) | p | |
---|---|---|
Higher-Order (H-O) Scales | ||
EID | 1.051 (1.034–1.069) | 0.000 |
BXD | 1.059 (1.029–1.090) | 0.000 |
Restructured Clinical (RC) Scales | ||
RC4 | 1.050 (1.018–1.084) | 0.002 |
Somatic/Cognitive Scales | ||
COG | 1.064 (1.042–1.085) | 0.000 |
Internalizing Scales | ||
HLP | 1.323 (0.871–2.009) | 0.002 |
NFC | 1.044 (1.018–1.071) | 0.001 |
Externalizing Scales | ||
JCP | 1.036 (1.009–1.063) | 0.008 |
AGG | 1.055 (1.030–1.080) | 0.000 |
Interpersonal Scales | ||
FML | 1.043 (1.022–1.064) | 0.000 |
SHY | 1.031 (1.013–1.049) | 0.001 |
PSY-5 (Personality Psychopathology Five) Scales, Revised | ||
DISC_r | 1.034 (1.006–1.063) | 0.016 |
NEGE_r | 1.046 (1.027–1.064) | 0.000 |
INTR_r | 1.030 (1.008–1.052) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, B.-K.; Hwang, Y.; Cho, H. Mental Health and Personality Characteristics of University Students at Risk of Smartphone Overdependence. Int. J. Environ. Res. Public Health 2023, 20, 2331. https://doi.org/10.3390/ijerph20032331
Seo B-K, Hwang Y, Cho H. Mental Health and Personality Characteristics of University Students at Risk of Smartphone Overdependence. International Journal of Environmental Research and Public Health. 2023; 20(3):2331. https://doi.org/10.3390/ijerph20032331
Chicago/Turabian StyleSeo, Bo-Kyung, Yoobin Hwang, and Hyunseob Cho. 2023. "Mental Health and Personality Characteristics of University Students at Risk of Smartphone Overdependence" International Journal of Environmental Research and Public Health 20, no. 3: 2331. https://doi.org/10.3390/ijerph20032331
APA StyleSeo, B.-K., Hwang, Y., & Cho, H. (2023). Mental Health and Personality Characteristics of University Students at Risk of Smartphone Overdependence. International Journal of Environmental Research and Public Health, 20(3), 2331. https://doi.org/10.3390/ijerph20032331