Chronic Effects of Asymmetric and Symmetric Sport Load in Varsity Athletes across a Six Month Sport Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- Healthy skeletal system;
- -
- Eligibility for medical certification for competitive sports;
- -
- Age older than 19 years;
- -
- Right-handed laterality in order to isolate this variable;
- -
- At least 6 years of practice in the respective sport;
- -
- A participation in the national university championships.
- -
- Profiles of elite or high-level athletes from the past or present;
- -
- Skeletal or muscular pathologies.
2.2. Procedures
2.3. General Description of the Training of the Two Groups
2.4. Instrumentation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, J.W.; Park, S.A.; Tillman, M.D. Lower trunk kinematics and muscle activity during different types of tennis serves. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 24. [Google Scholar] [CrossRef][Green Version]
- Gallotta, M.C.; Bonavolontà, V.; Zimatore, G.; Iazzoni, S.; Guidetti, L.; Baldari, C. Effects of Open (Racket) and Closed (Running) Skill Sports Practice on Children’s Attentional Performance. Open Sports Sci. J. 2020, 13, 105–113. [Google Scholar] [CrossRef]
- Zaina, F.; Donzelli, S.; Lusini, M.; Fusco, C.; Minnella, S.; Negrini, S. Tennis is not dangerous for the spine during growth: Results of a cross-sectional study. Eur. Spine J. 2016, 25, 2938–2944. [Google Scholar] [CrossRef] [PubMed]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and bilateral strength asymmetry among young elite athletes of various sports. Medicina 2020, 56, 683. [Google Scholar] [CrossRef]
- Sannicandro, I.; Cofano, G.; Rosa, R.A.; Piccinno, A. Balance training exercises decrease lower-limb strength asymmetry in young tennis players. J. Sports Sci. Med. 2014, 13, 397. [Google Scholar]
- Bussey, M.D. Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis? J. Sci. Med. Sport 2010, 13, 360–364. [Google Scholar] [CrossRef]
- Fortin, M.; Yuan, Y.; Battie’, M.C. Factors associated with paraspinal muscle asymmetry in size and composition in a general population sample of men. Phys. Ther. 2013, 93, 1540–1550. [Google Scholar] [CrossRef][Green Version]
- Maloney, S.J. The relationship between asymmetry and athletic performance: A critical review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14, 1993. [Google Scholar] [CrossRef]
- Jandrić, S.D. Scoliosis and sport. SportLogia 2015, 11, 1–10. [Google Scholar] [CrossRef][Green Version]
- d’Hemecourt, P.A.; Hresko, M.T. Spinal deformity in young athletes. Clin. Sports Med. 2012, 31, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Negrini, A. Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren. Scoliosis 2007, 2, 8. [Google Scholar] [CrossRef][Green Version]
- Everett, R.; Strutton, P.H.; McGregor, A.H. Do asymmetries exist in the trunk muscles and is this influenced by sporting task? Isokinet. Exerc. Sci. 2008, 16, 255–262. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Idoate, F.; Dorado, C.; Alayón, S.; Calbet, J.A. Large asymmetric hypertrophy of rectus abdominis muscle in professional tennis players. PLoS ONE 2010, 5, e15858. [Google Scholar] [CrossRef][Green Version]
- Sanchis-Moysi, J.; Idoate, F.; Izquierdo, M.; Calbet, J.A.; Dorado, C. Iliopsoas and gluteal muscles are asymmetric in tennis players but not in soccer players. PLoS ONE 2011, 6, e22858. [Google Scholar] [CrossRef][Green Version]
- Wojtys, E.M.; Ashton-Miller, J.A.; Huston, L.J.; Moga, P.J. The association between athletic training time and the sagittal curvature of the immature spine. Am. J. Sports Med. 2000, 28, 490–498. [Google Scholar] [CrossRef] [PubMed]
- VanDillen, L.R.; Bloom, N.J.; Gombatto, S.P.; Susco, T.M. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef][Green Version]
- Lundin, O.; Hellström, M.; Nilsson, I.; Swärd, L. Back pain and radiological changes in the thoraco-lumbar spine of athletes. A long-term follow-up. Scand. J. Med. Sci. Sports 2001, 11, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Poór, O.; Jeleň, M. Between-side differences in trunk rotational power in athletes trained in asymmetric sports. J. Back Musculoskelet. Rehabil. 2019, 32, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.; Rotstein, A.H.; Roebert, J.; Grabinski, R.; Malara, F.; O’Shea, T.; Wood, T.; Ornizzolo, M.; Kovalchik, S.; Reid, M. Lumbar spine abnormalities and facet joint angles in asymptomatic elite junior tennis players. Sports Med. Open 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Watanabe, K.; Michikawa, T.; Yonezawa, I.; Takaso, M.; Minami, S.; Soshi, S.; Tsuji, T.; Okada, E.; Abe, K.; Takahasi, M.; et al. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis. JBJS 2017, 99, 284–294. [Google Scholar] [CrossRef]
- Jayanthi, N.A.; LaBella, C.R.; Fischer, D.; Pasulka, J.; Dugas, L.R. Sports-specialized intensive training and the risk of injury in young athletes: A clinical case-control study. Am. J. Sports Med. 2015, 43, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, M.C.; Bonavolontà, V.; Emerenziani, G.P.; Franciosi, E.; Tito, A.; Guidetti, L.; Baldari, C. Acute effects of two different tennis sessions on dorsal and lumbar spine of adult players. J. Sports Sci. 2015, 33, 1173–1181. [Google Scholar] [CrossRef]
- Guidetti, L.; Bonavolontà, V.; Tito, A.; Reis, V.M.; Gallotta, M.C.; Baldari, C. Intra-and interday reliability of spine rasterstereography. Biomed Res. Int. 2013, 2013, 745480. [Google Scholar] [CrossRef]
- Schülein, S.; Mendoza, S.; Malzkorn, R.; Harms, J.; Skwara, A. Rasterstereographic evaluation of interobserver and intraobserver reliability in postsurgical adolescent idiopathic scoliosis patients. J. Spinal Disord. Tech. 2013, 26, E143–E149. [Google Scholar] [CrossRef]
- Mangone, M.; Raimondi, P.; Paoloni, M.; Pellanera, S.; Di Michele, A.; Di Renzo, S.; Vanadia, M.; Dimaggio, M.; Murgia, M.; Santilli, V. Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: Correlation between the Raimondi method and rasterstereography. Eur. Spine J. 2013, 22, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bonsignore, D. Tennis and scoliosis. In Proceedings of the 2nd European Congress on Sport Medicine and Science in Tennis, Rome, Italy, 3–4 December 1999. [Google Scholar]
- Swärd, L. The thoracolumbar spine in young elite athletes: Current concepts on the effects of physical training. Sports Med. 1992, 13, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Menge, M. Sport and scoliosis. Does asymmetrical strain promote the formation of scoliosis in adolescent? In Current Topics in Sport Medicine, Proceedings of the World Congress of Sport Medicine, Vienna, Austria, 28 June–4 July 1982; Bachl, N., Prokop, L., Suckert, R., Eds.; Urban & Schwarzenberg: Wien, Austria, 1984; pp. 962–970. [Google Scholar]
- Degenhardt, B.F.; Starks, Z.; Bhatia, S. Reliability of the DIERS Formetric 4D spine shape parameters in adults without postural deformities. BioMed Res. Int. 2020, 2020, 1796247. [Google Scholar] [CrossRef][Green Version]
- Sannicandro, I.; Piccinno, A.; Rosa, R.A.; De Pascalis, S. Correlation between functional asymmetry of professional soccer players and sprint. Brit. J. Sports Med. 2011, 45, 370–371. [Google Scholar]
- Patti, A.; Messina, G.; Palma, R.; Barcellona, M.; Brusa, J.; Iovane, A.; Palma, A. Comparison of posturographic parameters between young taekwondo and tennis athletes. J. Phys. Ther. Scie. 2018, 30, 1052–1055. [Google Scholar] [CrossRef][Green Version]
- Bonavolontà, V.; Cataldi, S.; Coluccia, A.; Giunto, A.; Fischetti, F. Sustainable Intervention for Health Promotion and Postural Control Improvement: Effects of Home-Based Oculomotor Training. Sustainability 2020, 12, 10552. [Google Scholar] [CrossRef]
- Baranto, A.; Hellström, M.; Cederlund, C.G.; Nyman, R.; Swärd, L. Back pain and MRI changes in the thoraco-lumbar spine of top athletes in four different sports: A 15-year follow-up study. Knee Surgery, Sports Traumatology. Arthroscopy 2009, 17, 1125–1134. [Google Scholar]
- Meyer, C.; Haumont, T.; Gauchard, G.C.; Leheup, B.; Lascombes, P.; Perrin, P.P. The practice of physical and sporting activity in teenagers with idiopathic scoliosis is related to the curve type. Scandin. J. Med. Sci. Sports 2008, 18, 751–755. [Google Scholar] [CrossRef]
- McMaster, M.E.; Lee, A.J.; Burwell, R.G. Physical activities of patients with adolescent idiopathic scoliosis (AIS): Preliminary longitudinal case–control study historical evaluation of possible risk factors. Scoliosis 2015, 10, 1–10. [Google Scholar] [CrossRef][Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
Group | N | Age | Height | Weight |
---|---|---|---|---|
Symmetric (S) | 22 | 25 ± 3.1 years | 168.2 ± 38.1 cm | 67.4 ± 17.4 kg |
Asymmetric (A) | 22 | 24 ± 2.9 years | 176.4 ± 8 cm | 72 ± 10.8 kg |
t test (p-value) | 0.07 | 0.92 | 0.65 |
Parameter | Unit | Description |
---|---|---|
Trunk length | mm | The distance from the vertebra prominens (VP) to the midpoint of the lumbar dimples (DM) |
Dimples distance | mm | The distance from dimple left (DL) to dimple right (DR) |
Antero-posterior flexion VPDM (trunk inclination) | ° | The angle between the line connecting VP-DM and an external plumb line |
Antero-posterior flexion VPDM (trunk inclination) | mm | The distance between VP and the connecting external plumb line |
Lateral flexion VPDM (trunk imbalance) | ° | The angle between the line connecting VP-DM and a plumb line passing through VP |
Lateral flexion VPDM (trunk imbalance) | mm | The lateral distance between VP and DM |
Pelvic inclination | ° | The angle between the line connecting DL and DR and the horizontal |
Pelvic inclination | mm | The difference in height between DL and DR |
Pelvic inclination (dimples) | ° | The mean vertical components of the surface normals at DL and DR |
Pelvic torsion | ° | The torsion of the surface normal of the DL and DR |
Pelvic rotation | ° | In the frontal plane, the angle of rotation of DR in relation to DL |
Kyphotic apex | mm | The location of the posterior apex of the sagittal profile |
Inflection point ITL | mm | The point of maximum negative surface inclination between the kyphotic apex (KA) and the lordotic apex |
Lordotic apex | mm | The location of the frontal apex of the sagittal profile in the lower region |
Inflection point ILS | mm | The point of maximum positive surface inclination in the region between the lordotic apex (LA) and the sacrum |
Cervical fleche | mm | The horizontal distance between the cervical apex and the tangent through the KA |
Lumbar fleche | mm | The horizontal distance between the LA and the tangent through the KA |
Kyphotic angle ICT-ITL | ° | The angle between the surface tangents and the ICT and ITL |
Lordotic angle ITL-ILS | ° | The angle between the surface tangents from ITL and ILS |
Pelvic antero-retroversion | ° | The angle of the vertical surface normals from the horizontal of the DM |
Right surface rotation | ° | The maximum value of the horizontal components of the surface normals on the symmetry line to the right |
Left Surface rotation | ° | The maximum value of the horizontal components of the surface normals on the symmetry line to the left |
Trunk torsion | ° | The maximum value of the horizontal components on vertebra prominens compared to the horizontal components of the symmetry |
Right Lateral deviation VPDM | mm | The maximum deviation of the midline of the spine from the VP-DM line to the right |
Left Lateral deviation VPDM | mm | The maximum deviation of the midline of the spine from the VP-DM line to the left |
Group | S Group | A Group | ||||
---|---|---|---|---|---|---|
Evaluation | Baseline | Intermediate | Final | Baseline | Intermediate | Final |
Parameter | ||||||
Trun length (mm) | 469.4 ± 22.8 | 470.4 ± 24.6 | 471.1 ± 23.1 | 468.6 ± 30.9 | 472.6 ± 24.6 | 470.2 ± 30.4 |
Dimples distance (mm) | 97.5 ± 9.3 | 98.9 ± 9.2 | 100.1 ± 11.8 | 100.8 ± 10 | 100.3 ± 10.3 | 101.2 ± 10.2 |
Antero-posterior flexion VPDM (°) | 3.1 ± 2.2 | 3.1 ± 2.4 | 2.8 ± 2.4 | 3.1 ± 2.4 | 3.1 ± 2.7 | 3.2 ± 2.5 |
Antero-posterior flexion VPDM (mm) | 24.3 ± 18.6 | 23.3 ± 21.2 | 21.4 ± 19.7 | 25.4 ± 19.4 | 25.8 ± 22.6 | 25.1 ± 20.1 |
Lateral flexion VPDM (°) | −0.7 ± 1.2 | −1 ± 1.1 | −0.9 ± 1.2 | −0.7 ± 0.9 | −0.9 ± 0.8 | −0.6 ± 0.9 |
Lateral flexion VPDM (mm) | −5.6 ± 9.4 | −7. ± 7.5 | −5.5 ± 8.8 | −6 ± 7.1 | −7.1 ± 6.9 | −7.1 ± 7.6 |
Pelvic inclination (°) | −1 ± 3.4 | 0.3 ± 4 | 0.2 ± 3.1 | −1.5 ± 2.9 | −1.1 ± 3 | −1 ± 3.2 |
Pelvic inclination (mm) | −1.7 ± 5.8 | 0.2 ± 7.3 | 0.9 ± 5.4 | −2.6 ± 5.1 | −1.7 ± 5.0 | −2.3 ± 4.9 |
Pelvic torsion (°) | 1.5 ± 2.6 | 1 ± 3.6 | 1.1 ± 2.5 | 1.3 ± 2.8 | 0.4 ± 3.3 | 1.4 ± 2.9 |
Pelvic inclination (dimples) (°) | 18.4 ± 6.5 | 18.9 ± 6.8 | 19.0 ± 6.8 | 21.4 ± 5.0 | 21.2 ± 4.3 | 21.5 ± 4.5 |
Pelvic rotation (°) | 0.15 ± 3.1 | −0.6 ± 3.1 | −2.6 ± 7.9 | −0.8 ± 3.4 | −6.0 ± 3.1 | −1.1 ± 3.8 |
iphotic apex (mm) | −183.3 ± 16.6 | −182.6 ± 19.6 | −182.5 ± 21.3 | −181.4 ± 25.2 | −184.0 ± 26.7 | −181.7 ± 26.2 |
Inflection point ITL (mm) | −306.4 ± 42.1 | −311.7 ± 42 | −308.3 ± 44.0 | −303.3 ± −300.6 | −300.6 ± 38.2 | −300.6 ± 38.2 |
Lordotic apex (mm) | −395.5 ± 28 | −395.5 ± 27.2 | −397.8 ± 30.6 | −390.7 ± 31.9 | −393.5 ± 29 | −391.0 ± 30.9 |
Inflection point ILS (mm) | −480.6 ± 30.6 | −482.4 ± 30.2 | −485.4 ± 28.8 | −470.74 ± 35.6 | −473.7 ± 32.3 | −457.3 ± 88 |
Cervical fleche (mm) | 73.4 ± 13.6 | 71.8 ± 16 | 72.2 ± 15.5 | 71 ± 15.5 | 70 ± 17.1 | 71.8 ± 16.2 |
Lumbar fleche (mm) | 38.7 ± 11.7 | 39.6 ± 12 | 41 ± 11.3 | 43.2 ± 13.7 | 44.1 ± 12 | 43.7 ± 12.1 |
iphotic angle (ICT-ITL max) (°) | 49.4 ± 8.5 | 49.2 ± 6.9 | 50.5 ± 8.2 | 49 ± 6.8 | 50.7 ± 8.7 | 48.6 ± 7.9 |
Lordotic angle (ITL-ILS max) (°) | 37.6 ± 8.1 | 38.1 ± 6.6 | 39.3 ± 11.9 | 40.3 ± 9.1 | 40.9 ± 9.0 | 40.3 ± 9.5 |
Pelvic antero-retroversion (°) | 16.3 ± 7.3 | 15.7 ± 7.3 | 16.1 ± 8 | 20.8 ± 7.6 | 20.7 ± 7 | 20.9 ± 7.4 |
Surface rotation (right) (°) | 3.4 ± 3.2 | 2.9 ± 2.3 | 3.7 ± 3.4 | 2.7 ± 3 | 2.3 ± 2.4 | 2.4 ± 3.0 |
Surface rotation (left) (°) | −4.7 ± 2.5 | −4.7 ± 2.6 | −6.5 ± 3.8 | −6.2 ± 3.4 | −6.2 ± 3.3 | −4.8 ± 2.3 |
Trun torsion (°) | 3.1 ± 6.5 | −0.9 ± 6.2 | 1.3 ± 5.3 | −0.4 ± 5 | −0.8 ± 5.4 | −0.2 ± 4.1 |
Lateral deviation VPDM R (mm) | 10.4 ± 5.7 | 10.4 ± 6.2 | 10.8 ± 5.4 | 5.9 ± 3.8 | 6.6 ± 3 | 6.8 ± 4 |
Lateral deviation VPDM L (mm) | −4.6 ± 4.4 | −3.1 ± 3.6 | −4.4 ± 4.1 | −2.7 ± 3 | −1.9 ± 2.2 | −2.7 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonavolontà, V.; Gallotta, M.C.; Zimatore, G.; Curzi, D.; Ferrari, D.; Vinciguerra, M.G.; Guidetti, L.; Baldari, C. Chronic Effects of Asymmetric and Symmetric Sport Load in Varsity Athletes across a Six Month Sport Season. Int. J. Environ. Res. Public Health 2023, 20, 2186. https://doi.org/10.3390/ijerph20032186
Bonavolontà V, Gallotta MC, Zimatore G, Curzi D, Ferrari D, Vinciguerra MG, Guidetti L, Baldari C. Chronic Effects of Asymmetric and Symmetric Sport Load in Varsity Athletes across a Six Month Sport Season. International Journal of Environmental Research and Public Health. 2023; 20(3):2186. https://doi.org/10.3390/ijerph20032186
Chicago/Turabian StyleBonavolontà, Valerio, Maria Chiara Gallotta, Giovanna Zimatore, Davide Curzi, Dafne Ferrari, Maria Giulia Vinciguerra, Laura Guidetti, and Carlo Baldari. 2023. "Chronic Effects of Asymmetric and Symmetric Sport Load in Varsity Athletes across a Six Month Sport Season" International Journal of Environmental Research and Public Health 20, no. 3: 2186. https://doi.org/10.3390/ijerph20032186