Counseling for Health: How Psychological Distance Influences Continuance Intention towards Mobile Medical Consultation
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Information Systems Continuance Model (ISCM)
2.2. Psychological Distance Theory (PDT)
3. Hypothesis Development
3.1. Immediacy (IM)
3.2. Telepresence (TP)
3.3. Intimacy (IN)
3.4. Substitutability (SU)
3.5. Satisfaction (SA)
3.6. Pandemic-Induced Anxiety (PA)
4. Methodology
4.1. Overview of Research Design
4.2. Measurement Development
4.3. Data Collection and Sample
4.4. Data Analysis Methods
5. Results
5.1. Measurement Model Analysis
5.2. Structural Model Analysis
5.3. Moderation Effects
5.4. Mediation Effects
5.5. Control Variables
6. Discussion
7. Conclusions
7.1. Implications
7.2. Limitations and Future Research Agendas
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct | Measurement Items | References |
---|---|---|
Immediacy (IM) | IM1: MMC allows me to access medical information at the best moment for me | Zhang et al. [48], Okazaki and Mendez [53] |
IM2: When I need a certain type of medical information immediately, I will use MMC | ||
IM3: When I cannot wait for a certain type of medical information, I will use MMC | ||
IM4: When I need to receive an urgent response, I will use MMC | ||
Telepresence (TP) | TP1: When using MMC, my body was in the room, but I felt my mind was inside the world created by MMC | Sun et al. [58] |
TP2: When using MMC, I felt that I was immersed in the world MMC had created | ||
TP3: MMC-generated world seemed to me to be “somewhere I visited” rather than “something I saw” | ||
TP4: I felt I was more in the “real world” than the “computer world” when I was using MMC | ||
Intimacy (IN) | INT1: When chatting with the friends using MMC, I feel like they truly understand me | Park and Lee [84], Lin et al. [64] |
INT2: When chatting with the friends using MMC, I feel like they are very close to me | ||
INT3: When chatting with the patients using MMC, I feel and understand their emotion | ||
INT4: Chatting with a person using MMC makes our relationship more special | ||
Substitutability (SU) | SUB1: MMC offers the same services as the offline medical consultation | Li [72] |
SUB2: MMC offers services in the same way as the offline medical consultation | ||
SUB3: MMC satisfies the same needs as the offline medical consultation | ||
SUB4: MMC is considered the same tool as the offline medical consultation for activities such as psychological counseling | ||
Pandemic-induced anxiety (PA) | PA1: I am anxious about the volatility of medical services prices during COVID | Wang et al. [52], Goyal et al. [85] |
PA2: I have a great fear of the supply shortage of medical resources during COVID | ||
PA3: I am usually seized with panic due to the perceived phenomena of medical resources shortage during COVID-19 | ||
PA4: I feel dizzy or lightheaded when I read or listen to the news about COVID | ||
PA5: I have trouble falling or staying asleep because I keep on thinking about the COVID issues | ||
Satisfaction (SA) | SA1: The MMC is trustworthy | Bhattacherjee [25] |
SA2: The MMC provider provides reliable information | ||
SA3: The MMC provider keeps promises and commitments | ||
SA4: The MMC provider’s behavior meets my expectations | ||
Continuance intention (CI) | CI1: I intend to continue using MMC rather than discontinue its use. | Bhattacherjee [25] |
CI2: My intention is to continue using MMC rather than to use any alternative means. | ||
CI3: If I could, I would like to continue my use of MMC in the future | ||
CI4: I intend to increase my use of MMC in the future |
Construct | Indicator | Substantive Factor Loading (R1) | R12 | Method Factor Loading (R2) | R22 |
---|---|---|---|---|---|
Immediacy (IM) | IM1 | 0.729 | 0.531 | 0.372 | 0.138 |
IM2 | 0.771 | 0.594 | 0.459 | 0.211 | |
IM3 | 0.778 | 0.605 | 0.461 | 0.213 | |
IM4 | 0.770 | 0.593 | 0.519 | 0.269 | |
Telepresence (TP) | TP1 | 0.767 | 0.588 | 0.397 | 0.158 |
TP2 | 0.747 | 0.558 | 0.416 | 0.173 | |
TP3 | 0.766 | 0.587 | 0.415 | 0.172 | |
TP4 | 0.706 | 0.498 | 0.388 | 0.151 | |
Intimacy (IN) | IN1 | 0.740 | 0.548 | 0.587 | 0.345 |
IN2 | 0.753 | 0.567 | 0.612 | 0.375 | |
IN3 | 0.745 | 0.555 | 0.561 | 0.315 | |
IN4 | 0.722 | 0.521 | 0.566 | 0.320 | |
Substitutability (SU) | SU1 | 0.768 | 0.590 | 0.560 | 0.314 |
SU2 | 0.753 | 0.567 | 0.534 | 0.285 | |
SU3 | 0.803 | 0.645 | 0.554 | 0.307 | |
SU4 | 0.710 | 0.504 | 0.537 | 0.288 | |
Pandemic-induced Anxiety (PA) | PA1 | 0.745 | 0.555 | 0.577 | 0.333 |
PA2 | 0.713 | 0.508 | 0.515 | 0.265 | |
PA3 | 0.746 | 0.557 | 0.544 | 0.296 | |
PA4 | 0.777 | 0.604 | 0.588 | 0.346 | |
PA5 | 0.799 | 0.638 | 0.606 | 0.367 | |
Satisfaction (SA) | SA1 | 0.777 | 0.604 | 0.616 | 0.380 |
SA2 | 0.740 | 0.548 | 0.543 | 0.295 | |
SA3 | 0.704 | 0.496 | 0.566 | 0.320 | |
SA4 | 0.712 | 0.507 | 0.534 | 0.285 | |
Continuance Intention (CI) | CI1 | 0.751 | 0.564 | 0.576 | 0.332 |
CI2 | 0.747 | 0.558 | 0.601 | 0.361 | |
CI3 | 0.733 | 0.537 | 0.610 | 0.372 | |
CI4 | 0.732 | 0.536 | 0.580 | 0.336 | |
Average | N. A | 0.748 | 0.561 | 0.531 | 0.282 |
References
- Camacho-Leon, G.; Faytong-Haro, M.; Carrera, K.; Molero, M.; Melean, F.; Reyes, Y.; Mautong, H.; De La Hoz, I.; Cherrez-Ojeda, I. A Narrative Review of Telemedicine in Latin America during the COVID-19 Pandemic. Healthcare 2022, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Budd, J.; Miller, B.S.; Manning, E.M.; Lampos, V.; Zhuang, M.; Edelstein, M.; Rees, G.; Emery, V.C.; Stevens, M.M.; Keegan, N. Digital Technologies in the Public-Health Response to COVID-19. Nat. Med. 2020, 26, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Yan, M. Physician-User Interaction and Users’ Perceived Service Quality: Evidence from Chinese Mobile Healthcare Consultation. Inf. Technol. People 2020, 33, 1403–1426. [Google Scholar] [CrossRef]
- IResearch. Available online: https://www.iresearch.com.cn/Detail/report?id=4057&isfree=0 (accessed on 5 September 2022).
- Statista. Available online: https://www.statista.com/statistics/1043739/china-leading-healthcare-apps-monthly-active-users/ (accessed on 11 May 2022).
- Song, T.; Deng, N.; Cui, T.; Qian, S.; Liu, F.; Guan, Y.; Yu, P. Measuring Success of Patients’ Continuous Use of Mobile Health Services for Self-Management of Chronic Conditions: Model Development and Validation. J. Med. Internet Res. 2021, 23, e26670. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.I.; Al-Samarraie, H.; Eldenfria, A.; Dodoo, J.E.; Alalwan, N. Users’ Intention to Continue Using MHealth Services: A DEMATEL Approach during the COVID-19 Pandemic. Technol. Soc. 2022, 68, 101862. [Google Scholar] [CrossRef]
- Lv, X.; Yang, Y.; Qin, D.; Cao, X.; Xu, H. Artificial Intelligence Service Recovery: The Role of Empathic Response in Hospitality Customers’ Continuous Usage Intention. Comput. Hum. Behav. 2022, 126, 106993. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Zhang, M.; Yang, J. Central or Peripheral? Cognition Elaboration Cues’ Effect on Users’ Continuance Intention of Mobile Health Applications in the Developing Markets. Int. J. Med. Inform. 2018, 116, 33–45. [Google Scholar] [CrossRef]
- Meng, F.; Guo, X.; Peng, Z.; Ye, Q.; Lai, K.-H. Trust and Elderly Users’ Continuance Intention Regarding Mobile Health Services: The Contingent Role of Health and Technology Anxieties. Inf. Technol. People 2021, 35, 259–280. [Google Scholar] [CrossRef]
- Chang, Y.W.; Hsu, P.Y.; Wang, Y.; Chang, P.Y. Integration of Online and Offline Health Services: The Role of Doctor-Patient Online Interaction. Patient Educ. Couns. 2019, 102, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Singh, J.B.; Chandwani, R.; Gupta, A. “Context” in Healthcare Information Technology Resistance: A Systematic Review of Extant Literature and Agenda for Future Research. Int. J. Inf. Manag. 2020, 51, 102044. [Google Scholar] [CrossRef]
- Baumel, A.; Muench, F.; Edan, S.; Kane, J.M. Objective User Engagement with Mental Health Apps: Systematic Search and Panel-Based Usage Analysis. J. Med. Internet Res. 2019, 21, e14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, T.; Bavin, L.; Lucassen, M.; Stasiak, K.; Hopkins, S.; Merry, S. Beyond the Trial: Systematic Review of Real-World Uptake and Engagement with Digital Self-Help Interventions for Depression, Low Mood, or Anxiety. J. Med. Internet Res. 2018, 20, e9275. [Google Scholar] [CrossRef] [PubMed]
- Trope, Y.; Liberman, N. Construal-Level Theory of Psychological Distance. Psychol. Rev. 2010, 117, 440–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Mou, J.; Cohen, J.; Liu, Y.; Kurcz, K. Understanding Consumer Intentions toward Cross-Border m-Commerce Usage: A Psychological Distance and Commitment-Trust Perspective. Electron. Commer. Res. Appl. 2020, 39, 100920. [Google Scholar] [CrossRef]
- Fox, J.; McKnight, J.; Sun, Y.; Maung, D.; Crawfis, R. Using a Serious Game to Communicate Risk and Minimize Psychological Distance Regarding Environmental Pollution. Telemat. Inform. 2020, 46, 101320. [Google Scholar] [CrossRef]
- Chuah, S.H.-W. You Inspire Me and Make My Life Better: Investigating a Multiple Sequential Mediation Model of Smartwatch Continuance Intention. Telemat. Inform. 2019, 43, 101245. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, Y.; Wang, R.; Huang, S.; Yuan, Q. Understanding the Mechanism between IT Identity, IT Mindfulness and Mobile Health Technology Continuance Intention: An Extended Expectation Confirmation Model. Technol. Forecast. Soc. Chang. 2022, 176, 121449. [Google Scholar] [CrossRef]
- He, L.; Wei, D.; Yang, F.; Zhang, J.; Cheng, W.; Feng, J.; Yang, W.; Zhuang, K.; Chen, Q.; Ren, Z.; et al. Functional Connectome Prediction of Anxiety Related to the COVID-19 Pandemic. Am. J. Psychiatry 2021, 178, 530–540. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Wetherall, K.; Cleare, S.; McClelland, H.; Melson, A.J.; Niedzwiedz, C.L.; O’Carroll, R.E.; O’Connor, D.B.; Platt, S.; Scowcroft, E.; et al. Mental Health and Well-Being during the COVID-19 Pandemic: Longitudinal Analyses of Adults in the UK COVID-19 Mental Health & Wellbeing Study. Br. J. Psychiatry 2021, 218, 326–333. [Google Scholar] [CrossRef]
- Surmai, M.; Duff, E. Cognitive Behavioural Therapy: A Strategy to Address Pandemic-Induced Anxiety. J. Nurse Pract. 2022, 18, 36–39. [Google Scholar] [CrossRef]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A. Impact of COVID-19 Pandemic on Mental Health in the General Population: A Systematic Review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Fiol-DeRoque, M.A.; Serrano-Ripoll, M.J.; Jiménez, R.; Zamanillo-Campos, R.; Yáñez-Juan, A.M.; Bennasar-Veny, M.; Leiva, A.; Gervilla, E.; García-Buades, M.E.; García-Toro, M. A Mobile Phone–Based Intervention to Reduce Mental Health Problems in Health Care Workers during the COVID-19 Pandemic (PsyCovidApp): Randomized Controlled Trial. JMIR mHealth uHealth 2021, 9, e27039. [Google Scholar] [CrossRef] [PubMed]
- Oliver, R.L. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. Manag. Inf. Syst. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M.K. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. Manag. Inf. Syst. 2007, 31, 705–737. [Google Scholar] [CrossRef] [Green Version]
- Dağhan, G.; Akkoyunlu, B. Modeling the Continuance Usage Intention of Online Learning Environments. Comput. Hum. Behav. 2016, 60, 198–211. [Google Scholar] [CrossRef]
- Peng, C.; OuYang, Z.; Liu, Y. Understanding Bike Sharing Use over Time by Employing Extended Technology Continuance Theory. Transp. Res. Part A Policy Pract. 2019, 124, 433–443. [Google Scholar] [CrossRef]
- Amoroso, D.; Lim, R. The Mediating Effects of Habit on Continuance Intention. Int. J. Inf. Manag. 2017, 37, 693–702. [Google Scholar] [CrossRef]
- Susanto, A.; Chang, Y.; Ha, Y. Determinants of Continuance Intention to Use the Smartphone Banking Services: An Extension to the Expectation-Confirmation Model. Ind. Manag. Data Syst. 2016, 116, 508–525. [Google Scholar] [CrossRef]
- Ahmad, W.; Sun, J. Antecedents of SMMA Continuance Intention in Two Culturally Diverse Countries: An Empirical Examination. J. Glob. Inf. Technol. Manag. 2018, 21, 45–68. [Google Scholar] [CrossRef]
- Gan, C.; Li, H. Understanding the Effects of Gratifications on the Continuance Intention to Use WeChat in China: A Perspective on Uses and Gratifications. Comput. Hum. Behav. 2018, 78, 306–315. [Google Scholar] [CrossRef]
- Akter, S.; D’Ambra, J.; Ray, P.; Hani, U. Modelling the Impact of MHealth Service Quality on Satisfaction, Continuance and Quality of Life. Behav. Inf. Technol. 2013, 32, 1225–1241. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; Cao, X.; Sun, Y.; Chen, H.; She, J. The Role of Perceived E-Health Literacy in Users’ Continuance Intention to Use Mobile Healthcare Applications: An Exploratory Empirical Study in China. Inf. Technol. Dev. 2018, 24, 198–223. [Google Scholar] [CrossRef]
- Gu, D.; Yang, X.; Li, X.; Jain, H.K.; Liang, C. Understanding the Role of Mobile Internet-Based Health Services on Patient Satisfaction and Word-of-Mouth. Int. J. Environ. Res. Public Health 2018, 15, 1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the Influential Factors of Continuance Intention to Use Mobile Apps: Extending the Expectation Confirmation Model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Huang, N.; Burtch, G.; Hong, Y.; Polman, E. Effects of Multiple Psychological Distances on Construal and Consumer Evaluation: A Field Study of Online Reviews. J. Consum. Psychol. 2016, 26, 474–482. [Google Scholar] [CrossRef]
- Lim, S.; Cha, S.Y.; Park, C.; Lee, I.; Kim, J. Getting Closer and Experiencing Together: Antecedents and Consequences of Psychological Distance in Social Media-Enhanced Real-Time Streaming Video. Comput. Hum. Behav. 2012, 28, 1365–1378. [Google Scholar] [CrossRef]
- Hernández-Ortega, B. Don’t Believe Strangers: Online Consumer Reviews and the Role of Social Psychological Distance. Inf. Manag. 2018, 55, 31–50. [Google Scholar] [CrossRef]
- Wu, B. Patient Continued Use of Online Health Care Communities: Web Mining of Patient-Doctor Communication. J. Med. Internet Res. 2018, 20, e9127. [Google Scholar] [CrossRef]
- Croucher, S.M.; Kelly, S.; Hui, C.; Rocker, K.J.; Cullinane, J.; Homsey, D.; Ding, G.G.; Nguyen, T.; Anderson, K.J.; Green, M. Articulated Dissent and Immediacy: A Cross-National Analysis of the Effects of COVID-19 Lockdowns. Int. J. Confl. Manag. 2021, 33, 181–202. [Google Scholar] [CrossRef]
- Maglio, S.J. An Agenda for Psychological Distance Apart from Construal Level. Soc. Personal. Psychol. Compass 2020, 14, e12552. [Google Scholar] [CrossRef]
- Tree, J.E.F.; Whittaker, S.; Herring, S.C.; Chowdhury, Y.; Nguyen, A.; Takayama, L. Psychological Distance in Mobile Telepresence. Int. J. Hum. Comput. Stud. 2021, 151, 102629. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, X. By the Mitigation One Knows the Doctor: Mitigation Strategies by Chinese Doctors in Online Medical Consultation. Health Commun. 2020, 35, 667–674. [Google Scholar] [CrossRef]
- Bohl, O.; Manouchehri, S.; Winand, U. Mobile Information Systems for the Private Everyday Life. Mob. Inf. Syst. 2007, 3, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Pediatric Mental and Behavioral Health in the Period of Quarantine and Social Distancing with COVID-19. JMIR Pediatr. Parent. 2020, 3, e19867. [Google Scholar] [CrossRef]
- Wu, H.; Lu, N. Online Written Consultation, Telephone Consultation and Offline Appointment: An Examination of the Channel Effect in Online Health Communities. Int. J. Med. Inform. 2017, 107, 107–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Hamari, J. How Does Mobility Affect Social Media Advertising Effectiveness? A Study in WeChat. Ind. Manag. Data Syst. 2020, 120, 2081–2101. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D. Impact of IT Identity on Consumer Negatively-Valenced Engagement in Mobile Medical Consultation: From Consumer Experience Perspective. Ind. Manag. Data Syst. 2022, 122, 2508–2539. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Sun, J.; Wang, C.; Yang, J. Developing a Scale to Measure the Social Distance between Tourism Community Residents. Tour. Geogr. 2022, 24, 716–736. [Google Scholar] [CrossRef]
- Johnson, M.D.; Fornell, C. A Framework for Comparing Customer Satisfaction across Individuals and Product Categories. J. Econ. Psychol. 1991, 12, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wong, Y.D.; Liu, F.; Yuen, K.F. A Push–Pull–Mooring View on Technology-Dependent Shopping under Social Distancing: When Technology Needs Meet Health Concerns. Technol. Forecast. Soc. Chang. 2021, 173, 121109. [Google Scholar] [CrossRef]
- Okazaki, S.; Mendez, F. Perceived Ubiquity in Mobile Services. J. Interact. Mark. 2013, 27, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Luximon, Y.; Li, Q. Seeking Medical Advice in Mobile Applications: How Social Cue Design and Privacy Concerns Influence Trust and Behavioral Intention in Impersonal Patient–Physician Interactions. Comput. Hum. Behav. 2022, 130, 107178. [Google Scholar] [CrossRef]
- Semple, J.L.; Sharpe, S.; Murnaghan, L.; Theodoropoulos, J.; Metcalfe, K.A. Using a Mobile App for Monitoring Post-Operative Quality of Recovery of Patients at Home: A Feasibility Study. JMIR mHealth uHealth 2015, 3, e3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Du, H.S.; Shang, W. Understanding the Influence of Professional Status and Service Feedback on Patients’ Doctor Choice in Online Healthcare Markets. Internet Res. 2020, 31, 1236–1261. [Google Scholar] [CrossRef]
- Oppong, E.; Hinson, R.E.; Adeola, O.; Muritala, O.; Kosiba, J.P. The Effect of Mobile Health Service Quality on User Satisfaction and Continual Usage. Total Qual. Manag. Bus. Excell. 2021, 32, 177–198. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How Live Streaming Influences Purchase Intentions in Social Commerce: An IT Affordance Perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- Gui, H.; Rahardja, U.; Yang, X.; Yan, Y. Ability Orientation or Good Character? Moderated Mediation Mechanism to Determine the Impact of Telepresence on Consumer Purchasing Intention in Cross-Border E-Commerce. Front. Psychol. 2022, 13, 883101. [Google Scholar] [CrossRef]
- Lim, X.J.; Cheah, J.H.; Ng, S.I.; Kamal Basha, N.; Liu, Y. Are Men from Mars, Women from Venus? Examining Gender Differences towards Continuous Use Intention of Branded Apps. J. Retail. Consum. Serv. 2021, 60, 102422. [Google Scholar] [CrossRef]
- An, S.; Choi, Y.; Lee, C.K. Virtual Travel Experience and Destination Marketing: Effects of Sense and Information Quality on Flow and Visit Intention. J. Destin. Mark. Manag. 2021, 19, 100492. [Google Scholar] [CrossRef]
- Amin, R.; Hossain, M.A.; Uddin, M.M.; Jony, M.T.I.; Kim, M. Stimuli Influencing Engagement, Satisfaction, and Intention to Use Telemedicine Services: An Integrative Model. Healthcare 2022, 10, 1327. [Google Scholar] [CrossRef] [PubMed]
- Tolstedt, B.E.; Stokes, J.P. Relation of Verbal, Affective, and Physical Intimacy to Marital Satisfaction. J. Couns. Psychol. 1983, 30, 573–580. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Liang, T.-P.; Huang, H.-C.; Li, Y.-W. Design Quality, Relationship Intimacy and Continuance Intention of Mobile Apps: An Extension to the Is Success Model. J. Electron. Commer. Res. 2021, 22, 266–284. [Google Scholar]
- Zhao, L.; Lu, Y. Perceived Interactivity: Exploring Factors Affecting Micro-Blogging Service Satisfaction and Continuance Intention. In Proceedings of the PACIS 2010—14th Pacific Asia Conference on Information Systems, Taipei, Taiwan, 9–12 July 2010; Available online: http://aisel.aisnet.org/pacis2010/93 (accessed on 6 September 2010).
- Nora, L. Trust, Commitment, and Customer Knowledge: Clarifying Relational Commitments and Linking Them to Repurchasing Intentions. Manag. Decis. 2019, 57, 3134–3158. [Google Scholar] [CrossRef]
- Ramanathan, N.; Swendeman, D.; Comulada, W.S.; Estrin, D.; Rotheram-Borus, M.J. Identifying Preferences for Mobile Health Applications for Self-Monitoring and Self-Management: Focus Group Findings from HIV-Positive Persons and Young Mothers. Int. J. Med. Inform. 2013, 82, e38–e46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Lu, Y. Enhancing Perceived Interactivity through Network Externalities: An Empirical Study on Micro-Blogging Service Satisfaction and Continuance Intention. Decis. Support Syst. 2012, 53, 825–834. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, J. Enhancing User Experience with Conversational Agent for Movie Recommendation: Effects of Self-Disclosure and Reciprocity. Int. J. Hum. Comput. Stud. 2017, 103, 95–105. [Google Scholar] [CrossRef]
- Hendee, J.C.; Burdge, R.J. The Substitutability Concept: Implications for Recreation Research and Management. J. Leis. Res. 1974, 6, 157–162. [Google Scholar] [CrossRef]
- Lin, C.A. Webcasting Adoption: Technology Fluidity,-User ’Innovativeness, and Media Substitution. J. Broadcast. Electron. Media 2004, 48, 157–178. [Google Scholar] [CrossRef]
- Li, C.Y. Consumer Behavior in Switching between Membership Cards and Mobile Applications: The Case of Starbucks. Comput. Hum. Behav. 2018, 84, 171–184. [Google Scholar] [CrossRef]
- Schiopu, A.F.; Hornoiu, R.I.; Padurean, M.A.; Nica, A.M. Virus Tinged? Exploring the Facets of Virtual Reality Use in Tourism as a Result of the COVID-19 Pandemic. Telemat. Inform. 2021, 60, 101575. [Google Scholar] [CrossRef]
- Huang, N.; Yan, Z.; Yin, H. Effects of Online–Offline Service Integration on E-Healthcare Providers: A Quasi-Natural Experiment. Prod. Oper. Manag. 2021, 30, 2359–2378. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, Q.; Qiu, L.; Kumar, S. Should Doctors Open Online Consultation Services? An Empirical Investigation of Their Impact on Offline Appointments. Inf. Syst. Res. 2022. [Google Scholar] [CrossRef]
- Imlawi, J.; Gregg, D. Understanding the Satisfaction and Continuance Intention of Knowledge Contribution by Health Professionals in Online Health Communities. Inform. Health Soc. Care 2020, 45, 151–167. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Lee, P.K.C. Improving the Effectiveness of Online Healthcare Platforms: An Empirical Study with Multi-Period Patient-Doctor Consultation Data. Int. J. Prod. Econ. 2019, 207, 70–80. [Google Scholar] [CrossRef]
- Rauschenberg, C.; Schick, A.; Hirjak, D.; Seidler, A.; Paetzold, I.; Apfelbacher, C.; Riedel-Heller, S.G.; Reininghaus, U. Evidence Synthesis of Digital Interventions to Mitigate the Negative Impact of the COVID-19 Pandemic on Public Mental Health: Rapid Meta-Review. J. Med. Internet Res. 2021, 23, e23365. [Google Scholar] [CrossRef]
- Wang, X.; Hegde, S.; Son, C.; Keller, B.; Smith, A.; Sasangohar, F. Investigating Mental Health of US College Students during the COVID-19 Pandemic: Cross-Sectional Survey Study. J. Med. Internet Res. 2020, 22, e22817. [Google Scholar] [CrossRef]
- Birkmeyer, S.; Wirtz, B.W.; Langer, P.F. Determinants of Mhealth Success: An Empirical Investigation of the User Perspective. Int. J. Inf. Manag. 2021, 59, 102351. [Google Scholar] [CrossRef]
- Wu, H.; Sun, W.; Huang, X.; Yu, S.; Wang, H.; Bi, X.; Sheng, J.; Chen, S.; Akinwunmi, B.; Zhang, C.J.P.; et al. Online Antenatal Care during the COVID-19 Pandemic: Opportunities and Challenges. J. Med. Internet Res. 2020, 22, e19916. [Google Scholar] [CrossRef]
- Shalaby, R.; Vuong, W.; Hrabok, M.; Gusnowski, A.; Mrklas, K.; Li, D.; Snaterse, M.; Surood, S.; Cao, B.; Li, X.M.; et al. Gender Differences in Satisfaction with a Text Messaging Program (Text4Hope) and Anticipated Receptivity to Technology-Based Health Support during the COVID-19 Pandemic: Cross-Sectional Survey Study. JMIR mHealth uHealth 2021, 9, e24184. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Lee, A.R. The Moderating Role of Communication Contexts: How Do Media Synchronicity and Behavioral Characteristics of Mobile Messenger Applications Affect Social Intimacy and Fatigue? Comput. Hum. Behav. 2019, 97, 179–192. [Google Scholar] [CrossRef]
- Goyal, S.; Chauhan, S.; Gupta, P. Users’ Response toward Online Doctor Consultation Platforms: SOR Approach. Manag. Decis. 2021, 60, 1990–2018. [Google Scholar] [CrossRef]
- Zheng, L.; Miao, M.; Gan, Y. Perceived control buffers the effects of the COVID-19 pandemic on general health and life satisfaction: The mediating role of psychological distance. J. Appl. Psychol. 2020, 12, 1095–1114. [Google Scholar] [CrossRef]
- Franque, F.B.; Oliveira, T.; Tam, C.; de Oliveira Santini, F. A Meta-Analysis of the Quantitative Studies in Continuance Intention to Use an Information System. Internet Res. 2020, 31, 123–158. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: London, UK, 2014; pp. 149–180. [Google Scholar]
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Goodhue, D.L.; Lewis, W.; Thompson, R. Does PLS Have Advantages for Small Sample Size or Non-Normal Data? MIS Q. 2012, 36, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum Associates, Inc.: Hillside, NJ, USA, 1988; pp. 274–288. [Google Scholar]
- Chin, W.W.; Marcelin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 127–219. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Saraf, N.; Hu, Q.; Xue, Y. Assimilation of Enterprise Systems: The Effect of Institutional Pressures and the Mediating Role of Top Management. MIS Q. Manag. Inf. Syst. 2007, 31, 59–87. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Helm, S.; Eggert, A.; Garnefeld, I. Modeling the Impact of Corporate Reputation on Customer Satisfaction and Loyalty Using Partial Least Squares. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 515–534. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A.; Ali, F. Why Should Hotels Go Green? Insights from Guests Experience in Green Hotels. Int. J. Hosp. Manag. 2019, 81, 169–179. [Google Scholar] [CrossRef]
- Biduski, D.; Bellei, E.A.; Rodriguez, J.P.M.; Zaina, L.A.M.; De Marchi, A.C.B. Assessing Long-Term User Experience on a Mobile Health Application through an in-App Embedded Conversation-Based Questionnaire. Comput. Hum. Behav. 2020, 104, 106169. [Google Scholar] [CrossRef]
- Sun, S.; Xie, Z.; Yu, K.; Jiang, B.; Zheng, S.; Pan, X. COVID-19 and Healthcare System in China: Challenges and Progression for a Sustainable Future. Glob. Health 2021, 17, 14. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Shareef, M.A.; Simintiras, A.C.; Lal, B.; Weerakkody, V. A Generalised Adoption Model for Services: A Cross-Country Comparison of Mobile Health (m-Health). Gov. Inf. Q. 2016, 33, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Park, M.C.; Park, J.H.; Kim, J.; Kim, E. The Role of Multidimensional Switching Barriers on the Cognitive and Affective Satisfaction-Loyalty Link in Mobile Communication Services: Coupling in Moderating Effects. Comput. Hum. Behav. 2018, 87, 212–223. [Google Scholar] [CrossRef]
Constructs | Definition | Theoretical Framework |
---|---|---|
Immediacy | Users obtain information or responses quickly and without delay in MMC (adapted from Zhang et al. [50]) | Temporal (PDT) |
Telepresence | Users feel like being physically transported to an offline treatment room in MMC (adapted from Zhang and Li [51]) | Spatial (PDT) |
Intimacy | MMC creates a strong bond and trusting relationship between patients (adapted from Chen et al. [52]) | Social (PDT) |
Substitutability | MMC can be a good alternative to offline medical consultations (adapted from Wu and Lu [49]) | Hypothetical (PDT) |
Satisfaction | Users believe MMC’s actual performance is better than expected (adapted from Johnson and Fornell [53]) | ISCM |
Pandemic-induced anxiety | Users’ apprehensive feelings when they face the choice to fight against the pandemic (adapted from Wang et al. [54]) | - |
Continuance intention | The willingness of users to continue using MMC after its initial adoption (adapted from Bhattacherjee [27]) | ISCM |
Characteristics | Frequency | Percent (%) |
---|---|---|
Gender | ||
Male | 252 | 53.1% |
Female | 223 | 46.9% |
Age | ||
20s | 60 | 12.6% |
30s | 140 | 39.5% |
40s | 153 | 32.2% |
50s | 122 | 26.7% |
Education | ||
High school certificate or below | 57 | 12.0% |
Technical school | 94 | 19.8% |
Undergraduate degree | 267 | 56.2% |
Master’s degree or higher | 57 | 12.0% |
Monthly household income, USD | ||
<700 | 29 | 6.1% |
(700, 1200] | 176 | 37.1% |
(1200, 1700] | 195 | 41.1% |
>1700 | 75 | 15.8% |
Year of mobile medical consultation | ||
Under 1 year | 75 | 15.8% |
1–2 years | 224 | 47.2% |
Over 2 years | 176 | 37.0% |
Frequency of mobile medical consultations | ||
Never | 0 | 0% |
Sometimes | 213 | 44.8% |
Often | 262 | 55.2% |
Variables | Cronbach’s α | Rho_A | CR | AVE |
---|---|---|---|---|
Immediacy (IM) | 0.759 | 0.768 | 0.846 | 0.580 |
Telepresence (TP) | 0.735 | 0.737 | 0.834 | 0.557 |
Intimacy (IN) | 0.725 | 0.727 | 0.829 | 0.548 |
Substitutability (SU) | 0.754 | 0.758 | 0.844 | 0.576 |
Pandemic-induced anxiety (PA) | 0.713 | 0.718 | 0.823 | 0.538 |
Satisfaction (SA) | 0.726 | 0.726 | 0.829 | 0.549 |
Continuance intention (CI) | 0.759 | 0.768 | 0.846 | 0.58 |
Items | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. Overall PD | - | ||||||||
2. Immediacy (IM) | 0.345 a | 0.761 | |||||||
3. Telepresence (TP) | 0.369 a | 0.123 | 0.746 | ||||||
4. Intimacy (IN) | 0.516 a | 0.399 | 0.341 | 0.740 | |||||
5. Substitutability (SU) | 0.522 a | 0.246 | 0.339 | 0.506 | 0.759 | ||||
6. Pandemic-induced anxiety (PA) | 0.583 | 0.500 | 0.296 | 0.510 | 0.377 | 0.757 | |||
7. Satisfaction (SA) | 0.670 | 0.407 | 0.398 | 0.559 | 0.523 | 0.418 | 0.733 | ||
8. Continuance intention (CI) | 0.690 | 0.348 | 0.387 | 0.569 | 0.592 | 0.484 | 0.574 | 0.741 | |
9. PDS | 0.701 | 0.343 | 0.384 | 0.754 | 0.457 | 0.716 | 0.458 | 0.479 | 0.780 |
IM | TP | IN | SU | PA | SA | CI | |
---|---|---|---|---|---|---|---|
IM1 | 0.707 | 0.035 | 0.213 | 0.134 | 0.354 | 0.259 | 0.171 |
IM2 | 0.774 | 0.095 | 0.266 | 0.186 | 0.397 | 0.314 | 0.281 |
IM3 | 0.769 | 0.092 | 0.338 | 0.184 | 0.372 | 0.300 | 0.266 |
IM4 | 0.793 | 0.139 | 0.378 | 0.232 | 0.399 | 0.356 | 0.326 |
TP 1 | 0.085 | 0.775 | 0.232 | 0.244 | 0.209 | 0.324 | 0.277 |
TP 2 | 0.072 | 0.740 | 0.254 | 0.285 | 0.239 | 0.284 | 0.321 |
TP 3 | 0.094 | 0.745 | 0.286 | 0.304 | 0.209 | 0.266 | 0.293 |
TP 4 | 0.116 | 0.724 | 0.251 | 0.191 | 0.227 | 0.308 | 0.27 |
IN1 | 0.327 | 0.224 | 0.744 | 0.385 | 0.366 | 0.425 | 0.432 |
IN2 | 0.279 | 0.291 | 0.760 | 0.394 | 0.419 | 0.440 | 0.438 |
IN3 | 0.259 | 0.228 | 0.741 | 0.355 | 0.360 | 0.404 | 0.42 |
IN4 | 0.318 | 0.266 | 0.714 | 0.362 | 0.362 | 0.381 | 0.394 |
SU1 | 0.153 | 0.252 | 0.407 | 0.780 | 0.277 | 0.435 | 0.492 |
SU2 | 0.19 | 0.305 | 0.35 | 0.752 | 0.278 | 0.390 | 0.416 |
SU3 | 0.196 | 0.267 | 0.375 | 0.795 | 0.293 | 0.393 | 0.436 |
SU4 | 0.214 | 0.203 | 0.404 | 0.706 | 0.301 | 0.364 | 0.447 |
PA1 | 0.361 | 0.249 | 0.409 | 0.293 | 0.751 | 0.320 | 0.387 |
PA2 | 0.379 | 0.173 | 0.342 | 0.256 | 0.705 | 0.271 | 0.324 |
PA3 | 0.381 | 0.226 | 0.349 | 0.262 | 0.742 | 0.311 | 0.331 |
PA4 | 0.381 | 0.254 | 0.383 | 0.31 | 0.778 | 0.331 | 0.382 |
PA5 | 0.394 | 0.213 | 0.438 | 0.302 | 0.803 | 0.343 | 0.404 |
SA1 | 0.259 | 0.325 | 0.455 | 0.46 | 0.325 | 0.783 | 0.486 |
SA2 | 0.308 | 0.294 | 0.412 | 0.347 | 0.278 | 0.732 | 0.372 |
SA3 | 0.316 | 0.307 | 0.384 | 0.393 | 0.320 | 0.712 | 0.414 |
SA4 | 0.322 | 0.235 | 0.385 | 0.320 | 0.302 | 0.704 | 0.402 |
CI1 | 0.237 | 0.267 | 0.424 | 0.430 | 0.331 | 0.417 | 0.740 |
CI2 | 0.288 | 0.284 | 0.417 | 0.411 | 0.383 | 0.437 | 0.754 |
CI3 | 0.282 | 0.327 | 0.446 | 0.417 | 0.399 | 0.412 | 0.740 |
CI4 | 0.224 | 0.268 | 0.399 | 0.496 | 0.321 | 0.433 | 0.728 |
Hypothesis | β | Standard Deviation | T Statistics | p-Value | Confidence Interval 97.5% | Supported | |
---|---|---|---|---|---|---|---|
H1 IM→SA | 0.246 *** | 0.054 | 4.527 | 0 | [0.144, 0.356] | 0.078 | Yes |
H2 TP→SA | 0.189 *** | 0.045 | 4.199 | 0 | [0.099, 0.280] | 0.050 | Yes |
H3 IN→SA | 0.190 *** | 0.054 | 3.514 | 0 | [0.081, 0.287] | 0.038 | Yes |
H4 SU→SA | 0.195 *** | 0.052 | 3.734 | 0 | [0.091, 0.293] | 0.047 | Yes |
H5 SA→CI | 0.456 *** | 0.043 | 10.525 | 0 | [0.367, 0.537] | 0.293 | Yes |
Hypothesis | β | Standard Deviation | T Statistics | p-Value | Confidence Interval 97.5% | Supported |
---|---|---|---|---|---|---|
H6a PA × IM→SA | 0.234 *** | 0.045 | 5.176 | 0.000 | [0.146, 0.325] | Yes |
H6b PA × TP→SA | 0.000 | 0.041 | 0.003 | 0.997 | [−0.080, 0.081] | No |
H6c PA × IN→SA | 0.022 | 0.047 | 0.463 | 0.644 | [−0.073, 0.107] | No |
H6d PA × SU→SA | −0.154 *** | 0.046 | 3.348 | 0.001 | [−0.247, −0.069] | No, the effect is negative |
H6e PA × SA→CI | 0.088 ** | 0.029 | 3.012 | 0.003 | [0.034, 0.149] | Yes |
Hypothesis | β | Standard Deviation | T Statistics | p-Value | Confidence Interval 97.5% | Supported |
---|---|---|---|---|---|---|
H6a IM→SA→CI | 0.112 *** | 0.024 | 4.726 | 0.000 | [0.068, 0.161] | Yes |
H6b TP→SA→CI | 0.086 *** | 0.023 | 3.728 | 0.000 | [0.043, 0.135] | Yes |
H6c IN→SA→CI | 0.086 *** | 0.027 | 3.201 | 0.001 | [0.035, 0.141] | Yes |
H6d SU→SA→CI | 0.089 *** | 0.027 | 3.278 | 0.001 | [0.038, 0.144] | Yes |
H6e PA→SA→CI | 0.017 | 0.023 | 0.726 | 0.468 | [−0.029, 0.064] | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Wang, X.; Huang, X. Counseling for Health: How Psychological Distance Influences Continuance Intention towards Mobile Medical Consultation. Int. J. Environ. Res. Public Health 2023, 20, 1718. https://doi.org/10.3390/ijerph20031718
Lu F, Wang X, Huang X. Counseling for Health: How Psychological Distance Influences Continuance Intention towards Mobile Medical Consultation. International Journal of Environmental Research and Public Health. 2023; 20(3):1718. https://doi.org/10.3390/ijerph20031718
Chicago/Turabian StyleLu, Fuyong, Xintao Wang, and Xian Huang. 2023. "Counseling for Health: How Psychological Distance Influences Continuance Intention towards Mobile Medical Consultation" International Journal of Environmental Research and Public Health 20, no. 3: 1718. https://doi.org/10.3390/ijerph20031718
APA StyleLu, F., Wang, X., & Huang, X. (2023). Counseling for Health: How Psychological Distance Influences Continuance Intention towards Mobile Medical Consultation. International Journal of Environmental Research and Public Health, 20(3), 1718. https://doi.org/10.3390/ijerph20031718