The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Population Reference Bureau. PRB 2012 World Population Data Sheet. Available online: https://www.prb.org/wp-content/uploads/2012/07/2012-population-data-sheet_eng.pdf (accessed on 1 December 2022).
- Cho, S.J.; Stout-Delgado, H.W. Aging and Lung Disease. Annu. Rev. Physiol. 2020, 82, 433–459. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang, E.M.; Raymo, J.M.; Liang, J.; Kobayashi, E.; Fukaya, T. Population Aging and Health Trajectories at Older Ages. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019, 74, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, K.M.; Harruff, R.C. Elderly deaths due to ground-level falls. Am. J. Forensic. Med. Pathol. 2010, 31, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, A.; Verschueren, S.; Delecluse, C.; Claessens, A.L.; Boonen, S. Effects of whole body vibration training on postural control in older individuals: A 1 year randomized controlled trial. Gait. Posture 2007, 26, 309–316. [Google Scholar] [CrossRef]
- Judge, J.O.; Lindsey, C.; Underwood, M.; Winsemius, D. Balance improvements in older women: Effects of exercise training. Phys. Ther. 1993, 73, 254–265. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Gruber, W.; Baldwin, M.; Liao, S. The effect of multidimensional exercises on balance, mobility, and fall risk in community-dwelling older adults. Phys. Ther. 1997, 77, 46–57. [Google Scholar] [CrossRef]
- Sihvonen, S.; Sipila, S.; Taskinen, S.; Era, P. Fall incidence in frail older women after individualized visual feedback-based balance training. Gerontology 2004, 50, 411–416. [Google Scholar] [CrossRef]
- Hopkins, D.R.; Murrah, B.; Hoeger, W.W.; Rhodes, R.C. Effect of low-impact aerobic dance on the functional fitness of elderly women. Gerontologist 1990, 30, 189–192. [Google Scholar] [CrossRef]
- Rogers, M.E.; Fernandez, J.E.; Bohlken, R.M. Training to reduce postural sway and increase functional reach in the elderly. J. Occup. Rehabil. 2001, 11, 291–298. [Google Scholar] [CrossRef]
- Franco, M.R.; Tong, A.; Howard, K.; Sherrington, C.; Ferreira, P.H.; Pinto, R.Z.; Ferreira, M.L. Older people’s perspectives on participation in physical activity: A systematic review and thematic synthesis of qualitative literature. Br. J. Sport. Med. 2015, 49, 1268–1276. [Google Scholar] [CrossRef]
- Bellew, J.W.; Yates, J.W.; Gater, D.R. The initial effects of low-volume strength training on balance in untrained older men and women. J. Strength Cond. Res. 2003, 17, 121–128. [Google Scholar] [PubMed]
- Buchner, D.M.; Cress, M.E.; de Lateur, B.J.; Esselman, P.C.; Margherita, A.J.; Price, R.; Wagner, E.H. The effect of strength and endurance training on gait, balance, fall risk, and health services use in community-living older adults. J. Gerontol. A Biol. Sci. Med. Sci. 1997, 52, M218–M224. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, L.; Whipple, R.; Derby, C.; Judge, J.; King, M.; Amerman, P.; Schmidt, J.; Smyers, D. Balance and strength training in older adults: Intervention gains and Tai Chi maintenance. J. Am. Geriatr. Soc. 1996, 44, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.Y.; Ko, C.P.; Tseng, C.Y.; Huang, W.C.; Lai, C.L.; Wang, C.H. Is 20 Hz Whole-Body Vibration Training Better for Older Individuals than 40 Hz? Int. J. Environ. Res. Public Health 2021, 18, 11942. [Google Scholar] [CrossRef]
- Messier, S.P.; Loeser, R.F.; Mitchell, M.N.; Valle, G.; Morgan, T.P.; Rejeski, W.J.; Ettinger, W.H. Exercise and weight loss in obese older adults with knee osteoarthritis: A preliminary study. J. Am. Geriatr. Soc. 2000, 48, 1062–1072. [Google Scholar] [CrossRef]
- Cheung, W.H.; Mok, H.W.; Qin, L.; Sze, P.C.; Lee, K.M.; Leung, K.S. High-frequency whole-body vibration improves balancing ability in elderly women. Arch. Phys. Med. Rehabil. 2007, 88, 852–857. [Google Scholar] [CrossRef]
- Mikhael, M.; Orr, R.; Fiatarone Singh, M.A. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: A systematic review of the literature. Maturitas 2010, 66, 150–157. [Google Scholar] [CrossRef]
- Nowalk, M.P.; Prendergast, J.M.; Bayles, C.M.; D’Amico, F.J.; Colvin, G.C. A randomized trial of exercise programs among older individuals living in two long-term care facilities: The FallsFREE program. J. Am. Geriatr. Soc. 2001, 49, 859–865. [Google Scholar] [CrossRef]
- Bishop, B. Vibratory stimulation. Part III. Possible applications of vibration in treatment of motor dysfunctions. Phys. Ther. 1975, 55, 139–143. [Google Scholar] [CrossRef]
- Rubin, C.; Recker, R.; Cullen, D.; Ryaby, J.; McCabe, J.; McLeod, K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: A clinical trial assessing compliance, efficacy, and safety. J. Bone Miner. Res. 2004, 19, 343–351. [Google Scholar] [CrossRef]
- Rubin, C.; Turner, A.S.; Bain, S.; Mallinckrodt, C.; McLeod, K. Anabolism. Low mechanical signals strengthen long bones. Nature 2001, 412, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J.; Stannard, S.R.; Sargeant, A.J.; Rittweger, J. The rate of muscle temperature increase during acute whole-body vibration exercise. Eur. J. Appl. Physio. 2008, 103, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.L.; Burns, P. Acute enhancement of lower-extremity dynamic strength and flexibility with whole-body vibration. J. Strength Cond. Res. 2009, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Wyon, M.; Guinan, D.; Hawkey, A. Whole-body vibration training increases vertical jump height in a dance population. J. Strength Cond. Res. 2010, 24, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Magoffin, R.D.; Parcell, A.C.; Hyldahl, R.D.; Fellingham, G.W.; Hopkins, J.T.; Feland, J.B. Whole-Body Vibration as a Warm-up Before Exercise-Induced Muscle Damage on Symptoms of Delayed-Onset Muscle Soreness in Trained Subjects. J. Strength Cond. Res. 2020, 34, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef]
- van Nes, I.J.; Geurts, A.C.; Hendricks, H.T.; Duysens, J. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: Preliminary evidence. Am. J. Phys. Med. Rehabil. 2004, 83, 867–873. [Google Scholar] [CrossRef]
- Schuhfried, O.; Mittermaier, C.; Jovanovic, T.; Pieber, K.; Paternostro-Sluga, T. Effects of whole-body vibration in patients with multiple sclerosis: A pilot study. Clin. Rehab. 2005, 19, 834–842. [Google Scholar] [CrossRef]
- Nakamura, M.; Yoshida, T.; Kiyono, R.; Sato, S.; Takahashi, N. The effect of low-intensity resistance training after heat stress on muscle size and strength of triceps brachii: A randomized controlled trial. BMC Musculoskelet. Disord. 2019, 20, 603. [Google Scholar] [CrossRef]
- Rennie, G.A. Biophysical principles of heating and superficial heating agents. In Thermal Agents in Rehabilitation; FA Davis: Philadelphia, PA, USA, 1996. [Google Scholar]
- Stark, J.; Petrofsky, J.; Berk, L.; Bains, G.; Chen, S.; Doyle, G. Continuous low-level heatwrap therapy relieves low back pain and reduces muscle stiffness. Phys. Sportsmed. 2014, 42, 39–48. [Google Scholar] [CrossRef]
- Hecox, B. Superficial heat modalities. In Physical Agents: A Comprehensive Text for Physical Therapists; Hecox, B., Mehreteab, T.A., Weisberg, J., Eds.; Appleton Lange: Stamford, CT, USA, 1994; pp. 125–141. [Google Scholar]
- Uehara, K.; Goto, K.; Kobayashi, T.; Kojima, A.; Akema, T.; Sugiura, T.; Yamada, S.; Ohira, Y.; Yoshioka, T.; Aoki, H. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn. J. Physio. 2004, 54, 263–271. [Google Scholar] [CrossRef]
- Racinais, S.; Oksa, J. Temperature and neuromuscular function. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 3), 1–18. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- Liu, C.C.; Tsai, L.T. Factors Influencing Regular Exercise Habits of Women in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 11960. [Google Scholar] [CrossRef] [PubMed]
- Funk, D.; Swank, A.M.; Adams, K.J.; Treolo, D. Efficacy of moist heat pack application over static stretching on hamstring flexibility. J. Strength Cond. Res. 2001, 15, 123–126. [Google Scholar] [PubMed]
- Petrofsky, J.S.; Laymon, M.; Lee, H. Effect of heat and cold on tendon flexibility and force to flex the human knee. Med. Sci. Monit. 2013, 19, 661–667. [Google Scholar] [PubMed]
- Arnold, B.L.; Schmitz, R.J. Examination of balance measures produced by the biodex stability system. J. Athl. Train 1998, 33, 323–327. [Google Scholar] [PubMed]
- Cachupe, W.; Shifflett, B.; Kahanov, L.; Wughalter, E.H. Reliability of Biodex Balance System Measures. Meas. Phys. Educ. 2001, 5, 97–108. [Google Scholar] [CrossRef]
- Grenier, S.G.; Russell, C.; McGill, S.M. Relationships between lumbar flexibility, sit-and-reach test, and a previous history of low back discomfort in industrial workers. Can. J. Appl. Physiol. 2003, 28, 165–177. [Google Scholar] [CrossRef]
- Rehn, B.; Lidstrom, J.; Skoglund, J.; Lindstrom, B. Effects on leg muscular performance from whole-body vibration exercise: A systematic review. Scand. J. Med. Sci. Sports 2007, 17, 2–11. [Google Scholar] [CrossRef]
- Houston, M.N.; Hodson, V.E.; Adams, K.K.; Hoch, J.M. The effectiveness of whole-body-vibration training in improving hamstring flexibility in physically active adults. J. Sport Rehabil. 2015, 24, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Slivka, D.; Tucker, T.; Cuddy, J.; Hailes, W.; Ruby, B. Local heat application enhances glycogenesis. Appl. Physiol. Nutr. Metab. 2012, 37, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Naperalsky, M.; Ruby, B.; Slivka, D. Environmental temperature and glycogen resynthesis. Int. J. Sports Med. 2010, 31, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Jarosch, R. Large-scale models reveal the two-component mechanics of striated muscle. Int. J. Mol. Sci. 2008, 9, 2658–2723. [Google Scholar] [CrossRef]
- Goto, K.; Oda, H.; Kondo, H.; Igaki, M.; Suzuki, A.; Tsuchiya, S.; Murase, T.; Hase, T.; Fujiya, H.; Matsumoto, I.; et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur. J. Appl. Physiol. 2011, 111, 17–27. [Google Scholar] [CrossRef]
- Goto, K.; Honda, M.; Kobayashi, T.; Uehara, K.; Kojima, A.; Akema, T.; Sugiura, T.; Yamada, S.; Ohira, Y.; Yoshioka, T. Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn. J. Physiol. 2004, 54, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Tu, Y.K.; Wang, T.G.; Huang, Y.T.; Chien, K.L. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: A systematic review and network meta-analysis. Age Ageing 2018, 47, 367–373. [Google Scholar] [CrossRef]
- Saquetto, M.B.; Pereira, F.F.; Queiroz, R.S.; da Silva, C.M.; Conceicao, C.S.; Gomes Neto, M. Effects of whole-body vibration on muscle strength, bone mineral content and density, and balance and body composition of children and adolescents with Down syndrome: A systematic review. Osteoporos. Int. 2018, 29, 527–533. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, J.; Calbet, J.A. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 2003, 107, 824–830. [Google Scholar] [CrossRef]
- LaBella, C.R.; Huxford, M.R.; Grissom, J.; Kim, K.Y.; Peng, J.; Christoffel, K.K. Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: Cluster randomized controlled trial. Arch. Pediatr. Adolesc. Med. 2011, 165, 1033–1040. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Lind, A.R. Insulative power of body fat on deep muscle temperatures and isometric endurance. J. Appl. Physiol. 1975, 39, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.; Bains, G.; Prowse, M.; Gunda, S.; Berk, L.; Raju, C.; Ethiraju, G.; Vanarasa, D.; Madani, P. Dry heat, moist heat and body fat: Are heating modalities really effective in people who are overweight? J. Med. Eng. Technol. 2009, 33, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.; Lee, H.; Trivedi, M.; Hudlikar, A.N.; Yang, C.H.; Goraksh, N.; Alshammari, F.; Mohanan, M.; Soni, J.; Agilan, B.; et al. The influence of aging and diabetes on heat transfer characteristics of the skin to a rapidly applied heat source. Diabetes Technol. Ther. 2010, 12, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Webb, P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 471–476. [Google Scholar] [CrossRef]
- Takanashi, Y.; Chinen, Y.; Hatakeyama, S. Whole-body vibration training improves the balance ability and leg strength of athletic throwers. J. Sports Med. Phys. Fitness 2019, 59, 1110–1118. [Google Scholar] [CrossRef]
- Ogasawara, R.; Yasuda, T.; Ishii, N.; Abe, T. Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur. J. Appl. Physiol. 2013, 113, 975–985. [Google Scholar] [CrossRef]
Sum of Squares | df | Mean Square | F | Significance | ||
---|---|---|---|---|---|---|
Age | Between groups | 31.015 | 3 | 10.338 | 0.110 | 0.954 |
Within groups | 7110.872 | 76 | 93.564 | |||
Total | 7141.888 | 79 | ||||
Height | Between groups | 162.125 | 3 | 54.042 | 0.956 | 0.418 |
Within groups | 4294.074 | 76 | 56.501 | |||
Total | 4456.199 | 79 | ||||
Weight | Between groups | 79.823 | 3 | 26.608 | 0.249 | 0.862 |
Within groups | 8108.659 | 76 | 106.693 | |||
Total | 8188.482 | 79 | ||||
BMI | Between groups | 1.356 | 3 | 0.452 | 0.044 | 0.988 |
Within groups | 777.319 | 76 | 10.228 | |||
Total | 778.676 | 79 | ||||
Pre-test flexibility | Between groups | 52.464 | 3 | 17.488 | 0.299 | 0.826 |
Within groups | 4446.933 | 76 | 58.512 | |||
Total | 4499.397 | 79 | ||||
Pre-test muscle strength | Between groups | 3146.558 | 3 | 1048.853 | 1.079 | 0.363 |
Within groups | 73,854.242 | 76 | 971.766 | |||
Total | 77,000.800 | 79 | ||||
Pre-test LOS | Between groups | 734.882 | 3 | 244.961 | 1.509 | 0.219 |
Within groups | 12,334.606 | 76 | 162.297 | |||
Total | 13,069.488 | 79 |
Group | 1. before Training | 2. after Training for 3 Months | 3. after Training for 6 Months | Time 1 vs. 2 p; Time 1 vs. 3 p |
---|---|---|---|---|
WBV | 14.0 ± 8.92 | 15.7 ± 8.81 | 16.0 ± 8.74 | 0.024 *; 0.015 * |
WBV + Heat | 13.4 ± 7.08 | 18.3 ± 6.84 | 19.6 ± 10.11 | 0.000 *; 0.001 * |
Heat | 12.0 ± 6.89 | 13.2 ± 5.70 | 14.0 ± 6.28 | 0.877; 0.536 |
Control | 11.7 ± 7.36 | 12.6 ± 8.21 | 12.5 ± 7.25 | 0.398; 0.389 |
Group | 1. before Training | 2. after Training for 3 Months | 3. after Training for 6 Months | Time 1 vs. 2 p; Time 1 vs. 3 p |
---|---|---|---|---|
WBV | 65.0 ± 28.93 | 77.2 ± 37.24 | 73.1 ± 35.75 | 0.013 *; 0.066 |
WBV + Heat | 55.8 ± 32.30 | 84.9 ± 36.22 | 69.5 ± 35.13 | 0.000 *; 0.000 * |
Heat | 54.9 ± 32.02 | 53.8 ± 34.14 | 52.2 ± 31.72 | 0.723; 0.456 |
Control | 70.3 ± 31.55 | 68.0 ± 31.45 | 67.7 ± 32.26 | 0.510; 0.463 |
Group | 1. before Training | 2. after Training for 3 Months | 3. after Training for 6 Months | Time 1 vs. 2 p; Time 1 vs 3. p |
---|---|---|---|---|
WBV | 37.6 ± 11.24 | 45.3 ± 13.98 | 39.0 ± 12.63 | 0.010 *; 0.068 |
WBV + Heat | 31.2 ± 11.87 | 40.6 ± 13.96 | 36.6 ± 15.06 | 0.011 *; 0.193 |
Heat | 30.0 ± 15.80 | 28.1 ± 11.76 | 28.1 ± 11.32 | 0.480; 0.480 |
Control | 32.1 ± 9.77 | 31.0 ± 16.84 | 29.9 ± 13.96 | 0.715; 0.715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, S.-Y.; Lai, C.-L.; Ko, C.-P.; Chang, Y.-K.; Fan, H.-C.; Wang, C.-H. The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups. Int. J. Environ. Res. Public Health 2023, 20, 1650. https://doi.org/10.3390/ijerph20021650
Tseng S-Y, Lai C-L, Ko C-P, Chang Y-K, Fan H-C, Wang C-H. The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups. International Journal of Environmental Research and Public Health. 2023; 20(2):1650. https://doi.org/10.3390/ijerph20021650
Chicago/Turabian StyleTseng, Shiuan-Yu, Chung-Liang Lai, Chung-Po Ko, Yu-Kang Chang, Hueng-Chuen Fan, and Chun-Hou Wang. 2023. "The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups" International Journal of Environmental Research and Public Health 20, no. 2: 1650. https://doi.org/10.3390/ijerph20021650
APA StyleTseng, S.-Y., Lai, C.-L., Ko, C.-P., Chang, Y.-K., Fan, H.-C., & Wang, C.-H. (2023). The Effectiveness of Whole-Body Vibration and Heat Therapy on the Muscle Strength, Flexibility, and Balance Abilities of Elderly Groups. International Journal of Environmental Research and Public Health, 20(2), 1650. https://doi.org/10.3390/ijerph20021650