Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Approach
2.2. Data Sources
2.3. Cancer Care in the Colombian Healthcare System
2.4. Natural History of the Disease
2.5. Fitting and Validation
2.6. Uncertainty and Sensitivity Analyses
- Split the MC simulated outputs into two groups, according to some property. In our specific case, we initially selected a single model output () and used the estimated set of parameters representing the current configuration of the Colombian cancer healthcare system (), as determined following the methodology described in Section 2.5, in order to define the following membership function:
- The membership function allows us to split the set of parameter values () into two sets: A set of higher values and a set of lower values . These sets, in turn, induce a marginal splitting of the values for each parameter () into two groups and . This last marginal splitting can be used to analyze the influence of each parameter on the behavior of the model output according to the property we chose in the first step.
- Contrast the shape of the empirical cumulative distribution function (eCDF) for marginal higher values (), marginal lower values (), and marginal values (), plotting them together in a single graph for each parameter individually. The eCDF of serves as a prior. The relevance of a parameter for the model output becomes more significant when there is a greater disparity between the behavior of the empirical cumulative distribution function (eCDF) for and with respect to . Additionally, it is possible to identify parameter values with a high likelihood of causing the model output to exhibit any of the properties specified in the first step.
2.7. Economic Tools
3. Results
3.1. Schematized System
3.2. Mathematical Model
3.2.1. The State of Undiagnosed Patients
3.2.2. The State of Diagnosed Patients
3.2.3. The Model for Age Groups
3.3. Parameter Identification
3.3.1. Estimation of Detection Probabilities and Stage Progression for Undiagnosed Compartments
3.3.2. Estimation of Stage Transitions and Recovery for Detected Compartments
3.3.3. Estimation of Probabilities for Treatment Quality and Treatment Cost
3.4. Model Validation
3.5. Modeling of Disease
3.5.1. Modeling of Prevention and Policy Implementation
3.5.2. Simulation of Scenarios
- Scenario 1. We directly tested Hypothesis 1 in this scenario by increasing the early detection rate . However, we noticed this hypothesis to be false. Even when we assumed the health system capacity to be limitless (Assumption 8), detecting a patient at an early stage exerts pressure over the costs to avoid the patient from dying, causing the spending to be unaffordable. Without Assumption 8, this scenario will cause a collapse of the health system as early treatments are not good enough.
- Scenario 2. Considering what we found from Scenario 1, we decided to test a combination of Hypotheses 1 and 2 in Scenario 2. In particular, we made , , and . This combination of parameters causes the system to assign better treatment to its patients in addition to high early detection. However, we noticed Hypothesis 2 to be false also, as it caused the costs to rise even more than for Scenario 1, even though it further reduced the number of deaths.
- Scenario 3. Considering what we found from Scenario 2, we decided to test a combination of Hypotheses 1, 2, and 3 in Scenario 3. In addition to modification of parameters made in Scenario 2, we set and . For this scenario, we finally achieved a long-term reduction of costs and the lowest mortality among the tested scenarios. This is an interesting result (which is further discussed later), as it suggests that Hypothesis 3 is more pronounced when the conditions of Hypotheses 1 and 2 are also met, highlighting the potential for their combined effects.
3.5.3. Economic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAC | Cuenta de Alto Costo |
eCDF | Empirical cumulative distribution function |
GDP | Gross Domestic Product |
MC | Monte Carlo |
SA | Sensitivity analysis |
UA | Uncertainty analysis |
Appendix A. Data from SISPRO Database
Appendix B. Identifiability for Estimation Using Auxiliary Model 1
Appendix C. Identifiability for Estimation Using Auxiliary Model 2
Appendix D. Dynamics of Diagnosed and Undiagnosed Patients
References
- Ward, Z.J.; Scott, A.M.; Hricak, H.; Atun, R. Global costs, health benefits, and economic benefits of scaling up treatment and imaging modalities for survival of 11 cancers: A simulation-based analysis. Lancet Oncol. 2021, 22, 341–350. [Google Scholar] [CrossRef]
- Homer, J.B.; Hirsch, G.B. System Dynamics Modeling for Public Health: Background and Opportunities. Am. J. Public Health 2006, 96, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, A.B.; Robin Yabroff, K.; Shao, Y.; Feuer, E.J.; Brown, M.L. Projections of the cost of cancer care in the United States: 2010–2020. J. Natl. Cancer Inst. 2011, 103, 117–128. [Google Scholar] [CrossRef]
- Laudicella, M.; Walsh, B.; Burns, E.; Smith, P.C. Cost of care for cancer patients in England: Evidence from population-based patient-level data. Br. J. Cancer 2016, 114, 1286–1292. [Google Scholar] [CrossRef]
- Anderson, A.R.A.; Quaranta, V. Integrative mathematical oncology. Nat. Rev. Cancer 2008, 8, 227–234. [Google Scholar] [CrossRef]
- Altrock, P.M.; Liu, L.L.; Michor, F. The mathematics of cancer: Integrating quantitative models. Nat. Rev. Cancer 2015, 15, 730–745. [Google Scholar] [CrossRef]
- Bekisz, S.; Geris, L. Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications. J. Comput. Sci. 2020, 46, 101198. [Google Scholar] [CrossRef]
- Quaranta, V.; Weaver, A.M.; Cummings, P.T.; Anderson, A.R. Mathematical modeling of cancer: The future of prognosis and treatment. Clin. Chim. Acta 2005, 357, 173–179. [Google Scholar] [CrossRef]
- Rockne, R.C.; Hawkins-Daarud, A.; Swanson, K.R.; Sluka, J.P.; Glazier, J.A.; Macklin, P.; Hormuth, D.A.; Jarrett, A.M.; Lima, E.A.B.F.; Oden, J.T.; et al. The 2019 mathematical oncology roadmap. Phys. Biol. 2019, 16, 041005. [Google Scholar] [CrossRef]
- McLean, C.; Lee, Y.T.; Jain, S.; Hutchings, C. Modeling and Simulation of Healthcare Systems for Homeland Security Applications; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [CrossRef]
- Khoury, M.J.; Iademarco, M.F.; Riley, W.T. Precision Public Health for the Era of Precision Medicine. Am. J. Prev. Med. 2016, 50, 398–401. [Google Scholar] [CrossRef]
- Arisha, A.; Rashwan, W. Modeling of healthcare systems: Past, current and future trends. In Proceedings of the 2016 Winter Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016. [Google Scholar] [CrossRef]
- Vázquez-Serrano, J.I.; Peimbert-García, R.E.; Cárdenas-Barrón, L.E. Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 12262. [Google Scholar] [CrossRef]
- Cassidy, R.; Singh, N.S.; Schiratti, P.R.; Semwanga, A.; Binyaruka, P.; Sachingongu, N.; Chama-Chiliba, C.M.; Chalabi, Z.; Borghi, J.; Blanchet, K. Mathematical modelling for health systems research: A systematic review of system dynamics and agent-based models. BMC Health Serv. Res. 2019, 19, 845. [Google Scholar] [CrossRef]
- Davahli, M.R.; Karwowski, W.; Taiar, R. A System Dynamics Simulation Applied to Healthcare: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 5741. [Google Scholar] [CrossRef]
- Catano-Lopez, A.; Rojas-Diaz, D.; Lizarralde-Bejarano, D.P.; Yepes, M.E.P. A discrete model for the evaluation of public policies: The case of Colombia during the COVID-19 pandemic. PLoS ONE 2023, 18, e0275546. [Google Scholar] [CrossRef] [PubMed]
- Martcheva, M. An Introduction to Mathematical Epidemiology, 1st ed.; Texts in Applied Mathematics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Cuenta de Alto Costo (CAC). Situacion del Cáncer en la Poblacion Adulta Atendida en el SGSSS de Colombia, 1st ed.; Texts in Applied Mathematics; Fondo Colombiano de Enfermedades de Alto Costo: Bogota, Colombia, 2022. [Google Scholar]
- Ministerio de Salud y Protección Social. Portal SISPRO—Sistema Integrado de Información de la Protección Social; Pontificia Universidad Catolica de Chile: Santiago, Chile, 2022.
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística—DANE. Censo Nacional de Población y Vivienda—CNPV 2018—Proyecciones de Población; Departamento Administrativo Nacional de Estadística: Bogota, Colombia, 2022.
- Guerrero, R.; Gallego, A.I.; Becerril-Montekio, V.; Vásquez, J. Sistema de salud de Colombia. Salud Publica Mex. 2011, 53, s144–s155. [Google Scholar] [PubMed]
- OECD. OECD Reviews of Health Systems: Colombia 2016; OECD: Paris, France, 2015; p. 128. [Google Scholar] [CrossRef]
- Bitrán, R.; Escobar, L.; Cañón, O.; Molins, S.; Alonso, L.; Fernández, J.; Panopoulou, G.; González-Pier, E.; Prieto, A.L.; Cid, C.; et al. Planes de Beneficios en Salud de América Latina: Una Comparación Regional; Inter-American Development Bank: Washington, DC, USA, 2014. [Google Scholar]
- OECD. Health at a Glance 2021; OECD: Paris, France, 2021; p. 274. [Google Scholar] [CrossRef]
- ICCI-LA, UICC, Novartis. Addressing the Rising Burden of Cancer in Colombia: Challenges and Opportunities; Technical Report; UICC: Geneva, Switzerland, 2021. [Google Scholar]
- de Vries, E.; Buitrago, G.; Quitian, H.; Wiesner, C.; Castillo, J.S. Access to cancer care in Colombia, a middle-income country with universal health coverage. J. Cancer Policy 2018, 15, 104–112. [Google Scholar] [CrossRef]
- Clínic Barcelona. Evolucion del Cancer: Portalclínic; Clinic Barcelona: Barcelona, Spain, 2018. [Google Scholar]
- Ministerio de Salud y Protección Social; Colciencias; Instituto Nacional de Cancerología Empresa Social del Estado-Fedesalud. Guía de Práctica Clínica Para la Detección Temprana, Tratamiento Integral, Seguimiento y Rehabilitacion del Cancer de Mama; Instituto Nacional de Cancerologia: Bogota, Colombia, 2013.
- Gamboa, Ó.; Buitrago, L.A.; Lozano, T.; Dieleman, S.; Gamboa, C.; Guzmán, É.L.; Gil, M.; Fuentes, J. Costos directos de la atención del cáncer de mama en Colombia. Rev. Colomb. Cancerol. 2016, 20, 52–60. [Google Scholar] [CrossRef]
- Rojas-Díaz, D.; Vélez-Sánchez, C.M. Drojasd/GSUA-CSB: GSUA-CSB; Version v1.0; GitHub: San Francisco, CA, USA, 2019. [Google Scholar] [CrossRef]
- Lizarralde-Bejarano, D.P.; Rojas-Díaz, D.; Arboleda-Sánchez, S.; Puerta-Yepes, M.E. Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia. PLoS ONE 2020, 15, e0229668. [Google Scholar] [CrossRef]
- Miao, H.; Xia, X.; Perelson, A.S.; Wu, H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 2011, 53, 3–39. [Google Scholar] [CrossRef]
- Tuncer, N.; Marctheva, M.; LaBarre, B.; Payoute, S. Structural and practical identifiability analysis of Zika epidemiological models. Bull. Math. Biol. 2018, 80, 2209–2241. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Archer, G.E.B.; Saltelli, A.; Sobol, I.M. Sensitivity measures, anova-like techniques and the use of bootstrap. Statist. Comput. Simul. 1997, 58, 99–120. [Google Scholar] [CrossRef]
- Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin hypercube sampling for structural reliability analysis. Struct. Saf. 2003, 25, 47–68. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Chichester, UK, 2008; p. 290. [Google Scholar]
- Xiao, S.; Lu, Z.; Wang, P. Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition. Risk Anal. 2018, 38, 2703–2721. [Google Scholar] [CrossRef]
- Galeano, G.P.; Cárdenas, M.M.; Rangel, E.C.; Chacón, J.R. Actualización de la Tasa de Rendimiento del Capital en Colombia Bajo la Metodología de Harberger; Departamento Nacional de Planeación: Bogota, Colombia, 2018.
- Luengo-Fernandez, R.; Leal, J.; Gray, A.; Sullivan, R. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet Oncol. 2013, 14, 1165–1174. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística—DANE. Índice de Precios al Consumidor (IPC); Departamento Administrativo Nacional de Estadistica: Bogota, Colombia, 2022.
- Restrepo-Zea, J.H.; Espinal, J.J.; Durango, D.S.; Casas-Bustamante, L.; Valencia-Yepes, Y. Observador del GES No 12: Gasto en atención del cáncer en Colombia. 2020. Available online: https://shorturl.at/ixDE2 (accessed on 25 September 2022).
- WHO. Preventing Cancer. 2022. Available online: https://www.who.int/activities/preventing-cancer (accessed on 20 September 2022).
- Lucas, F.A.S.; Fowler, J.; Chang, K.; Kopetz, S.; Vilar, E.; Scheet, P. Cancer In Silico Drug Discovery: A Systems Biology Tool for Identifying Candidate Drugs to Target Specific Molecular Tumor Subtypes. Mol. Cancer Ther. 2014, 13, 3230–3240. [Google Scholar] [CrossRef] [PubMed]
- Niida, A.; Nagayama, S.; Miyano, S.; Mimori, K. Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling. Cancer Sci. 2018, 109, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Homer, J.; Hirsch, G.; Minniti, M.; Pierson, M. Models for collaboration: How system dynamics helped a community organize cost-effective care for chronic illness. Syst. Dyn. Rev. 2004, 20, 199–222. [Google Scholar] [CrossRef]
- Verguet, S.; Feldhaus, I.; Kwete, X.J.; Aqil, A.; Atun, R.; Bishai, D.; Cecchini, M.; Junior, A.A.G.; Habtemariam, M.K.; Jbaily, A.; et al. Health system modelling research: Towards a whole-health-system perspective for identifying good value for money investments in health system strengthening. BMJ Glob. Health 2019, 4, e001311. [Google Scholar] [CrossRef]
- Çakan, S. Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic. Chaos Solitons Fractals 2020, 139, 110033. [Google Scholar] [CrossRef]
- Chatsirisupachai, K.; Lagger, C.; de Magalhães, J.P. Age-associated differences in the cancer molecular landscape. Trends Cancer 2022, 8, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Haider, S.; Boutros, P.C. Age influences on the molecular presentation of tumours. Nat. Commun. 2022, 13, 208. [Google Scholar] [CrossRef]
- Zhang, Q.; Jazwinski, S.M. A Novel Strategy to Model Age-Related Cancer for Elucidation of the Role of Th17 Inflammaging in Cancer Progression. Cancers 2022, 14, 5185. [Google Scholar] [CrossRef]
- Tikkanen, R.; Osborn, R.; Mossialos, E.; Djordjevic, A.; Wharton, G. 2020 International Profiles of Health Care Systems; The Commonwealth Fund: New York, NY, USA, 2020. [Google Scholar]
- Biebler, K.E. Parameter Estimation. In Handbook of Research on Informatics in Healthcare and Biomedicine; IGI Global: Hershey, PA, USA, 2006; pp. 172–180. [Google Scholar] [CrossRef]
- Briggs, A.H.; Weinstein, M.C.; Fenwick, E.A.; Karnon, J.; Sculpher, M.J.; Paltiel, A.D. Model Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6. Value Health 2012, 15, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Redd, A.; Khader, K.; Leecaster, M.; Greene, T.; Samore, M. Efficient parameter estimation for models of healthcare-associated pathogen transmission in discrete and continuous time. Math. Med. Biol. J. IMA 2013, 32, 81–100. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation (IHME). GBD Compare; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2015. [Google Scholar]
- Vos, T.; Carter, R.; Barendregt, J.; Mihalopoulos, C.; Veerman, L.; Magnus, A.; Cobiac, L.; Bertram, M.; Wallace, A. Assessing Cost-Effectiveness in Prevention; The University of Queensland: Brisbane, Australia; Deakin University: Melbourne, Australia, 2010. [Google Scholar]
- Sullivan, R.; Peppercorn, J.; Sikora, K.; Zalcberg, J.; Meropol, N.J.; Amir, E.; Khayat, D.; Boyle, P.; Autier, P.; Tannock, I.F.; et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 2011, 12, 933–980. [Google Scholar] [CrossRef]
- Smith, T.J.; Hillner, B.E. Bending the cost curve in cancer care. N. Engl. J. Med. 2011, 364, 2060. [Google Scholar] [CrossRef]
- Aviki, E.M.; Schleicher, S.M.; Mullangi, S.; Matsoukas, K.; Korenstein, D. Alternative payment and care-delivery models in oncology: A systematic review. Cancer 2018, 124, 3293–3306. [Google Scholar] [CrossRef]
- Struijs, J.N.; De Vries, E.F.; Baan, C.A.; Van Gils, P.F.; Rosenthal, M.B. Bundled-payment models around the world: How they work and what their impact has been. In The Commonwealth Fund: Issue Briefs; Commonwealth Fund: New York, NY, USA, 2020. [Google Scholar]
- Kuo, R.N.; Chung, K.P.; Lai, M.S. Effect of the pay-for-performance program for breast cancer care in Taiwan. J. Oncol. Pract. 2011, 7, e8s–e15s. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Rotundo, G.; Giancotti, M. Effect of financial incentives on breast, cervical and colorectal cancer screening delivery rates: Results from a systematic literature review. Health Policy 2019, 123, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Abt Associates. Evaluation of the Accountable Care Organization Investment Mode; Technical Report; Abt Associates: Rockville, MD, USA, 2020. [Google Scholar]
Parameter | Meaning | Estimation Range | Estimated Interval | Nominal Value |
---|---|---|---|---|
Early detection prob. | [0, 1] | [0.0875, 0.0875] | 0.0875 | |
Stage I detection prob. | [0, 1] | [0.1315, 0.1538] | 0.1422 | |
Stage II detection prob. | [0, 1] | [0.2169, 0.2587] | 0.2525 | |
Stage III detection prob. | [0, 1] | [0.3175, 0.3852] | 0.3489 | |
Stage I progress prob. | [0, 1] | [0.5849, 0.7017] | 0.6398 | |
Stage II progress prob. | [0, 1] | [0.5357, 0.6749] | 0.6532 | |
Stage III progress prob. | [0, 1] | [0.4756, 0.6405] | 0.5479 |
Type | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Cases |
---|---|---|---|---|---|
Breast | 0.902 | 0.885 | 0.789 | 0.676 | 24,460 |
Prostate | 0.828 | 0.783 | 0.725 | 0.618 | 13,190 |
Colon & rectal | 0.672 | 0.665 | 0.563 | 0.443 | 9330 |
Stomach | 0.458 | 0.44 | 0.36 | 0.214 | 4218 |
Lung | 0.35 | 0.249 | 0.231 | 0.088 | 2027 |
Weighted mean | 0.787 | 0.762 | 0.678 | 0.562 | |
Extreme scenarios | [0.707, 0.867] | [0.662, 0.861] | [0.576, 0.780] | [0.376, 0.747] |
Parameter | Meaning | Estimation Range | Estimated Interval | Nominal Value |
---|---|---|---|---|
Recovery stage I, treatment 1 prob. | [0, 1] | [0.088, 0.088] | 0.088 | |
Recovery stage I, treatment 2 prob. | [0, 1] | [0.07, 0.07] | 0.07 | |
Recovery stage I, treatment 3 prob. | [0, 1] | [0.031, 0.031] | 0.031 | |
Recovery stage II, treatment 1 prob. | [0, 1] | [0.141, 0.141] | 0.141 | |
Recovery stage II, treatment 2 prob. | [0, 1] | [0.186, 0.186] | 0.186 | |
Recovery stage II, treatment 3 prob. | [0, 1] | [0.273, 0.273] | 0.273 | |
Recovery stage III, treatment 1 prob. | [0, 1] | [0.204, 0.204] | 0.204 | |
Recovery stage III, treatment 2 prob. | [0, 1] | [0.164, 0.164] | 0.164 | |
Recovery stage III, treatment 3 prob. | [0, 1] | [0.076, 0.076] | 0.076 | |
Recovery stage IV, treatment 1 prob. | [0, 1] | [0.122, 0.122] | 0.122 | |
Recovery stage IV, treatment 2 prob. | [0, 1] | [0.181, 0.181] | 0.181 | |
Recovery stage IV, treatment 3 prob. | [0, 1] | [0.250, 0.250] | 0.25 | |
Progression from stage I to stage II, treatment 1. | [0, 0.640] | [0.640, 0.640] | 0.64 | |
Progression from stage I to stage II, treatment 2. | [0, 0.640] | [0.640, 0.640] | 0.64 | |
Progression from stage I to stage II, treatment 3. | [0, 0.640] | [0.640, 0.640] | 0.64 | |
Progression from stage II to stage III, treatment 1. | [0, 0.653] | [0.653, 0.653] | 0.653 | |
Progression from stage II to stage III, treatment 2. | [0, 0.653] | [0.653, 0.653] | 0.653 | |
Progression from stage II to stage III, treatment 3. | [0, 0.653] | [0.653, 0.653] | 0.653 | |
Progression from stage III to stage IV, treatment 1. | [0, 0.548] | [0.548, 0.548] | 0.548 | |
Progression from stage III to stage IV, treatment 2. | [0, 0.548] | [0.548, 0.548] | 0.548 | |
Progression from stage III to stage IV, treatment 3. | [0, 0.548] | [0.548, 0.548] | 0.548 | |
Death stage IV, treatment 1 prob. | [0, 1] | [0.230, 0.230] | 0.23 | |
Death stage IV, treatment 2 prob. | [0, 1] | [0.172, 0.172] | 0.172 | |
Death stage IV, treatment 3 prob. | [0, 1] | [0.114, 0.114] | 0.114 |
Parameter | Description | Nominal |
---|---|---|
Monthly average cost of patient at stage I under treatment 1 | 747,500.000 | |
Monthly average cost of patient at stage I under treatment 2 | 782,500.000 | |
Monthly average cost of patient at stage I under treatment 3 | 1,008,333.333 | |
Monthly average cost of patient at stage II under treatment 1 | 3,966,666.667 | |
Monthly average cost of patient at stage II under treatment 2 | 4,325,000.000 | |
Monthly average cost of patient at stage II under treatment 3 | 6,783,333.333 | |
Monthly average cost of patient at stage III under treatment 1 | 4,666,666.667 | |
Monthly average cost of patient at stage III under treatment 2 | 5,325,000.000 | |
Monthly average cost of patient at stage III under treatment 3 | 8,666,666.667 | |
Monthly average cost of patient at stage IV under treatment 1 | 9,083,333.333 | |
Monthly average cost of patient at stage IV under treatment 2 | 12,000,000.000 | |
Monthly average cost of patient at stage IV under treatment 3 | 12,416,666.667 | |
Average costs of diagnosis per diagnosed patient | 916,000.000 |
Parameter | Description | Range | Nominal | %SSTi |
---|---|---|---|---|
Prevention parameter | [0.00, 0.050] | 0.00 | 19.07% | |
Recover [stage IV, treatment 3] prob. | [0.125, 0.380] | 0.25 | 18.52% | |
Death [stage IV, treatment 3] prob. | [0.057, 0.170] | 0.11 | 4.69% | |
Recover [stage IV, treatment 2] prob. | [0.091, 0.270] | 0.18 | 4.64% | |
Recover [stage II, treatment 3] prob. | [0.137, 0.410] | 0.27 | 4.27% | |
Transition speed parameter | [0.100, 0.300] | 0.20 | 3.83% | |
Recover [stage IV, treatment 1] prob. | [0.061, 0.183] | 0.12 | 3.44% | |
Progression [stage II, treatment 3] prob. | [0.327, 0.980] | 0.65 | 3.23% | |
Progression [stage III, treatment 3] prob. | [0.274, 0.822] | 0.55 | 3.03% | |
Death [stage IV, treatment 2] prob. | [0.086, 0.259] | 0.17 | 2.66% | |
Abruptness of transition parameter | [0.100, 0.300] | 0.20 | 2.37% | |
Recover [stage III, treatment 3] prob. | [0.038, 0.114] | 0.08 | 2.33% | |
Death [stage IV, treatment 1] prob. | [0.115, 0.344] | 0.23 | 2.23% | |
Progression [stage IV, treatment 3] prob. | [0.274, 0.822] | 0.55 | 2.02% | |
Recover [stage III, treatment 1] prob. | [0.102, 0.306] | 0.20 | 1.85% | |
Undiagnosed progression at stage I prob. | [0.320, 0.960] | 0.64 | 1.58% | |
Stage I detection prob. | [0.071, 0.213] | 0.14 | 1.56% | |
Stage II detection prob. | [0.126, 0.379] | 0.25 | 1.46% | |
Recover [stage III, treatment 2] prob. | [0.082, 0.246] | 0.16 | 1.43% | |
Progression [stage I, treatment 3] prob. | [0.320, 0.960] | 0.64 | 1.35% | |
Undiagnosed progression at stage II prob. | [0.327, 0.980] | 0.65 | 1.21% | |
Average costs of diagnosis per patient | [458,000, 1,374,000] | 916,000.00 | 1.09% | |
Progression [stage III, treatment 2] prob. | [0.274, 0.822] | 0.55 | 0.93% | |
Prob. of treatment 2 at stage II | [0.130, 0.390] | 0.26 | 0.90% | |
Stage III detection prob. | [0.174, 0.523] | 0.35 | 0.84% | |
Prob. of treatment 1 at stage 1 | [0.098, 0.294] | 0.20 | 0.84% | |
Recover [stage II, treatment 2] prob. | [0.093, 0.279] | 0.19 | 0.84% | |
Progression [stage II, treatment 1] prob. | [0.327, 0.980] | 0.65 | 0.84% | |
Prob. of treatment 2 at stage I | [0.130, 0.390] | 0.26 | 0.81% | |
Prob. of treatment 2 at stage III | [0.130, 0.390] | 0.26 | 0.79% | |
Prob. of treatment 1 at stage II | [0.098, 0.294] | 0.20 | 0.70% | |
Prob. of treatment 1 at stage IV | [0.098, 0.294] | 0.20 | 0.67% | |
Undiagnosed progression at stage III prob. | [0.274, 0.822] | 0.55 | 0.64% | |
Early detection prob. | [0.044, 0.131] | 0.09 | 0.63% | |
Recover [stage II, treatment 1] prob. | [0.071, 0.212] | 0.14 | 0.57% | |
Prob. of treatment 2 at stage IV | [0.130, 0.390] | 0.26 | 0.52% | |
Progression [stage II, treatment 2] prob. | [0.327, 0.980] | 0.65 | 0.47% | |
Prob. of treatment 1 at stage III | [0.098, 0.294] | 0.20 | 0.42% | |
Progression [stage I, treatment 1] prob. | [0.320, 0.960] | 0.64 | 0.24% | |
Recover [stage I, treatment 3] prob. | [0.016, 0.047] | 0.03 | 0.20% | |
Recover [stage I, treatment 2] prob. | [0.035, 0.105] | 0.07 | 0.11% | |
Recover [stage I, treatment 1] prob. | [0.044, 0.132] | 0.09 | 0.11% | |
Progression [stage I, treatment 2] prob. | [0.320, 0.960] | 0.64 | 0.07% |
Scenario | Result | Indicator | Anual | % Change to 2020 | |||
---|---|---|---|---|---|---|---|
2022 | 2030 | 2040 | 2030 | 2040 | |||
Baseline | Cancer cost | % GDP real | 0.37% | 0.46% | 0.57% | 24.4% | 54.9% |
Per capita (USD 2015) | USD 24.3 | USD 36.0 | USD 57.4 | 48% | 137% | ||
Mortality | Total | 35,291 | 43,462 | 55,026 | 23% | 56% | |
Per 100,000 inhabitants | 68.4 | 78.1 | 92.4 | 14% | 35% | ||
Scenario 1 | Cancer cost | % GDP real | 0.37% | 0.53% | 0.66% | 45.2% | 78.2% |
Per capita (USD 2015) | USD 24.3 | USD 42.1 | USD 66.1 | 73% | 172% | ||
Mortality | Total | 35,291 | 30,928 | 36,950 | −12% | 5% | |
Per 100,000 inhabitants | 68.4 | 55.5 | 62.0 | −19% | −9% | ||
Scenario 2 | Cancer cost | % GDP real | 0.37% | 0.58% | 0.72% | 57.8% | 96.9% |
Per capita (USD 2015) | USD 24.3 | USD 45.7 | USD 73.0 | 88% | 201% | ||
Mortality | Total | 35,291 | 28,890 | 33,767 | −18% | −4% | |
Per 100,000 inhabitants | 68.4 | 51.9 | 56.7 | −24% | −17% | ||
Scenario 3 | Cancer cost | % GDP real | 0.37% | 0.43% | 0.50% | 18% | 35% |
Per capita (USD 2015) | USD 24.3 | USD 34.2 | USD 50.0 | 41% | 106% | ||
Mortality | Total | 35,291 | 23,571 | 25,134 | −33% | −29% | |
Per 100,000 inhabitants | 68.4 | 42.3 | 42.2 | −38% | −38% |
Scenario | Indicator | Value |
---|---|---|
No. 1 | Annual funding (%BL) to 2030 | 13.8% |
Annual funding (%BL) to 2040 | 14.7% | |
Annual average funding (%GDP) to 2030 | −0.07% | |
Annual average funding (%GDP) to 2040 | −0.07% | |
No. 2 | Annual funding % to BL—2030 | 19.5% |
Annual funding % to BL—2040 | 23.0% | |
Annual average funding (%GDP) to 2030 | −0.09% | |
Annual average funding (%GDP) to 2040 | −0.12% | |
No. 3 | Internal Rate of Return (IRR) to 2030 | −18.2% |
Internal Rate of Return (IRR) to 2040 | 18.7% | |
Annual average funding (%GDP), 2023–2027 | −0.03% | |
Average annual return to GDP (%GDP), 2028–2040 | 0.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Díaz, D.; Puerta-Yepes, M.E.; Medina-Gaspar, D.; Botero, J.A.; Rodríguez, A.; Rojas, N. Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case. Int. J. Environ. Res. Public Health 2023, 20, 6740. https://doi.org/10.3390/ijerph20186740
Rojas-Díaz D, Puerta-Yepes ME, Medina-Gaspar D, Botero JA, Rodríguez A, Rojas N. Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case. International Journal of Environmental Research and Public Health. 2023; 20(18):6740. https://doi.org/10.3390/ijerph20186740
Chicago/Turabian StyleRojas-Díaz, Daniel, María Eugenia Puerta-Yepes, Daniel Medina-Gaspar, Jesús Alonso Botero, Anwar Rodríguez, and Norberto Rojas. 2023. "Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case" International Journal of Environmental Research and Public Health 20, no. 18: 6740. https://doi.org/10.3390/ijerph20186740
APA StyleRojas-Díaz, D., Puerta-Yepes, M. E., Medina-Gaspar, D., Botero, J. A., Rodríguez, A., & Rojas, N. (2023). Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case. International Journal of Environmental Research and Public Health, 20(18), 6740. https://doi.org/10.3390/ijerph20186740