Anatomic Features of the Nasal and Pharyngeal Region Do Not Influence PAP Therapy Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
- The initial diagnosis of OSA according to the International Classification of Sleep Disorders (ICSD) criteria [31] after performance of a full night inpatient PSG,
- the consent to start PAP therapy (devices used were Phönix 2 or Respironics REMstar Auto, Philips Respironics Inc., Murrysville, PA, USA; typically, with nasal masks),
- the subsequent performance of a full night inpatient PSG for PAP therapy control (usually performed three months after PAP therapy begins; adherence to PAP therapy ≥ 4 h for ≥70% of nights), and
- age of 18 years or older.
- The diagnosis of a type of SDB other than OSA (e.g., periodic breathing or Cheyne–Stokes respiration),
- known history of chronic obstructive or restrictive lung disease,
- usage of alternative types of noninvasive positive airway pressure therapy (e.g., CPAP and BiPAP),
- already being under PAP therapy, and
- age under 18 years.
- (1)
- No nasal obstruction,
- (2)
- septal deviation present,
- (3)
- turbinate hyperplasia present, or
- (4)
- septal deviation and turbinate hyperplasia present.
- (1)
- No pharyngeal obstruction,
- (2)
- webbing present,
- (3)
- tonsillar hyperplasia present (Friedman grading scale ≥ 3) [33], or
- (4)
- webbing and tonsillar hyperplasia present.
- (1)
- No tongue base hyperplasia or
- (2)
- tongue base hyperplasia present (relaxed tongue sits above the occlusal plane of the mandibular teeth [34]).
- Apnea index (AI): number of apneic events per hour (h) of sleep,
- arousal index (ARI): number of arousals/h of sleep,
- hypopnea index (HI): number of hypopnea events/h of sleep,
- oxygen desaturation index (ODI): number of oxygen desaturation events (≥4%)/h of sleep, and
- respiratory disturbance index (RDI): number of abnormal breathing events/h of sleep (apneas + hypopneas + RERAs, where RERA (respiratory effort-related arousal) is defined as an episode characterized by an increased respiratory effort caused by upper airway airflow reduction resolved with arousal and accompanied in most cases by hypoxemia [35]).
2.2. Statistics
2.3. Ethics
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. Polysomnographic Parameters of the Study Participants
3.3. Effect of Nasal Obstruction on Positive Airway Pressure Therapy Response
3.4. Effect of Pharyngeal Obstruction on Positive Airway Pressure Therapy Response
3.5. Effect of Tongue Base Anatomy on Positive Airway Pressure Therapy Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franklin, K.A.; Lindberg, E. Obstructive sleep apnea is a common disorder in the population—A review on the epidemiology of sleep apnea. J. Thorac. Dis. 2015, 7, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.L.; Brass, S.D. Obstructive Sleep Apnea. Neurol. Int. 2011, 3, 60–67. [Google Scholar] [CrossRef]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining Phenotypic Causes of Obstructive Sleep Apnea. Identification of Novel Therapeutic Targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Gouveris, H.; Bahr, K.; Schmitt, E.; Abriani, A.; Boekstegers, T.; Fassnacht, S.; Huppertz, T.; Groppa, S.; Muthuraman, M. Corticoperipheral neuromuscular disconnection in obstructive sleep apnoea. Brain Commun. 2020, 2, fcaa056. [Google Scholar] [CrossRef]
- Epstein, L.J.; Kristo, D.; Strollo Jr, P.J.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep. Med. 2009, 5, 263–276. [Google Scholar]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2013, 383, 736–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea With Positive Airway Pressure: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The Occurrence of Sleep-Disordered Breathing among Middle-Aged Adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Durán, J.; Esnaola, S.; Rubio, R.; Iztueta, Á. Obstructive Sleep Apnea–Hypopnea and Related Clinical Features in a Population-based Sample of Subjects Aged 30 to 70 Yr. Am. J. Respir. Crit. Care Med. 2001, 163, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Bixler, E.O.; Vgontzas, A.N.; Have, T.T.; Tyson, K.; Kales, A. Effects of Age on Sleep Apnea in Men. Am. J. Respir. Crit. Care Med. 1998, 157, 144–148. [Google Scholar] [CrossRef]
- Bixler, E.O.; Vgontzas, A.N.; Lin, H.-M.; Have, T.T.; Rein, J.; Vela-Bueno, A.; Kales, A. Prevalence of Sleep-disordered Breathing in Women. Am. J. Respir. Crit. Care Med. 2001, 163, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of Obstructive Sleep Apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahr, K.; Bopp, M.; Kewader, W.; Dootz, H.; Döge, J.; Huppertz, T.; Simon, P.; Prokosch-Willing, V.; Matthias, C.; Gouveris, H. Obstructive sleep apnea as a risk factor for primary open angle glaucoma and ocular hypertension in a monocentric pilot study. Respir. Res. 2020, 21, 258. [Google Scholar] [CrossRef]
- Bahr, K.; Simon, P.; Leggewie, B.; Gouveris, H.; Schattenberg, J. The Snoring Index Identifies Risk of Non-Alcoholic Fatty Liver Disease in Patients with Obstructive Sleep Apnea Syndrome. Biology 2021, 11, 10. [Google Scholar] [CrossRef]
- Huppertz, T.; Horstmann, V.; Scharnow, C.; Ruckes, C.; Bahr, K.; Matthias, C.; Gouveris, H. OSA in patients with head and neck cancer is associated with cancer size and oncologic outcome. Eur. Arch. Oto-Rhino-Laryngol. 2020, 278, 2485–2491. [Google Scholar] [CrossRef]
- Loke, Y.K.; Brown, J.W.L.; Kwok, C.S.; Niruban, A.; Myint, P.K. Association of Obstructive Sleep Apnea with Risk of Serious Cardiovascular Events: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 720–728. [Google Scholar]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Faculty Opinions recommendation of Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2015, 365, 1046–1053. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Palta, M.; Skatrud, J. Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension. N. Engl. J. Med. 2000, 342, 1378–1384. [Google Scholar] [CrossRef]
- Seifen, C.; Pordzik, J.; Ludwig, K.; Bahr, K.; Schupp, C.; Matthias, C.; Simon, P.; Gouveris, H. Obstructive Sleep Apnea Disrupts Glycemic Control in Obese Individuals. Medicina 2022, 58, 1602. [Google Scholar] [CrossRef]
- Benjafield, A.; Valentine, K.; Ayas, N.; Eastwood, P.R.; Heinzer, R.C.; Ip, M.S.; Patel, S.R.; Peppard, P.E.; Sinha, S.; Tufik, S. Global prevalence of obstructive sleep apnea in adults. In Risk and Prevalence of Sleep Disordered Breathing; American Thoracic Society: New York, NY, USA, 2018; p. A396. [Google Scholar]
- Malhotra, A.; White, D.P. Obstructive sleep apnoea. Lancet 2002, 360, 237–245. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Dibbern, R.S.; Goulart, C.W. Nasal obstruction and high Mallampati score as risk factors for Obstructive Sleep Apnea. Braz. J. Otorhinolaryngol. 2010, 76, 596–599. [Google Scholar] [CrossRef]
- Young, T.; Skatrud, J.; Peppard, P.E. Risk Factors for Obstructive Sleep Apnea in Adults. JAMA 2004, 291, 2013–2016. [Google Scholar] [CrossRef]
- Lofaso, F.; Coste, A.; D′Ortho, M.; Zerah-Lancner, F.; Delclaux, C.; Goldenberg, F.; Harf, A. Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur. Respir. J. 2000, 16, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Leitzen, K.P.; Brietzke, S.E.; Lindsay, R.W. Correlation between nasal anatomy and objective obstructive sleep apnea severity. Otolaryngol.—Head Neck Surg. 2014, 150, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Chiba, S.; Matsuura, K.; Osafune, H.; Capasso, R.; Wada, K. Nasal function and CPAP compliance. Auris Nasus Larynx 2019, 46, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Park, P.; Kim, J.; Song, Y.J.; Lim, J.H.; Cho, S.W.; Won, T.-B.; Han, D.H.; Kim, D.-Y.; Rhee, C.S.; Kim, H.J. Influencing factors on CPAP adherence and anatomic characteristics of upper airway in OSA subjects. Medicine 2017, 96, e8818. [Google Scholar] [CrossRef]
- Barceló, X.; Mirapeix, R.M.; Bugés, J.; Cobos, A.; Domingo, C. Oropharyngeal Examination to Predict Sleep Apnea Severity. Arch. Otolaryngol. Neck Surg. 2011, 137, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Cahali, M.B.; de Paula Soares, C.F.; da Silva Dantas, D.A.; Formigoni, G.G.S. Tonsil volume, tonsil grade and obstructive sleep apnea: Is there any meaningful correlation? Clinics 2011, 66, 1347–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara, S.M.; Weaver, E.M. Association of palatine tonsil size and obstructive sleep apnea in adults. Laryngoscope 2017, 128, 1002–1006. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S.F. Quan SF for the American Academy of Sleep Medicine. In The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 1st ed.; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Ibrahim, H.; Bass, L. Clinical Staging for Sleep-Disordered Breathing. Otolaryngol. Neck Surg. 2002, 127, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.N.; Schwab, R.J. Identifying the patient with sleep apnea. Otolaryngol. Clin. N. Am. 1998, 31, 919–930. [Google Scholar] [CrossRef]
- Kamasová, M.; Václavík, J.; Kociánová, E.; Táborský, M. Obstructive sleep apnea in outpatient care—What to do with? Cor et Vasa 2018, 60, e274–e280. [Google Scholar] [CrossRef] [Green Version]
- Gouveris, H.; Selivanova, O.; Bausmer, U.; Goepel, B.; Mann, W. First-night-effect on polysomnographic respiratory sleep parameters in patients with sleep-disordered breathing and upper airway pathology. Eur. Arch. Oto-Rhino-Laryngol. 2010, 267, 1449–1453. [Google Scholar] [CrossRef]
- Georgalas, C. The role of the nose in snoring and obstructive sleep apnoea: An update. Eur. Arch. Oto-Rhino-Laryngol. 2011, 268, 1365–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNicholas, W.T. The nose and OSA: Variable nasal obstruction may be more important in pathophysiology than fixed obstruction. Eur. Respir. J. 2008, 32, 3–8. [Google Scholar] [CrossRef]
- Zonato, A.I.; Bittencourt, L.R.; Martinho, F.L.; Júnior, J.F.S.; Gregório, L.C.; Tufik, S. Association of Systematic Head and Neck Physical Examination With Severity of Obstructive Sleep Apnea???Hypopnea Syndrome. Laryngoscope 2003, 113, 973–980. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Ge, S.; Gu, Y.; Ding, X.; Zhang, Y.; Ye, J.; Zhang, L. Allergic and Non-Allergic Rhinitis Are Common in Obstructive Sleep Apnea but Not Associated With Disease Severity. J. Clin. Sleep Med. 2017, 13, 959–966. [Google Scholar] [CrossRef]
- Li, H.-Y.; Wang, P.-C.; Chen, Y.-P.; Lee, L.-A.; Fang, T.-J.; Lin, H.-C. Critical Appraisal and Meta-Analysis of Nasal Surgery for Obstructive Sleep Apnea. Am. J. Rhinol. Allergy 2011, 25, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Tanyeri, H.; La Rosa, M.; Landsberg, R.; Vaidyanathan, K.; Pieri, S.; Caldarelli, D.; Dds, M.L.R. Clinical Predictors of Obstructive Sleep Apnea. Laryngoscope 1999, 109, 1901–1907. [Google Scholar] [CrossRef]
- Dreher, A.; de la Chaux, R.; Klemens, C.; Werner, R.; Baker, F.; Barthlen, G.; Rasp, G. Correlation Between Otorhinolaryngologic Evaluation and Severity of Obstructive Sleep Apnea Syndrome in Snorers. Arch. Otolaryngol. Neck Surg. 2005, 131, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Hamilton, C.; Samuelson, C.G.; Lundgren, M.E.; Pott, T. Diagnostic Value of the Friedman Tongue Position and Mallampati Classification for Obstructive Sleep Apnea: A Meta-analysis. Otolaryngol. Neck Surg. 2013, 148, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Azbay, S.; Bostanci, A.; Aysun, Y.; Turhan, M. The influence of multilevel upper airway surgery on CPAP tolerance in non-responders to obstructive sleep apnea surgery. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 2813–2818. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekariah, R.; Shaman, Z.; Auckley, D. Impact of Upper Airway Surgery on CPAP Compliance in Difficult-to-Manage Obstructive Sleep Apnea. Arch. Otolaryngol. Neck Surg. 2008, 134, 926–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Soans, R.; Joseph, N.; Kakodkar, S.; Friedman, J. The effect of multilevel upper airway surgery on continuous positive airway pressure therapy in obstructive sleep apnea/hypopnea syndrome. Laryngoscope 2008, 119, 193–196. [Google Scholar] [CrossRef]
- Turhan, M.; Bostanci, A.; Akdag, M. The impact of modified tongue base suspension on CPAP levels in patients with severe OSA. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 995–1000. [Google Scholar] [CrossRef]
- Kim, A.M.; Keenan, B.T.; Jackson, N.; Chan, E.L.; Staley, B.; Poptani, H.; Torigian, D.A.; Pack, A.I.; Schwab, R.J. Tongue Fat and its Relationship to Obstructive Sleep Apnea. Sleep 2014, 37, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
Study Participants | |
---|---|
Number of patients | 93 |
Number of male patients (%) | 75 (80.6) |
Number of female patients (%) | 18 (19.4) |
Age, in years ± SD | 57.5 ± 13.0 |
BMI, in kg/m2 ± SD | 32.2 ± 5.80 |
Diagnostic PSG | PAP Therapy Control PSG | |
---|---|---|
ARI (n/hour (IQR)) | 33.5 (24.4) | 17.25 (11.87) |
RDI (n/hour (IQR)) | 40.3 (28.2) | 4.20 (4.44) |
AI (n/hour (IQR)) | 36.1 (29.8) | 1.38 (3.24) |
HI (n/hour (IQR)) | 5.28 (7.71) | 0.30 (1.04) |
ODI (n/hour (IQR)) | 30.4 (33.6) | 2.80 (5.96) |
No Nasal Obstruction | Septal Deviation Present | Turbinate Hyperplasia Present | Septal Deviation and Turbinate Hyperplasia Present | Between-Group Comparison (p-Value) | ||
---|---|---|---|---|---|---|
Number of patients (%) | 14 (15.7) | 18 (20.2) | 7 (7.90) | 50 (56.2) | ||
Percentage male | 85.7 | 83.3 | 42.9 | 84 | ||
Age, in years (±SD) | 60.4 (±10.7) | 56.0 (±15.4) | 55.9 (±10.2) | 57.2 (±13.6) | p = 0.796 | |
BMI, in kg/m2 (±SD) | 30.8 (±4.69) | 31.1 (±4.29) | 32.8 (±4.41) | 32.9 (±6.67) | p = 0.512 | |
ARI (n/hour (IQR)) | Diagnostic PSG | 32.3 (23.3) | 34.8 (30.0) | 21.7 (25.9) | 36.2 (21.3) | p = 0.971 |
PAP PSG | 18.1 (11.3) | 21.5 (12.1) | 27.1 (16.1) | 16.1 (12.5) | p = 0.140 | |
RDI (n/hour (IQR)) | Diagnostic PSG | 48.7 (44.0) | 37.9 (23.1) | 37.3 (37.0) | 40.3 (26.4) | p = 0.483 |
PAP PSG | 4.15 (6.00) | 2.15 (9.94) | 2.10 (6.75) | 1.60 (2.71) | p = 0.365 | |
AI (n/hour (IQR)) | Diagnostic PSG | 43.6 (43.6) | 36.6 (30.4) | 27.6 (32.7) | 36.1 (28.1) | p = 0.455 |
PAP PSG | 2.12 (4.89) | 1.92 (9.05) | 0.90 (2.55) | 1.05 (2.44) | p = 0.722 | |
HI (n/hour (IQR)) | Diagnostic PSG | 6.40 (9.49) | 3.23 (5.80) | 6.75 (6.10) | 3.47 (5.13) | p = 0.051 |
PAP PSG | 0.78 (1.68) | 0.43 (1.48) | 0.40 (3.25) | 0.20 (0.80) | p = 0.224 | |
ODI (n/hour (IQR)) | Diagnostic PSG | 38.1 (36.1) | 29.8 (26.0) | 24.6 (22.5) | 30.7 (31.2) | p = 0.439 |
PAP PSG | 4.83 (6.19) | 3.03 (8.06) | 2.20 (8.75) | 2.30 (3.86) | p = 0.387 |
No Pharyngeal Obstruction | Webbing Present | Tonsil Hyperplasia Present | Webbing and Tonsil Hyperplasia Present | Between-Group Comparison (p-Value) | ||
---|---|---|---|---|---|---|
Number of patients (%) | 23 (28.8) | 38 (47.5) | 5 (6.30) | 14 (17.5) | ||
Percentage male | 69.6 | 81.6 | 100 | 78.6 | ||
Age, in years (±SD) | 58.5 (±12.7) | 59.3 (±12.6) | 49.0 (±11.3) | 50.4 (±12.8) | p = 0.067 | |
BMI, in kg/m2 (±SD) | 31.3 (±6.53) | 32.0 (±5.34) | 33.4 (±1.30) | 34.61 (±7.30) | p = 0.387 | |
ARI (n/hour (IQR)) | Diagnostic PSG | 30.0 (18.1) | 34.1 (24.44) | 59.0 (22.8) | 42.4 (26.7) | p = 0.018 |
PAP PSG | 18.1 (16.3) | 16.2 (13.1) | 24.4 (29.8) | 20.2 (5.34) | p = 0.164 | |
RDI (n/hour (IQR)) | Diagnostic PSG | 33.0 (27.5) | 45.0 (25.4) | 51.8 (33.1) | 48.5 (46.0) | p = 0.131 |
PAP PSG | 1.90 (4.00) | 1.85 (6.00) | 1.00 (7.08) | 1.92 (2.50) | p = 0.859 | |
AI (n/hour (IQR)) | Diagnostic PSG | 27.6 (28.3) | 38.8 (30.7) | 35.6 (31.3) | 39.4 (44.0) | p = 0.176 |
PAP PSG | 1.70 (3.30) | 1.20 (4.50) | 0.70 (5.30) | 1.60 (2.00) | p = 0.935 | |
HI (n/hour (IQR)) | Diagnostic PSG | 5.80 (7.35) | 5.40 (8.90) | 3.00 (7.24) | 3.73 (46.0) | p = 0.468 |
PAP PSG | 0.00 (0.90) | 0.55 (1.55) | 0.10 (0.70) | 0.25 (0.71) | p = 0.107 | |
ODI (n/hour (IQR)) | Diagnostic PSG | 22.6 (20.45) | 33.8 (30.3) | 45.2 (49.9) | 31.9 (62.1) | p = 0.165 |
PAP PSG | 2.70 (4.30) | 3.15 (8.00) | 2.95 (7.95) | 2.95 (3.43) | p = 0.811 |
No Tongue Base Hyperplasia | Tongue Base Hyperplasia Present | Between-Group Comparison (p-Value) | ||
---|---|---|---|---|
Number of patients (%) | 33 (38.8) | 53 (61.2) | ||
Percentage male | 87.9 | 75.0 | ||
Age, in years (±SD) | 57.7 (±15.3) | 56.8 (±11.6) | p = 0.749 | |
BMI, in kg/m2 (±SD) | 32.62 (±7.43) | 31.93 (±4.72) | p = 0.632 | |
ARI (n/hour (IQR)) | Diagnostic PSG | 33.2 (24.9) | 33.7 (24.0) | p = 0.595 |
PAP PSG | 16.6 (17.5) | 18.2 (11.2) | p = 0.847 | |
RDI (n/hour (IQR)) | Diagnostic PSG | 40.6 (18.4) | 42.3 (20.2) | p = 0.701 |
PAP PSG | 2.60 (3.83) | 1.75 (4.13) | p = 0.691 | |
AI (n/hour (IQR)) | Diagnostic PSG | 35.3 (20.4) | 33.4 (20.0) | p = 0.662 |
PAP PSG | 1.4 (2.95) | 1.25 (2.85) | p = 0.755 | |
HI (n/hour (IQR)) | Diagnostic PSG | 3.45 (5.40) | 5.82 (10.3) | p = 0.025 |
PAP PSG | 0.95 (1.13) | 0.30 (0.88) | p = 0.843 | |
ODI (n/hour (IQR)) | Diagnostic PSG | 30.8 (31.3) | 30.0 (31.2) | p = 0.709 |
PAP PSG | 2.95 (3.80) | 2.10 (6.88) | p = 0.850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifen, C.; Schlaier, N.A.; Pordzik, J.; Staufenberg, A.-R.; Matthias, C.; Gouveris, H.; Bahr-Hamm, K. Anatomic Features of the Nasal and Pharyngeal Region Do Not Influence PAP Therapy Response. Int. J. Environ. Res. Public Health 2023, 20, 6580. https://doi.org/10.3390/ijerph20166580
Seifen C, Schlaier NA, Pordzik J, Staufenberg A-R, Matthias C, Gouveris H, Bahr-Hamm K. Anatomic Features of the Nasal and Pharyngeal Region Do Not Influence PAP Therapy Response. International Journal of Environmental Research and Public Health. 2023; 20(16):6580. https://doi.org/10.3390/ijerph20166580
Chicago/Turabian StyleSeifen, Christopher, Nadine Angelina Schlaier, Johannes Pordzik, Anna-Rebekka Staufenberg, Christoph Matthias, Haralampos Gouveris, and Katharina Bahr-Hamm. 2023. "Anatomic Features of the Nasal and Pharyngeal Region Do Not Influence PAP Therapy Response" International Journal of Environmental Research and Public Health 20, no. 16: 6580. https://doi.org/10.3390/ijerph20166580