Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses Development
2.1. Internet Use and QoL
2.2. Risk Perception
2.3. Internet Addiction
2.4. The Multiple Mediating Roles of Risk Perception and Internet Addiction
3. Method
3.1. Study Participants
3.2. Measures
3.2.1. Quality of Life
3.2.2. Internet Use
3.2.3. Risk Perception
3.2.4. Internet Addiction
3.3. Data Analysis
4. Results
4.1. Preliminary Analysis
4.2. Hypotheses Testing
5. Discussion
5.1. Implications for Research
5.2. Implications for Practice
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHOQOL Group. The World Health Organization Quality of Life Assessment (WHOQOL): Positionpaper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [Google Scholar] [CrossRef]
- Haraldstad, K.; Wahl, A.; Andens, R.; Andersen, J.R.; Helseth, S. A Systematic Review of Quality of Life Research in Medicine and Health Sciences. Qual. Life Res. 2019, 28, 2641–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, I.B.; Cleary, P.D. Linking Clinical Variables with Health-Related Quality of Life: A Conceptual Model of Patient Outcomes. JAMA 1995, 273, 59. [Google Scholar] [CrossRef] [PubMed]
- Cleemput, I.; Neyt, M. Which Quality of Life Measures Fit Your Relative Effectiveness Assessment? Int. J. Technol. Assess. Health Care 2015, 31, 147–153. [Google Scholar] [CrossRef]
- Costa, D.S.J. Reflective, Causal, and Composite Indicators of Quality of Life: A Conceptual or an Empirical Distinction? Qual. Life Res. 2015, 24, 2057–2065. [Google Scholar] [CrossRef]
- Requena, F. Social Capital, Satisfaction and Quality of Life in the Workplace. Soc. Indic. Res. 2003, 61, 331–360. [Google Scholar] [CrossRef]
- Leung, L. Effects of Internet Connectedness and Information Literacy on Quality of Life. Soc. Indic. Res. 2009, 98, 273–290. [Google Scholar] [CrossRef]
- Hamburger, Y.A.; Ben-Artzi, E. The Relationship between Extraversion and Neuroticism and the Different Uses of the Internet. Comput. Hum. Behav. 2000, 16, 441–449. [Google Scholar] [CrossRef]
- Hills, P.; Argyle, M. Uses of the Internet and Their Relationships with Individual Differences in Personality. Comput. Hum. Behav. 2003, 19, 59–70. [Google Scholar] [CrossRef]
- Gao, L.; Gan, Y.; Whittal, A.; Lippke, S. Problematic Internet Use and Perceived Quality of Life: Findings from a Cross-Sectional Study Investigating Work-Time and Leisure-Time Internet Use. Int. J. Environ. Res. Public Health 2020, 17, 4056. [Google Scholar] [CrossRef]
- Pohl, M.; Feher, G.; Kapus, K.; Feher, A.; Nagy, G.D.; Kiss, J.; Fejes, É.; Horvath, L.; Tibold, A. The Association of Internet Addiction with Burnout, Depression, Insomnia, and Quality of Life among Hungarian High School Teachers. Int. J. Environ. Res. Public Health 2020, 19, 438. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Han, Z. Association between Disaster Experience and Quality of Life: The Mediating Role of Disaster Risk Perception. Qual. Life Res. 2019, 28, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Kardefelt-Winther, D. A Conceptual and Methodological Critique of Internet Addiction Research: Towards a Model of Compensatory Internet Use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Do, Y.K.; Shin, E.; Bautista, M.A.; Foo, K. The Associations between Self-Reported Sleep Duration and Adolescent Health Outcomes: What Is the Role of Time Spent on Internet Use? Sleep Med. 2013, 14, 195–200. [Google Scholar] [CrossRef]
- Chern, K.C.; Huang, J.H. Internet Addiction: Associated with Lower Health-Related Quality of Life among College Students in Taiwan, and in What Aspects? Comput. Hum. Behav. 2018, 84, 460–466. [Google Scholar] [CrossRef]
- Muusses, L.D.; Finkenauer, C.; Kerkhof, P.; Billedo, C.J. A Longitudinal Study of the Association between Compulsive Internet Use and Wellbeing. Comput. Hum. Behav. 2014, 36, 21–28. [Google Scholar] [CrossRef]
- Katz, E.; Gurevitch, M.; Haas, H. On the Use of the Mass Media for Important Things. Am. Sociol. Rev. 1973, 38, 164–181. [Google Scholar] [CrossRef]
- Ku, Y.C.; Chu, T.H.; Tseng, C.H. Gratifications for Using CMC Technologies: A Comparison among SNS, IM, and E-Mail. Comput. Hum. Behav. 2013, 29, 226–234. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. The “What” and “Why” of Goal Pursuits: Human Needs and the Self-Determination of Behavior. Psychol. Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Campbell, R.; Vansteenkiste, M.; Delesie, L.; Soenens, B.; Tobback, E.; Vogelaers, D.; Mariman, A. The Role of Basic Psychological Need Satisfaction, Sleep, and Mindfulness in the Health-Related Quality of Life of People Living with HIV. J. Health Psychol. 2016, 24, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, L. Leisure and Health: Why Is Leisure Therapeutic? Br. J. Guid. Couns. 2015, 33, 7–26. [Google Scholar] [CrossRef]
- Trenberth, L. The Role, Nature and Purpose of Leisure and Its Contribution to Individual Development and Wellbeing. Br. J. Guid. Couns. 2005, 33, 1–6. [Google Scholar] [CrossRef]
- Passmore, A. The Occupation of Leisure: Three Typologies and Their Influence on Mental Health in Adolescence. OTJR Occup. Particip. Health 2003, 23, 76. [Google Scholar] [CrossRef]
- Mckenna, K.; Bargh, J.A. Coming out in the Age of the Internet: Identity “Demarginalization” through Virtual Group Participation. J. Personal. Soc. Psychol. 1998, 75, 681–694. [Google Scholar] [CrossRef]
- Beck, U. Risk Society: Towards a New Modernity; Ritter, M., Translator; Sage Publications: London, UK, 1992. [Google Scholar]
- Klinke, A.; Renn, O. The Coming of Age of Risk Governance. Risk Anal. 2021, 41, 544–557. [Google Scholar] [CrossRef]
- Powdthavee, N. Happiness and the Standard of Living: The Case of South Africa. In Handbook on The Economics of Happiness; Bruni, L., Porta, P.L., Eds.; Edward Elgar: Northampton, MA, USA, 2007; pp. 447–486. [Google Scholar]
- Wills-Herrera, E.; Orozco, L.E.; Forero-Pineda, C.; Pardo, O.; Andonova, V. The Relationship between Perceptions of Insecurity, Social Capital and Subjective Well-Being: Empirical Evidence from Areas of Rural Conflict in Colombia. J. Soc.-Econ. 2011, 40, 88–96. [Google Scholar] [CrossRef]
- Li, Z.; Folmer, H.; Xue, J. To What Extent Does Air Pollution Affect Happiness? The Case of the Jinchuan Mining Area, China. Ecol. Econ. 2014, 99, 88–99. [Google Scholar] [CrossRef]
- Berlemann, M. Does Hurricane Risk Affect Individual Well-Being? Empirical Evidence on the Indirect Effects of Natural Disasters. Ecol. Econ. 2016, 124, 99–113. [Google Scholar] [CrossRef]
- Chung, I.J. Social Amplification of Risk in the Internet Environment. Risk Anal. 2011, 31, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.; Choy, M. The Social Amplification of Haze-Related Risks on the Internet. Health Commun. 2018, 33, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.A. Perceived Gratifications of Online Media Service Use among Potential Users. Telemat. Inf. 2002, 19, 3–19. [Google Scholar] [CrossRef]
- Freeman, B. New Media and Tobacco Control. Tob. Control 2012, 21, 139–144. [Google Scholar] [CrossRef]
- Sundar, S.S.; Limperos, A.M. Uses and Grats 2.0: New Gratifications for New Media. J. Broadcast. Electron. Media 2013, 57, 504–525. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, P. Political News and Happiness: The Difference between Traditional Media and New Media Use. Chin. J. Commun. 2020, 13, 370–388. [Google Scholar] [CrossRef]
- Hur, M.H. Demographic, Habitual, and Socioeconomic Determinants of Internet Addiction Disorder: An Empirical Study of Korean Teenagers. Cyberpsychol. Behav. 2006, 9, 514–525. [Google Scholar] [CrossRef]
- Tokunaga, R.S.; Rains, S.A. An Evaluation of Two Characterizations of the Relationships between Problematic Internet Use, Time Spent Using the Internet, and Psychosocial Problems. Hum. Commun. Res. 2010, 36, 512–545. [Google Scholar] [CrossRef]
- Chou, C.; Hsiao, M.C. Internet Addiction, Usage, Gratifications, and Pleasure Experience: The Taiwan College Students’ Case. Comput. Educ. 2000, 35, 65–80. [Google Scholar] [CrossRef]
- Kheirkhah, F.; Juibary, A.G.; Gouran, A. Internet Addiction, Prevalence and Epidemiological Features in Mazandaran Province, Northern Iran. Iran. Red Crescent Med. J. 2010, 12, 133–137. [Google Scholar]
- Young, K.S. Internet Addiction: The Emergence of Anew Clinical Disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic Smartphone Use: A Conceptual Overview and Systematic Review of Relations with Anxiety and Depression Psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef]
- Ko, C.H.; Yen, J.Y.; Chen, C.S.; Chen, C.C.; Yen, C.F. Psychiatric Comorbidity of Internet Addiction in College Students: An Interview Study. CNS Spectr. 2008, 13, 147–153. [Google Scholar] [CrossRef]
- Schweizer, A.; Berchtold, A.; Barrense-Dias, Y.; Akre, C.; Suris, J.C. Adolescents with a Smartphone Sleep less than Their Peers. Eur. J. Pediatr. 2017, 176, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Adachi, M.; Nishimura, T.; Hirota, T.; Yasuda, S.; Kuribayashi, M.; Nakamura, K. Prevalence of Pathological and Maladaptive Internet Use and the Association with Depression and Health-Related Quality of Life in Japanese Elementary and Junior High School-Aged Children. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Akın, A. The Relationships between Internet Addiction, Subjective Vitality, and Subjective Happiness. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 404. [Google Scholar] [CrossRef]
- Adler, A. Study of Organ Inferiority and Its Psychical Compensation: A Contribution to Clinical Medicine. In Nervous and Mental Disease Monograph Series; Jelliffe, E., White, W.A., Eds.; Nervous and Mental Disease Publishing Company: New York, NY, USA, 1917; Volume 24. [Google Scholar]
- Rucker, D.D.; Galinsky, A.D. Desire to Acquire: Powerlessness and Compensatory Consumption. J. Consum. Res. 2008, 35, 257–267. [Google Scholar] [CrossRef]
- Weidman, A.C.; Fernandez, K.C.; Levinson, C.A.; Augustine, A.A.; Larsen, R.J.; Rodebaugh, T.L. Compensatory Internet Use among Individuals Higher in Social Anxiety and Its Implications for Well-Being. Personal. Individ. Differ. 2012, 53, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Shen, X. Is Psychological Resilience a Protective Factor between Motivations and Excessive Smartphone Use? J. Pac. Rim Psychol. 2020, 14, e17. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. J. Educ. Meas. 2013, 51, 335–337. [Google Scholar]
- Hong, Y.; Kim, J.-S.; Lee, J.-H. How Does the Quality of Life Affect Individuals’ Disaster Preparedness Behaviors? A Moderated Mediation Model-Based Case Study. Soc. Indic. Res. 2020, 148, 1039–1052. [Google Scholar] [CrossRef]
- Martin, I.M.; Bender, H.; Raish, C. What Motivates Individuals to Protect Themselves from Risks: The Case of Wildland Fires. Risk Anal. 2007, 27, 887–900. [Google Scholar] [CrossRef]
- McNeill, I.M.; Dunlop, P.D.; Heath, J.B.; Skinner, T.C.; Morrison, D.L. Expecting the Unexpected: Predicting Physiological and Psychological Wildfire Preparedness from Perceived Risk, Responsibility, and Obstacles. Risk Anal. 2013, 33, 1829–1843. [Google Scholar] [CrossRef]
- Murphy, S.T.; Cody, M.; Frank, L.B.; Glik, D.; Ang, A. Predictors of Emergency Preparedness and Compliance. Disaster Med. Public Health Prep. 2009, 7, S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Kim, J.-S.; Xiong, L. Media Exposure and Individuals’ Emergency Preparedness Behaviors for Coping with Natural and Human-Made Disasters. J. Environ. Psychol. 2019, 63, 82–91. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1967. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 24, 337–346. [Google Scholar] [CrossRef]
- Apaolaza, V.; Hartmann, P.; Medina, E.; Barrutia, J.M.; Echebarria, C. The Relationship between Socializing on the Spanish Online Networking Site Tuenti and Teenagers’ Subjective Well-Being: The Roles of Self-Esteem and Loneliness. Comput. Hum. Behav. 2013, 29, 1282–1289. [Google Scholar] [CrossRef]
- Chen, H.-T.; Li, X. The Contribution of Mobile Social Media to Social Capital and Psychological Well-Being: Examining the Role of Communicative Use, Friending and Selfdisclosure. Comput. Hum. Behav. 2017, 75, 958–965. [Google Scholar] [CrossRef]
- Valenzuela, S.; Park, N.; Kee, K.F. Is There Social Capital in a Social Network Site? Facebook Use and College Students’ Life Satisfaction, Trust, and Participation. J. Comput.-Mediat. Commun. 2009, 14, 875–901. [Google Scholar] [CrossRef] [Green Version]
- Vohs, K.; Mead, N.; Goode, M. The Psychological Consequences of Money. Science 2006, 314, 1154–1156. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Larose, R. Does Using the Internet Make People More Satisfied with Their Lives? The Effects of the Internet on College Students’ School Life Satisfaction. CyberPsychol. Behav. 2008, 11, 310–320. [Google Scholar] [CrossRef]
- Leung, L.; Lee, S.N.P. Multiple Determinants of Life Quality: The Roles of Internet Activities, Use of New Media, Social Support, and Leisure Activities. Telemat. Inf. 2005, 22, 161–180. [Google Scholar] [CrossRef]
- Crespo, R.F.; Mesurado, B. Happiness Economics, Eudaimonia and Positive Psychology: From Happiness Economics to Flourishing Economics. J. Happiness Stud. 2015, 16, 931–946. [Google Scholar] [CrossRef]
- Frey, B.S.; Gallus, J. Happiness: Research and Policy Considerations. In Advances in Happiness Research; Tachibanaki, T., Ed.; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Koh, Y.-S. The Korean National Policy for Internet Addiction. In Internet Addiction; Montag, C., Reuter, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 219–233. [Google Scholar]
- Zhan, J.D.; Chan, H.C. Government Regulation of Online Game Addiction. Commun. Assoc. Inf. Syst. 2012, 30, 187–198. [Google Scholar] [CrossRef]
- Canale, N.; Griffiths, M.D.; Vieno, A.; Siciliano, V.; Molinaro, S. Impact of Internet Gambling on Problem Gambling among Adolescents in Italy: Findings from a Large-Scale Nationally Representative Survey. Comput. Hum. Behav. 2016, 57, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Shao, X.; Wang, Y.; Huang, Y.; Miao, J.; Yang, X.; Zhu, G. An Investigation of Mental Health Status of Children and Adolescents in China during the Outbreak of COVID-19. J. Affect. Disord. 2020, 275, 112–118. [Google Scholar] [CrossRef]
- Ozturk, O.F.; Ayaz-Alkaya, S. Internet Addiction and Psychosocial Problems among Adolescents during the COVID-19 Pandemic: A Cross-Sectional Study. Arch. Psychiatr. Nurs. 2021, 35, 595–601. [Google Scholar] [CrossRef]
- O’Neill, B.; Grehan, S.; Ólafsson, K. Risks and Safety for Children on the Internet: The Ireland Report; LSE, EU Kids Online: London, UK, 2011. [Google Scholar]
Socio-Demographics | LIU | WIU | RP | IA | QoL |
---|---|---|---|---|---|
All | 5.33 (1.05) | 4.06 (1.88) | 3.24 (1.03) | 2.59 (1.07) | 3.58 (0.72) |
Gender | |||||
Men (n = 830) | 5.27 (1.14) | 4.06 (1.90) | 3.11 (1.03) | 2.54 (1.08) | 3.57 (0.75) |
Women (n = 705) | 5.41 (0.93) | 4.06 (1.84) | 3.39 (1.00) | 2.64 (1.06) | 3.58 (0.67) |
F | 6.507 b | 0.000 a | 29.164 a | 3.303 a | 0.128 b |
P | 0.011 | 0.996 | <0.001 | 0.069 | 0.721 |
Age | |||||
18–29 (n = 349) | 5.57 (0.77) | 4.64 (1.47) | 3.16 (1.03) | 3.10 (0.93) | 3.71 (0.68) |
30–39 (n = 335) | 5.47 (0.98) | 4.69 (1.60) | 3.25 (1.02) | 2.86 (1.04) | 3.51 (0.72) |
40–49 (n = 316) | 5.27 (1.08) | 4.19 (1.74) | 3.31 (1.01) | 2.53 (1.04) | 3.51 (0.74) |
50–59 (n = 299) | 5.23 (1.18) | 3.5 (2.01) | 3.32 (1.02) | 2.18 (1.01) | 3.53 (0.74) |
60 or older (n = 236) | 5.02 (1.19) | 2.84 (1.99) | 3.16 (1.05) | 2.04 (0.99) | 3.62 (0.70) |
F | 13.210 b | 52.144 b | 1.851 a | 59.087 a | 4.985 a |
P | <0.001 | <0.001 | 0.117 | <0.001 | 0.001 |
Education | |||||
<senior high school (n = 195) | 5.08 (1.21) | 2.42 (1.85) | 3.52 (0.98) | 2.07 (1.06) | 3.52 (0.78) |
senior high school (n = 448) | 5.22 (1.11) | 3.48 (1.86) | 3.42 (1.06) | 2.46 (1.10) | 3.50 (0.78) |
college (n = 359) | 5.31 (1.10) | 4.51 (1.64) | 3.18 (0.99) | 2.72 (1.06) | 3.55 (0.68) |
bachelor (n = 356) | 5.53 (0.87) | 4.69 (1.53) | 3.04 (0.98) | 2.81 (1.00) | 3.69 (0.65) |
master (n = 155) | 5.55 (0.84) | 5.18 (1.24) | 3.03 (1.01) | 2.86 (0.97) | 3.66 (0.66) |
>master (n = 22) | 5.45 (0.80) | 5.18 (1.37) | 2.86 (0.92) | 2.18 (0.68) | 3.70 (0.57) |
F | 7.736 b | 79.576 b | 10.847 a | 18.888 b | 3.898 b |
P | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 |
Construct | Item | Loading | CR | AVE |
---|---|---|---|---|
RP | RP1 | 0.791 | 0.887 | 0.662 |
RP2 | 0.841 | |||
RP3 | 0.820 | |||
RP4 | 0.801 | |||
IA | IA1 | 0.759 | 0.841 | 0.514 |
IA2 | 0.740 | |||
IA3 | 0.742 | |||
IA4 | 0.720 | |||
IA5 | 0.616 | |||
QoL | QoL1 | 0.842 | 0.842 | 0.641 |
QoL2 | 0.840 | |||
QoL3 | 0.713 |
Variables | LIU | WIU | RP | IA | QoL |
---|---|---|---|---|---|
LIU | - | ||||
WIU | 0.338 ** | - | |||
RP | 0.056 * | −0.092 ** | 0.814 | ||
IA | 0.299 ** | 0.293 ** | 0.085 ** | 0.717 | |
QoL | 0.057 * | 0.022 | −0.097 ** | −0.059 * | 0.784 |
Model 1 (QoL) | Model 2 (IA) | Model 3 (RP) | ||||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
Gender | 0.033 | 0.364 | 0.057 | 0.247 | 0.261 ** | <0.001 |
Age | −0.022 | 0.133 | −0.215 ** | <0.001 | −0.036 | 0.078 |
Education | 0.052 ** | 0.002 | 0.028 | 0.207 | −0.145 ** | <0.001 |
LIU | 0.056 ** | 0.003 | 0.201 ** | <0.001 | 0.084 ** | 0.001 |
WIU | −0.015 | 0.210 | 0.072 ** | <0.001 | −0.034 * | 0.037 |
RP | −0.058 ** | 0.001 | 0.097 ** | <0.001 | ||
IA | −0.067 ** | <0.001 |
Path | Effect | Boot SE | CI = 95% | Significance | |
---|---|---|---|---|---|
LLCI | ULCI | ||||
Direct effect | 0.0500 | 0.0182 | 0.0143 | 0.0857 | Significant |
Indirect effect | |||||
TOTAL | −0.0207 | 0.0057 | −0.0324 | −0.0099 | Significant |
path1: LIU- > RP- > QoL | −0.0039 | 0.0019 | −0.0083 | −0.0008 | Significant |
path2: LIU- > IA- > QoL | −0.0163 | 0.0054 | −0.0276 | −0.0064 | Significant |
path3: LIU- > RP- > IA- > QoL | −0.0004 | 0.0002 | −0.0010 | −0.0001 | Significant |
Path | Effect | Boot SE | CI = 95% | Significance | |
---|---|---|---|---|---|
LLCI | ULCI | ||||
Direct effect | −0.0056 | 0.0112 | −0.0276 | 0.0164 | Not significant |
Indirect effect | |||||
TOTAL | −0.0049 | 0.0026 | −0.0102 | 0.0001 | Not significant |
path1: WIU- > RP- > QoL | 0.0010 | 0.0010 | −0.0005 | 0.0038 | Not significant |
path2: WIU- > IA- > QoL | −0.0060 | 0.0024 | −0.0112 | −0.0015 | Significant |
path3: WIU- > RP- > IA- > QoL | 0.0001 | 0.0001 | <0.0001 | 0.0005 | Significant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, B.; Huang, M.; Xu, M.; Hong, Y. Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction. Int. J. Environ. Res. Public Health 2022, 19, 1795. https://doi.org/10.3390/ijerph19031795
Qian B, Huang M, Xu M, Hong Y. Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction. International Journal of Environmental Research and Public Health. 2022; 19(3):1795. https://doi.org/10.3390/ijerph19031795
Chicago/Turabian StyleQian, Bo, Mengmeng Huang, Mengyi Xu, and Yuxiang Hong. 2022. "Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction" International Journal of Environmental Research and Public Health 19, no. 3: 1795. https://doi.org/10.3390/ijerph19031795