Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context, Model Structure and Outputs
2.2. Policy Testing and Sensitivity Analyses
- Scenario A: short duration (CED = 0.5 years) and low impact (CES = 0.11)—lowest projected increase in suicides
- Scenario B: short duration (CED = 0.5 years) and high impact (CES = 0.33),
- Scenario C: long duration (CED = 1.5 years) and low impact (CES = 0.11),
- Scenario D: long duration (CED = 1.5 years) and high impact (CES = 0.33)—highest projected increase in suicides
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, D. Special report: The simulations driving the world’s response to COVID-19. Nature 2020, 580, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguas, R.; White, L.; Hupert, N.; Shretta, R.; Pan-Ngum, W.; Celhay, O.; Moldokmatova, A.; Arifi, F.; Mirzazadeh, A.; Sharifi, H.; et al. Modelling the COVID-19 pandemic in context: An international participatory approach. BMJ Glob. Health 2020, 5, e003126. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Wood, J.; Brown, F.; Black, A.J.; McCaw, J.M.; McVernon, J. Modelling the impact of COVID-19 in Australia to inform transmission reducing measures and health system preparedness. medRxiv Preprint 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kompas, T.; Quentin Grafton, R.; Nhu Che, T.; Chu, L.; Camac, J. Health and economic costs of early and delayed suppression and the unmitigated spread of COVID-19: The case of Australia. PLoS ONE 2021, 16, e0252400. [Google Scholar] [CrossRef]
- Atkinson, J.; Song, Y.J.C.; Merikangas, K.R.; Skinner, A.; Prodan, A.; Iorfino, F.; Freebairn, L.; Rose, D.; Ho, N.; Crouse, J.; et al. The Science of Complex Systems Is Needed to Ameliorate the Impacts of COVID-19 on Mental Health. Front. Psychiatry 2020, 11, 1321. [Google Scholar] [CrossRef]
- Panovska-Griffiths, J.; Kerr, C.C.; Waites, W.; Stuart, R.M. Mathematical modeling as a tool for policy decision making: Applications to the COVID-19 pandemic. Handb. Stat. 2021, 44, 291–326. [Google Scholar] [CrossRef]
- Atkinson, J.; Fox, C.; Hickie, I.; World Economic Forum. Modelling the Shape of the Mental Health Crisis after COVID. 18 December 2020. Available online: https://www.weforum.org/agenda/2020/12/why-we-need-to-think-about-mental-wealth-as-we-recover-from-the-pandemic/ (accessed on 8 November 2021).
- Atkinson, J.; Skinner, A.; Lawson, K.; Rosenberg, S.; Hickie, I.B. Bringing new tools, a regional focus, resource-sensitivity, local engagement and necessary discipline to mental health policy and planning. BMC Public Health 2020, 20, 814. [Google Scholar] [CrossRef]
- Occhipinti, J.; Skinner, A.; Doraiswamy, P.M.; Fox, C.; Herrmam, H.; Saxena, S.; London, E.; Song, Y.J.C.; Hickie, I.B. Mental health: Build predictive models to steer policy. Nature 2021, 597, 633–636. [Google Scholar] [CrossRef]
- Occhipinti, J.; Hickie, I.B. What the Promise of Billions Obscures About Government Commitment to Suicide Prevention. The Mandarin, 1 June 2021. Available online: https://www.themandarin.com.au/158499-what-the-promise-of-billions-obscures-about-commitment-to-suicide-prevention/(accessed on 8 November 2021).
- Occhipinti, J.; Skinner, A. Mathematical Modeling and Computer Simulations Guide Better Mental Health Policy. Scientific American, 14 September 2021. Available online: https://www.scientificamerican.com/article/mathematical-modeling-and-computer-simulations-guide-better-mental-health-policy/(accessed on 8 November 2021).
- Page, A.; Atkinson, J.; Campos, W.; Heffernan, M.; Ferdousi, S.; Power, A.; McDonnell, G.; Maranan, N.; Hickie, I.B. A decision support tool to inform local suicide prevention activity in Greater Western Sydney (Australia). Aust. N. Z. J. Psychiatry 2018, 52, 983–993. [Google Scholar] [CrossRef]
- Atkinson, J.; Skinner, A.; Hackney, S.; Mason, L.; Heffernan, M.; Currier, D.; King, K.; Pirkis, J. Systems modelling and simulation to inform strategic decision making for suicide prevention in rural New South Wales (Australia). Aust. N. Z. J. Psychiatry 2020, 54, 892–901. [Google Scholar] [CrossRef]
- Atkinson, J.; Page, A.; Skinner, A.; Heffernan, M.; Prodan, A.; Hickie, I.B. The impact of reducing psychiatric beds on suicide rates. Front. Psychiatry 2019, 10, 448. [Google Scholar] [CrossRef]
- Skinner, A.; Occhipinti, J.; Rosenberg, S.; Song, Y.J.C.; Hickie, I.B. Measuring the Scale of Underinvestment in Australia’s Mental Health Services System: A Dynamic Modelling Analysis. 2021. Available online: https://www.sydney.edu.au/content/dam/corporate/documents/brain-and-mind-centre/youth-mental-health/needs-based-services-modelling-results-may-2021.pdf (accessed on 8 November 2021).
- Vacher, C.; Skinner, A.; Occhipinti, J.; Ho, N.; Song, C.; Hickie, I.B.; Brain and Mind Centre, University of Sydney. Beyond Tinkering with the Status Quo: Coordinated Structural Reforms Can Deliver a Substantive Improvement in Mental Health Outcomes. 2021. Available online: https://www.sydney.edu.au/content/dam/corporate/documents/brain-and-mind-centre/youth-mental-health/beyond_tinkering_with_the_status_quo_october_2021.pdf (accessed on 8 November 2021).
- Occhipinti, J.; Skinner, A.; Iorfino, F.; Lawson, K.; Sturgess, J.; Burgess, W.; Davenport, T.; Hudson, D.; Hickie, I. Reducing youth suicide: Systems modelling and simulation to guide targeted investments across the determinants. BMC Med. 2021, 19, 61. [Google Scholar] [CrossRef]
- Skinner, A.; Occhipinti, J.; Song, Y.J.C.; Hickie, I.B. Regional suicide prevention planning: A dynamic simulation modelling analysis. Br. J. Psychiatry Open 2021, 7. [Google Scholar] [CrossRef]
- Occhipinti, J.; Skinner, A.; Carter, S.; Heath, J.; Lawson, K.; McGill, K.; McClure, R.; Hickie, I.B. Federal and state cooperation necessary but not sufficient for effective regional mental health systems: Insights from systems modelling and simulation. Sci Rep. 2021, 11, 11209. [Google Scholar] [CrossRef]
- Perth South Primary Health Network. Perth South (WA) PHN Fact Sheet. 2018. Available online: https://www.health.gov.au/resources/publications/perth-south-wa-primary-health-network-phn-fact-sheet (accessed on 8 November 2021).
- Perth South Primary Health Network. Population Health Needs Assessment Perth South PHN. 2016. Available online: https://www.wapha.org.au/wp-content/uploads/2016/08/WAPHA_Population-Health-Needs-Assessment_PHN-South-1.1.pdf (accessed on 8 November 2021).
- Powell, M.J.D. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Technical Repot No. DAMTP 2009/NA06; Department of Applied Mathematics and Theoretical Physics, Cambridge University: Cambridge, UK, 2009. [Google Scholar]
- Isee Systems. Stella Architect. Available online: https://www.iseesystems.com/store/products/stella-architect.aspx (accessed on 18 January 2022).
- Atkinson, J.; Skinner, A.; Lawson, K.; Song, Y.C.; Hickie, I.; Brain and Mind Centre, University of Sydney. Road to Recovery: Uncovering the Road to Recovery of Our Mental Health and Wellbeing Using Systems Modelling and Simulation. 2020. Available online: https://www.sydney.edu.au/content/dam/corporate/documents/brain-and-mind-centre/youthe/road-to-recovery-v2.pdf (accessed on 8 November 2021).
- Atkinson, J.; Skinner, A.; Lawson, K.; Song, Y.C.; Hickie, I.; Brain and Mind Centre, University of Sydney. Road to Recovery: Revision of Estimates Based on Revised RBA Forecasts. 2020. Available online: https://www.sydney.edu.au/content/dam/corporate/documents/brain-and-mind-centre/revision-of-estimates-based-on-revised-rba-forecasts.pdf (accessed on 8 November 2021).
- Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M.; Crossley, N.; Jones, N.; Cannon, M.; Correll, C.U.; Byrne, L.; Carr, S.; et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 813–824. [Google Scholar] [CrossRef]
- Barton, C.M.; Alberti, M.; Ames, D.; Atkinson, J.; Bales, J.; Burke, E.; Chen, M.; Diallo, S.Y.; Earn, D.J.D.; Fath, B.; et al. Call for transparency of COVID-19 models. Science 2020, 368, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, J.; Ho, N.; Skinner, A.; Song, Y.J.C.; Hickie, I.B. Glosing the Gender Gap: Supporting the Mental Health of Australian Women during the COVID-19 Era. 2021. Available online: https://www.sydney.edu.au/content/dam/corporate/documents/brain-and-mind-centre/youth-mental-health/ymh_closing_the_gender_gap_in_mh.pdf (accessed on 8 November 2021).
- Henderson, J.; Javanparast, S.; MacKean, T.; Freeman, T.; Baum, F.; Ziersch, A. Commissioning and equity in primary care in Australia: Views from Primary Health Networks. Health Soc. Care Community 2018, 26, 80–89. [Google Scholar] [CrossRef]
- Banks, G. Whatever Happened to ‘Evidence-Based Policymaking’? The Mandarin, 30 November 2018. Available online: https://www.themandarin.com.au/102083-whatever-happened-to-evidence-based-policymaking/(accessed on 8 November 2021).
- Pitman, R.; Fisman, D.; Zaric, G.S.; Postma, M.; Kretzschmar, M.; Edmunds, J.; Brisson, M. Dynamic transmission modeling: A report of the ISPOR-SMDM Modeling Good Research Practices Task Force-5. Value Health 2012, 15, 828–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freebairn, L.; Atkinson, J.A.; Kelly, P.M.; McDonnell, G.; Rychetnik, L. Decision makers’ experience of participatory dynamic simulation modelling: Methods for public health policy. BMC Med. Inform. Decis. Mak. 2018, 18, 131. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Beven, K.J.; Tawn, J.A. Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach. Water Resour. Res. 2008, 44, 1–11. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Uusitalo, L.; Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.W.; Senge, P.M. Tests for building confidence in system dynamics models. Time Stud. Manag. Sci. 1980, 14, 209–228. [Google Scholar]
- Li, X.; Osgood, N.D. A Mechanism-based Outbreak Projection Study of Pertussis (Whooping Cough): Combining Particle Filtering and Compartmental Models with Pre-vaccination Surveillance data. BioRxiv Preprint 2019, 1–48. [Google Scholar] [CrossRef]
- Osgood, N. Computational Simulation Modeling in Population Health Research and Policy. In Complex Systems and Population Health; Apostolopoulos, Y., Lich, K.H., Lemke, M.K., Eds.; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Li, X.Y.; Doroshenko, A.; Osgood, N.D. Applying particle filtering in both aggregated and age-structured population compartmental models of pre-vaccination measles. PLoS ONE 2018, 13, e0206529. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.B.; Chen, M.I.C.; Cook, A.R.; Lee, H.C.; Lee, V.J.; Lin, R.T.P.; Tambyah, R.A.; Goh, L.G. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS ONE 2010, 5, e10036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safarishahrbijari, A.; Lawrence, T.; Lomotey, R.; Liu, J.; Waldner, C.; Osgood, N. Particle filtering in a SEIRV simulation model of H1N1 influenza. In Proceedings of the 2015 Winter Simulation Conference, Huntington Beach, CA, USA, 6–9 December 2015. [Google Scholar]
- Safarishahrbijari, A.; Osgood, N.D. Social Media Surveillance for Outbreak Projection via Transmission Models: Longitudinal Observational Study. Jmir Public Health Surveill. 2019, 5, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Safarishahrbijari, A.; Teyhouee, A.; Waldner, C.; Liu, J.; Osgood, N.D. Predictive accuracy of particle filtering in dynamic models supporting outbreak projections. BMC Infect. Dis. 2017, 17, 648. [Google Scholar] [CrossRef] [Green Version]
- Osgood, N.; Liu, J. Towards Closed Loop Modeling: Evaluating the Prospects for Creating Recurrently Regrounded Aggregate Simulation Models. In Proceedings of the 2014 Winter Simulation Conference, Savannah, GA, USA, 7–10 December 2014. [Google Scholar]
Suicide Deaths | Scenario A | Scenario B | Scenario C | Scenario D |
---|---|---|---|---|
% increase compared to no pandemic | 4.9 | 18.6 | 8.1 | 34.7 |
95% intervals * | 4.5, 5.3 | 18.1, 19.1 | 7.7, 8.5 | 33.9, 35.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Occhipinti, J.-A.; Rose, D.; Skinner, A.; Rock, D.; Song, Y.J.C.; Prodan, A.; Rosenberg, S.; Freebairn, L.; Vacher, C.; Hickie, I.B. Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention? Int. J. Environ. Res. Public Health 2022, 19, 1468. https://doi.org/10.3390/ijerph19031468
Occhipinti J-A, Rose D, Skinner A, Rock D, Song YJC, Prodan A, Rosenberg S, Freebairn L, Vacher C, Hickie IB. Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention? International Journal of Environmental Research and Public Health. 2022; 19(3):1468. https://doi.org/10.3390/ijerph19031468
Chicago/Turabian StyleOcchipinti, Jo-An, Danya Rose, Adam Skinner, Daniel Rock, Yun Ju C. Song, Ante Prodan, Sebastian Rosenberg, Louise Freebairn, Catherine Vacher, and Ian B. Hickie. 2022. "Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention?" International Journal of Environmental Research and Public Health 19, no. 3: 1468. https://doi.org/10.3390/ijerph19031468
APA StyleOcchipinti, J. -A., Rose, D., Skinner, A., Rock, D., Song, Y. J. C., Prodan, A., Rosenberg, S., Freebairn, L., Vacher, C., & Hickie, I. B. (2022). Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention? International Journal of Environmental Research and Public Health, 19(3), 1468. https://doi.org/10.3390/ijerph19031468