On the Role of Atmospheric Weathering on Paint Dust Aerosol Generated by Mechanical Abrasion of TiO2 Containing Paints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Weathering Experiment
2.2. Paint Dust Generation and Characterization
2.3. Data Analysis
3. Results and Discussion
3.1. Paint Dust Concentrations and Trends
3.2. Chemical and Morphological Analysis
3.3. Weathering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Gladis, F.; Eggert, A.; Karsten, U.; Schumann, R. Prevention of biofilm growth on man-made surfaces: Evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling 2010, 26, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Dallas, P.; Sharma, V.K.; Zboril, R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface Sci. 2011, 166, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Hanus, M.J.; Harris, A.T. Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 2013, 58, 1056–1102. [Google Scholar] [CrossRef]
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano 2010, 4, 3580–3590. [Google Scholar] [CrossRef]
- Hoet, P.H.; Brüske-Hohlfeld, I.; Salata, O.V. Nanoparticles—Known and unknown health risks. J. Nanobiotechnol. 2004, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Liu, J.; Wong, H.-L.; Moselhy, J.; Bowen, B.; Wu, X.Y.; Johnston, M.R. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer 2006, 51, 377–386. [Google Scholar] [CrossRef]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef]
- Koponen, I.K.; Jensen, K.A.; Schneider, T. Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, V.; Levin, M.; Saber, A.T.; Irusta, S.; Maso, M.D.; Hanoi, R.; Santamaria, J.; Jensen, K.A.; Wallin, H.; Koponen, I.K. Comparison of Dust Release from Epoxy and Paint Nanocomposites and Conventional Products during Sanding and Sawing. Ann. Occup. Hyg. 2014, 58, 983–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nored, A.W.; Chalbot, M.-C.G.; Kavouras, I.G. Characterization of paint dust aerosol generated from mechanical abrasion of TiO2-containing paints. J. Occup. Environ. Hyg. 2018, 15, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Guha, N.; Merletti, F.; Steenland, N.K.; Altieri, A.; Cogliano, V.; Straif, K. Lung Cancer Risk in Painters: A Meta-Analysis. Environ. Health Perspect. 2010, 118, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Ringen, K.; Dement, J.; Welch, L.; Dong, X.S.; Bingham, E.; Ba, P.S.Q. Risks of a lifetime in construction. Part II: Chronic occupational diseases. Am. J. Ind. Med. 2014, 57, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008, 156, 233–239. [Google Scholar] [CrossRef]
- Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.; Boller, M.; Burkhardt, M. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 2010, 158, 2900–2905. [Google Scholar] [CrossRef]
- Wang, X.; Kumagai, S.; Kobayashi, K.; Yoshimura, N. Investigation on Surface Contamination Performances of Outdoor Polymer Insulator Aged by Artificial Acid Rain. IEEJ Trans. Fundam. Mater. 1998, 118, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Larssen, T.; Seip, H.M.; Semb, A.; Mulder, J.; Muniz, I.P.; Vogt, R.D.; Lydersen, E.; Angell, V.; Dagang, T.; Eilertsen, O. Acid deposition and its effects in China: An overview. Environ. Sci. Policy 1999, 2, 9–24. [Google Scholar] [CrossRef]
- Giraldo, A.L.; Peñuela, G.A.; Torres-Palma, R.A.; Pino, N.J.; Palominos, R.A.; Mansilla, H.D. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res. 2010, 44, 5158–5167. [Google Scholar] [CrossRef]
- Bahnemann, D.B.D.; Kholuiskaya, S.; Dillert, R.; Kulak, A.; Kokorin, A. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl. Catal. B Environ. 2002, 36, 161–169. [Google Scholar] [CrossRef]
- Marolt, T.; Škapin, A.S.; Bernard, J.; Živec, P.; Gaberšček, M. Photocatalytic activity of anatase-containing facade coatings. Surf. Coat. Technol. 2011, 206, 1355–1361. [Google Scholar] [CrossRef]
- Lin, G.; Peng, R.; Chen, Q.; Wu, Z.; Du, L. Lead in housing paints: An exposure source still not taken seriously for children lead poisoning in China. Environ. Res. 2009, 109, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.-P.; Le Bot, B.; Glorennec, P.; Etchevers, A.; Bretin, P.; Douay, F.; Sébille, V.; Bellanger, L.; Mandin, C. Lead contamination in French children’s homes and environment. Environ. Res. 2012, 116, 58–65. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Rehman, M.Z.U.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Vahur, S.; Teearu, A.; Leito, I. ATR-FT-IR spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 1061–1072. [Google Scholar] [CrossRef]
- Stephens, E.R. Chemistry of Atmospheric Oxidants. J. Air Pollut. Control Assoc. 1969, 19, 181–185. [Google Scholar] [CrossRef]
- Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a Group Contribution Method to Predict Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants. Environ. Sci. Technol. 2009, 43, 6220–6227. [Google Scholar] [CrossRef]
- Lipfert, F.W.; Dupuis, L.R.; Malone, R.G.; Schaedler, J. Case Study of Materials Damage due to Air Pollution and Acid Rain in New Haven, CT; Brookhaven National Lab.: Upton, NY, USA, 1985. [Google Scholar]
- Salthammer, T.; Fuhrmann, F. Photocatalytic Surface Reactions on Indoor Wall Paint. Environ. Sci. Technol. 2007, 41, 6573–6578. [Google Scholar] [CrossRef]
- Bossa, N.; Chaurand, P.; Levard, C.; Borschneck, D.; Miche, H.; Vicente, J.; Geantet, C.; Aguerre-Chariol, O.; Michel, F.M.; Rose, J. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 2017, 220, 1160–1170. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.S.; Viitanen, A.-K.; Kanerva, T.; Säämänen, A.; Aguerre-Chariol, O.; Fable, S.; Dermigny, A.; Karoski, N.; Fraboulet, I.; Koponen, I.K.; et al. Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for Paint Production. Int. J. Environ. Res. Public Health 2021, 18, 418. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Adam, V.; Nowack, B. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO2, and Nano-ZnO) in European Freshwaters. Environ. Toxicol. Chem. 2021, 40, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Wilczyńska-Michalik, W.; Rzeźnikiewicz, K.; Pietras, B.; Michalik, M. Fine and ultrafine TiO2 particles in aerosol in Kraków (Poland). Mineralogia 2015, 45, 65–77. [Google Scholar] [CrossRef] [Green Version]
Duration (Month) | CMD (nm) | GSD | Particle Mass (μg/m3) | ||
---|---|---|---|---|---|
PM10 | PM2.5 | PM1 | |||
1 | 60 ± 22 | 3.4 ± 0.5 | 1250 ± 715 | 71 ± 43 | 18 ± 11 |
2 | 52 ± 12 | 3.9 ± 0.7 | 1573 ± 833 | 84 ± 39 | 22 ± 10 |
3 | 51 ± 14 | 2.9 ± 0.5 | 764 ± 471 | 38 ± 20 | 10 ± 5 |
4 | 77 ± 28 | 2.9 ± 0.5 | 1443 ± 1023 | 92 ± 68 | 25 ± 19 |
5 | 68 ± 18 | 2.8 ± 0.5 | 1887 ± 2325 | 130 ± 143 | 37 ± 8 |
6 | 62 ± 8 | 2.8 ± 0.2 | 832 ± 353 | 79 ± 36 | 24 ± 11 |
7 | 39 ± 10 | 2.5 ± 0.1 | 247 ± 166 | 25 ± 16 | 9 ± 6 |
8 | 50 ± 12 | 2.7 ± 0.2 | 315 ± 154 | 26 ± 17 | 8 ± 5 |
9 | 61 ± 12 | 2.5 ± 0.1 | 373 ± 416 | 38 ± 32 | 12 ± 8 |
10 | 69 ± 10 | 2.3 ± 0.1 | 315 ± 225 | 39 ± 22 | 13 ± 7 |
11 | 98 ± 29 | 2.4 ± 0.2 | 577 ± 380 | 64 ± 27 | 22 ± 7 |
12 | 82 ± 9 | 2.3 ± 0.1 | 118 ± 78 | 13 ± 9 | 4 ± 3 |
Trend | 2.2 ± 1.2 | −0.12 ± 0.02 (1/month) | −123 ± 35 | −5 ± 3 | −1 ± 0.8 |
(nm/month) | (μg/m3/month) | (μg/m3/month) | (μg/m3/month) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nored, A.W.; Shedd, J.S.; Chalbot, M.-C.G.; Kavouras, I.G. On the Role of Atmospheric Weathering on Paint Dust Aerosol Generated by Mechanical Abrasion of TiO2 Containing Paints. Int. J. Environ. Res. Public Health 2022, 19, 1265. https://doi.org/10.3390/ijerph19031265
Nored AW, Shedd JS, Chalbot M-CG, Kavouras IG. On the Role of Atmospheric Weathering on Paint Dust Aerosol Generated by Mechanical Abrasion of TiO2 Containing Paints. International Journal of Environmental Research and Public Health. 2022; 19(3):1265. https://doi.org/10.3390/ijerph19031265
Chicago/Turabian StyleNored, Adam W., Jacob S. Shedd, Marie-Cecile G. Chalbot, and Ilias G. Kavouras. 2022. "On the Role of Atmospheric Weathering on Paint Dust Aerosol Generated by Mechanical Abrasion of TiO2 Containing Paints" International Journal of Environmental Research and Public Health 19, no. 3: 1265. https://doi.org/10.3390/ijerph19031265
APA StyleNored, A. W., Shedd, J. S., Chalbot, M.-C. G., & Kavouras, I. G. (2022). On the Role of Atmospheric Weathering on Paint Dust Aerosol Generated by Mechanical Abrasion of TiO2 Containing Paints. International Journal of Environmental Research and Public Health, 19(3), 1265. https://doi.org/10.3390/ijerph19031265