Bioimpedance and Dual-Energy X-ray Absorptiometry Are Not Equivalent Technologies: Comparing Fat Mass and Fat-Free Mass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Sociodemographic Data
2.3. Anthropometry and Body Composition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silveira, E.A.; Barbosa, L.S.; Rodrigues, A.P.S.; Noll, M.; De Oliveira, C. Body fat percentage assessment by skinfold equation, bioimpedance and densitometry in older adults. Arch. Public Health 2020, 78, 65. [Google Scholar] [CrossRef] [PubMed]
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Krachler, B.; Völgyi, E.; Savonen, K.; Tylavsky, F.A.; Alén, M.; Cheng, S. BMI and an anthropometry-based estimate of fat mass percentage are both valid discriminators of cardiometabolic risk: A comparison with DXA and bioimpedance. J. Obes. 2013, 2013, 862514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, K.; Kwok, A.; Evans, A.; Mata, F.; Verdejo-Garcia, A.; Hart, K.; Ward, L.C.; Truby, H. Comparison of a bioelectrical impedance device against the reference method dual energy X-ray absorptiometry and anthropometry for the evaluation of body composition in adults. Nutrients 2018, 10, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, P.J.; Gómez-Candela, C.; Cabañas, M.D.; Szendrei, B.; Castro, E.A. Comparison between different methods for measuring body fat after a weight loss program. Rev. Bras. Med. Esporte 2019, 25, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Déchelotte, P.; Coëffier, M. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef] [Green Version]
- Del Velazquez-Alva, M.C.; Irigoyen-Camacho, M.E.; Huerta-Huerta, R.; Delgadillo-Velazquez, J. Comparación de la absorciometría de rayos x de energia dual y dos analizadores de impedancia bioeléctrica para medir el porcentaje de grasa corporal y el índice de masa libre de grasa en un grupo de mujeres jóvenes mexicanas. Nutr. Hosp. 2014, 29, 1038–1046. [Google Scholar] [CrossRef]
- Wingo, B.C.; Barry, V.G.; Ellis, A.C.; Gower, B.A. Comparison of segmental body composition estimated by bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Clin. Nutr. ESPEN 2018, 28, 141–147. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; González-Ruíz, K.; González-Jiménez, E.; Triana-Reina, H.R.; García-Hermoso, A.; Schmidt-RioValle, J. Validation of multi-frequency bioelectrical impedance analysis versus dual-energy X-ray absorptiometry to measure body fat percentage in overweight/obese Colombian adults. Am. J. Hum. Biol. 2018, 30, e23071. [Google Scholar] [CrossRef] [Green Version]
- Meier, N.F.; Bai, Y.; Wang, C.; Lee, D.C. Validation of a multielectrode bioelectrical impedance analyzer with a dual-energy x-ray absorptiometer for the assessment of body composition in older adults. J. Aging Phys. Act. 2020, 28, 598–604. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Fewtrell, M.S. Measuring body composition. Arch. Dis. Child. 2006, 91, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonio, J.; Kenyon, M.; Ellerbroek, A.; Carson, C.; Burgess, V.; Tyler-Palmer, D.; Mike, J.; Roberts, J.; Angeli, G.; Peacock, C. Comparison of dual-energy x-ray absorptiometry (DXA) versus a multi-frequency bioelectrical impedance (InBody 770) device for body composition assessment after a 4-week hypoenergetic diet. J. Funct. Morphol. Kinesiol. 2019, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassel, C.R.; Bewski, N.A.; O’Loughlin, E.K.; Wright, A.; Scheel, D.P.; Puig, L.; Kakinami, L. Validity of electrical impedance myography to estimate percent body fat: Comparison to bio-electrical impedance and dual-energy X-ray absorptiometry. J. Sports Med. Phys. Fitness 2019, 59, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ahn, S.; Kim, Y.J.; Ji, M.J.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lim, S. Comparison between dual-energy x-ray absorptiometry and bioelectrical impedance analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients 2018, 10, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.M.; Darukhanavala, A.; Hicks, R.; Kelly, A. An update on methods for assessing bone quality and health in Cystic fibrosis. J. Clin. Transl. Endocrinol. 2022, 27, 100281. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, Z.P.; Wang, X.J.; Dong, Y.H.; Ma, J. Comparative Analysis of the Multi-Frequency Bio-impedance and Dual-energy X-ray Absorptiometry on Body Composition in Obese Subjects. Biomed. Environ. Sci. 2018, 31, 72–75. [Google Scholar]
- Liao, Y.S.; Li, H.C.; Lu, H.K.; Lai, C.L.; Wang, Y.S.; Hsieh, K.C. Comparison of bioelectrical impedance analysis and dual energy X-ray absorptiometry for total and segmental bone mineral content with a three-compartment model. Int. J. Environ. Res. Public Health 2020, 17, 2595. [Google Scholar] [CrossRef] [Green Version]
- Davydov, D.M.; Boev, A.; Gorbunov, S. Making the choice between bioelectrical impedance measures for body hydration status assessment. Sci. Rep. 2021, 11, 7685. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, X.; Wang, J.; Cao, Q.; Sato, T.; Wang, M.; Zhao, X.; Liang, W. Comparisons of Body-Composition Prediction Accuracy: A Study of 2 Bioelectric Impedance Consumer Devices in Healthy Chinese Persons Using DXA and MRI as Criteria Methods. J. Clin. Densitom. 2011, 14, 458–464. [Google Scholar] [CrossRef]
- Talma, H.; Chinapaw, M.J.M.; Bakker, B.; Hirasing, R.A.; Terwee, C.B.; Altenburg, T.M. Bioelectrical impedance analysis to estimate body composition in children and adolescents: A systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes. Rev. 2013, 14, 895–905. [Google Scholar] [CrossRef]
- Carvalho, P. Os Novos Mitos Que Comemos, 1st ed.; Editora, P., Ed.; Ideias de Ler: Porto, Portugal, 2021; ISBN 9789897401206. [Google Scholar]
- Ballesteros-Pomar, M.D.; Calleja-Fernández, A.; Diez-Rodríguez, R.; Vidal-Casariego, A.; Blanco-Suárez, M.D.; Cano-Rodríguez, I. Comparación de las diferentes medidas de la composición corporal en pacientes con obesidad grave en un contexto clínico. Nutr. Hosp. 2012, 27, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Body mass index. Kans. Nurse 2004, 79, 9.
- World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [CrossRef] [Green Version]
- Garrow, J.S.; Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 1985, 9, 147–153. [Google Scholar] [PubMed]
- Martin Bland, J.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Yang, S.W.; Kim, T.H.; Choi, H.M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J. Exerc. Rehabil. 2018, 14, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, S.; O’Neill, C.; Sohun, R.; Jakeman, P. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur. J. Appl. Physiol. 2012, 112, 589–595. [Google Scholar] [CrossRef]
- Ellegård, L.; Bertz, F.; Winkvist, A.; Bosaeus, I.; Brekke, H.K. Body composition in overweight and obese women postpartum: Bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur. J. Clin. Nutr. 2016, 70, 1181–1188. [Google Scholar] [CrossRef]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef]
- Gába, A.; Kapuš, O.; Cuberek, R.; Botek, M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2015, 28, 390–400. [Google Scholar] [CrossRef]
- Lopes, A.A.; Albuquerque, L.; Fontes, M.; Rego, D.; Bandeira, F. Body Composition in Acromegaly According to Disease Activity—Performance of Dual X-Ray Absorptiometry and Multifrequency Bioelectrical Impedance Analysis. Front. Endocrinol. 2022, 13, 866099. [Google Scholar] [CrossRef] [PubMed]
All Population (n = 121) | Male (n = 28) | Female (n = 93) | p-Value a | |
---|---|---|---|---|
Age, years | 28.26 (9.72) | 30.32 (8.98) | 27.65 (9.18) | 0.177 |
Height, m | 1.67 (0.08) | 1.77 (0.06) | 1.63 (0.06) | <0.001 |
Weight, kg | 63.22 (11.41) | 72.42 (7.89) | 60.46 (10.87) | <0.001 |
BMI, kg/m2 | 22.68 (3.13) | 23.16 (2.29) | 22.54 (3.34) | 0.356 |
Monthly Family Income, % (n) | ||||
Without answer | 11.60 (14) | 10.70 (3) | 11.80 (11) | 0.762 |
<1000€ | 11.60 (14) | 7.10 (2) | 12.90 (12) | |
1000€–3000€ | 63.60 (77) | 71.40 (20) | 61.30 (57) | |
>3000€ | 13.20 (16) | 10.70 (3) | 14.00 (13) | |
Residence Area, % (n) | ||||
Urban | 81.80 (99) | 85.70 (24) | 80.60 (75) | 0.542 |
Rural | 18.20 (22) | 14.30 (4) | 19.40 (18) | |
Dietary Pattern, % (n) | ||||
Vegetarian/Vegan | 37.20 (45) | 42.90 (12) | 35.50 (33) | 0.479 |
Omnivore | 62.80 (76) | 57.10 (16) | 64.50 (60) | |
Academic course, % (n) | ||||
None | 2.50 (3) | 3.60 (1) | 2.20 (2) | 0.346 |
Nutrition | 51.20 (62) | 39.30 (11) | 54.80 (51) | |
Other | 46.30 (56) | 57.10 (16) | 43.00 (40) | |
Physical Activity, practice % (n) | 59.50 (72) | 78.60 (22) | 53,80 (50) | 0.019 |
Smoker, % (n) | 14.90 (18) | 17.90 (5) | 14.00 (13) | 0.613 |
Fat-Free Mass, Kg | Body Fat, % | |||
---|---|---|---|---|
DXA | BIA | DXA | BIA | |
General Population (n = 121) | 41.92 (8.80) | 44.82 (8.81) | 30.65 (8.31) | 25.09 (8.32) |
Differences | 2.90 | 5.56 | ||
Differences, % | 6.92 | 22.16 | ||
Female (n = 93) | 38.01 (4.82) | 40.72 (4.20) | 33.54 (6.51) | 28.07 (6.56) |
Differences | 2.71 | 5.47 | ||
Differences, % | 7.13 | 19.49 | ||
Male (n = 28) | 54.89 (6.18) | 58.43 (5.92) | 21.06 (6.19) | 15.21 (5.41) |
Differences | 3.54 | 5.85 | ||
Differences, % | 6.45 | 38.46 |
Correlation | p-Value a | |
---|---|---|
DXA Fat-Free Mass, kg | 0.980 | <0.001 |
BIA Fat-Free Mass, kg | ||
DXA Body Fat, % | 0.932 | <0.001 |
BIA Body Fat, % |
Quintiles of DXA Body Fat values (%) | Quintiles of BIA Body Fat Values (%) | |||||
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Q1 | 18.2 | 0.8 | 0.8 | 0.0 | 0.0 | |
Q2 | 1.7 | 13.2 | 5.0 | 0.0 | 0.0 | |
Q3 | 0.0 | 5.8 | 8.3 | 5.8 | 0.8 | |
Q4 | 0.0 | 0.0 | 7.4 | 9.9 | 2.5 | |
Q5 | 0.0 | 0.0 | 0.0 | 3.3 | 16.5 | |
Quintiles of DXA Fat-Free Mass values (%) | Quintiles of BIA Fat-Free Mass values (%) | |||||
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Q1 | 14.9 | 5.0 | 0.0 | 0.0 | 0.0 | |
Q2 | 6.6 | 9.1 | 4.1 | 0.0 | 0.0 | |
Q3 | 0.0 | 4.1 | 13.2 | 3.3 | 0.0 | |
Q4 | 0.0 | 0.0 | 3.3 | 14.9 | 1.7 | |
Q5 | 0.0 | 0.0 | 0.0 | 1.7 | 18.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, S.; Fontes, T.; Tavares, R.G.; Rodrigues, L.M.; Ferreira-Pêgo, C. Bioimpedance and Dual-Energy X-ray Absorptiometry Are Not Equivalent Technologies: Comparing Fat Mass and Fat-Free Mass. Int. J. Environ. Res. Public Health 2022, 19, 13940. https://doi.org/10.3390/ijerph192113940
Lopes S, Fontes T, Tavares RG, Rodrigues LM, Ferreira-Pêgo C. Bioimpedance and Dual-Energy X-ray Absorptiometry Are Not Equivalent Technologies: Comparing Fat Mass and Fat-Free Mass. International Journal of Environmental Research and Public Health. 2022; 19(21):13940. https://doi.org/10.3390/ijerph192113940
Chicago/Turabian StyleLopes, Sofia, Tatiana Fontes, Rejane Giacomelli Tavares, Luis Monteiro Rodrigues, and Cíntia Ferreira-Pêgo. 2022. "Bioimpedance and Dual-Energy X-ray Absorptiometry Are Not Equivalent Technologies: Comparing Fat Mass and Fat-Free Mass" International Journal of Environmental Research and Public Health 19, no. 21: 13940. https://doi.org/10.3390/ijerph192113940