Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay
Abstract
:1. Introduction
1.1. Home Garden Definition and Methodological Framework
1.1.1. Home Garden Definition
1.1.2. Supported Opinion Methodological Framework
1.2. An Appraisal of Health and Wellbeing Contributions from Home Gardens and Home Gardening Activities
1.3. The Contributions of Home Gardening (and Urban Agriculture) to Dietary Diversity and Carbon Footprint Reduction
1.4. Home Gardens’ Structures and Management Impacts on Biodiversity
1.5. Home Gardens’ Contribution to Sustainable Development Goals
2. Complementary Remarks on the Risks and Drawbacks of Home Gardens and Home Gardening in the Scope of Their Contribution to Sustainable Development Goals
2.1. Risks to Health and Wellbeing of Home Gardens and Home Gardening
2.2. Food Provision, and Nutritional and Carbon Footprint Risks
2.3. Biodiversity and Nature Conservation: The Downside of Home Gardens
2.4. Risks and Drawbacks of Home Gardens and Home Gardening to the Implementation of Sustainable Development Goals
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Agbedahin, A. Sustainable development, Education for Sustainable Development, and the 2030 Agenda for Sustainable Development: Emergence, efficacy, eminence, and future. Sustain. Dev. 2019, 27, 669–680. [Google Scholar] [CrossRef]
- Sachs, J.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Caiado, R.; Leal Filho, W.; Quelhas, O.; Gonçalves, L.; Nascimento, D.; Ávila, L. A literature-based review on potentials and constraints in the implementation of the sustainable development goals. J. Clean. Prod. 2018, 198, 1276–1288. [Google Scholar] [CrossRef]
- Hickel, J. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 2020, 167, 106331. [Google Scholar] [CrossRef]
- Jiménez-Aceituno, A.; Peterson, G.; Norström, A.; Wong, G.; Downing, A. Local lens for SDG implementation: Lessons from bottom-up approaches in Africa. Sustainability 2020, 15, 729–743. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.; Arrow, K.; Barrett, S.; Biggs, R.; Brock, W.; Crépin, A.; Engström, G.; Folke, C.; Hughes, T.; Kautsky, N.; et al. General resilience to cope with extreme events. Sustainability 2012, 4, 3248–3259. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.; Daily, G.; Goldstein, J.; Kareiva, P.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Leote, P.; Cajaiba, R.L.; Moreira, H.; Gabriel, R.; Santos, M. The importance of invertebrates in assessing the ecological impacts of hiking trails: A review of its role as indicators and recommendations for future research. Ecol. Indic. 2022, 137, 108741. [Google Scholar] [CrossRef]
- Nathaniel, S.; Adeleye, N. Environmental preservation amidst carbon emissions, energy consumption, and urbanization in selected african countries: Implication for sustainability. J. Clean. Prod. 2021, 285, 125409. [Google Scholar] [CrossRef]
- Gavrilidis, A.; Niță, M.; Onose, D.; Badiu, D.; Năstase, I. Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecol. Indic. 2019, 96, 67–78. [Google Scholar] [CrossRef]
- Vieira, J.; Matos, P.; Mexia, T.; Silva, P.; Lopes, N.; Freitas, C.; Correia, O.; Santos-Reis, M.; Branquinho, C.; Pinho, P. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environ. Res. 2018, 160, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Dewaelheyns, V.; Rogge, E.; Gulinck, H. Putting domestic gardens on the agenda using empirical spatial data: The case of Flanders. Appl. Geogr. 2014, 50, 132–143. [Google Scholar] [CrossRef]
- Caballero-Serrano, V.; Onaindia, M.; Alday, J.G.; Caballero, D.; Carrasco, J.C.; McLaren, B.; Amigo, J. Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric. Ecosyst. Environ. 2016, 225, 116–125. [Google Scholar] [CrossRef]
- Calvet-Mir, L.; Riu-Bosoms, C.; González-Puente, M.; Ruiz-Mallén, I.; Reyes-García, V.; Molina, J.L. The transmission of home garden knowledge: Safeguarding biocultural diversity and enhancing social–ecological resilience. Soc. Nat. Resour. 2016, 29, 556–571. [Google Scholar] [CrossRef]
- Ferdous, Z.; Datta, A.; Anal, A.K.; Anwar, M.; Khan, A.M.R. Development of home garden model for year round production and consumption for improving resource-poor household food security in Bangladesh. NJAS-Wagening. J. Life Sci. 2016, 78, 103–110. [Google Scholar] [CrossRef]
- Ivanova, T.; Bosseva, Y.; Chervenkov, M.; Dimitrova, D. Enough to Feed Ourselves! Food plants in Bulgarian rural home gardens. Plants 2021, 10, 2520. [Google Scholar] [CrossRef]
- Buechler, S. Gendered vulnerabilities and grassroots adaptation initiatives in home gardens and small orchards in Northwest Mexico. Ambio 2016, 45, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Mwavu, E.N.; Ariango, E.; Ssegawa, P.; Kalema, V.N.; Bateganya, F.; Waiswa, D.; Byakagaba, P. Agrobiodiversity of homegardens in a commercial sugarcane cultivation land matrix in Uganda. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 191–201. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Carney, J.A.; Vanek, S.J. Sustainable smallholder intensification in global change? Pivotal spatial interactions, gendered livelihoods, and agrobiodiversity. Curr. Opin. Environ. Sustain. 2015, 14, 49–60. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Ittersum, M.K. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Mellisse, B.; Descheemaeker, K.; Giller, K.; Abebe, T.; van de Ven, G. Are traditional home gardens in southern Ethiopia heading for extinction? Implications for productivity, plant species richness and food security. Agric. Ecosyst. Environ. 2018, 252, 1–13. [Google Scholar] [CrossRef]
- Rammohan, A.; Pritchard, B.; Dibley, M. Home gardens as a predictor of enhanced dietary diversity and food security in rural Myanmar. BMC Public Health 2019, 19, 1145. [Google Scholar] [CrossRef] [Green Version]
- Chalmin-Pui, L.; Griffiths, A.; Roe, J.; Heaton, T.; Cameron, R. Why garden? Attitudes and the perceived health benefits of home gardening. Cities 2021, 112, 103118. [Google Scholar] [CrossRef]
- Raymond, C.; Diduck, A.; Buijs, A.; Boerchers, M.; Moquin, R. Exploring the co-benefits (and costs) of home gardening for biodiversity conservation. Local Environ. 2019, 24, 258–273. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Simmons, E.; Wopereis, M. Tapping the economic and nutritional power of vegetables. Glob. Food Sec. 2018, 16, 36–45. [Google Scholar] [CrossRef]
- Scott, T.; Masser, B.; Pachana, N. Positive aging benefits of home and community gardening activities: Older adults report enhanced self-esteem, productive endeavours, social engagement and exercise. SAGE Open Med. 2020, 8, 2050312120901732. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, G.; Eyzaguirre, P.; Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 2010, 19, 3635–3654. [Google Scholar] [CrossRef]
- Galhena, D.; Freed, R.; Maredia, K. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Diekmann, L.; Gray, L.; Baker, G. Growing ‘good food’: Urban gardens, culturally acceptable produce and food security. Renew. Agric. Food Syst. 2020, 35, 169–181. [Google Scholar] [CrossRef]
- Porter, C. What gardens grow: Outcomes from home and community gardens supported by community-based food justice organizations. J. Agric. Food Syst. Community Dev. 2018, 8, 187–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyé-Mengual, E.; Gasperi, D.; Michelon, N.; Orsini, F.; Ponchia, G.; Gianquinto, G. Eco-efficiency assessment and food security potential of home gardening: A case study in Padua, Italy. Sustainability 2018, 10, 2124. [Google Scholar] [CrossRef] [Green Version]
- Filazzola, A.; Shrestha, N.; Macivor, J. The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Diduck, A.; Raymond, C.; Rodela, R.; Moquin, R.; Boerchers, M. Pathways of learning about biodiversity and sustainability in private urban gardens. J. Environ. Plan. Manag. 2020, 63, 1056–1076. [Google Scholar] [CrossRef]
- Jehlička, P.; Daněk, P.; Vávra, J. Rethinking resilience: Home gardening, food sharing and everyday resistance. Can. J. Dev. Stud./Rev. Can. D’études Dévelopement 2019, 40, 511–527. [Google Scholar] [CrossRef]
- Ghosh, S. Urban agriculture potential of home gardens in residential land uses: A case study of regional City of Dubbo, Australia. Land Use Policy 2021, 109, 105686. [Google Scholar] [CrossRef]
- Sroka, W.; Bojarszczuk, J.; Satoła, Ł.; Szczepańska, B.; Sulewski, P.; Lisek, S.; Zioło, M. Understanding residents’ acceptance of professional urban and peri-urban farming: A socio-economic study in Polish metropolitan areas. Land Use Policy 2021, 109, 105599. [Google Scholar] [CrossRef]
- Kopperoinen, L.; Itkonen, P.; Niemelä, J. Using expert knowledge in combining green infrastructure and ecosystem services in land use planning: An insight into a new place-based methodology. Landsc. Ecol. 2014, 29, 1361–1375. [Google Scholar] [CrossRef]
- McNellie, M.J.; Oliver, I.; Dorrough, J.; Ferrier, S.; Newell, G.; Gibbons, P. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 2020, 26, 6702–6714. [Google Scholar] [CrossRef]
- Jo, H.; Song, C.; Miyazaki, Y. Physiological benefits of viewing nature: A systematic review of indoor experiments. Int. J. Environ. Res. Public Health 2019, 16, 4739. [Google Scholar] [CrossRef]
- Igarashi, M.; Ikei, H.; Song, C.; Miyazaki, Y. Effects of olfactory stimulation with rose and orange oil on prefrontal cortex activity. Complement. Ther. Med. 2014, 22, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Igarashi, M.; Ikei, H.; Miyazaki, Y. Physiological effects of viewing fresh red roses. Complement. Ther. Med. 2017, 35, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Chen, C.; Matsubara, T.; Hagiwara, K.; Inamura, M.; Aga, K.; Hirotsu, M.; Seki, T.; Takao, A.; Nakagawa, E.; et al. The mood-improving effect of viewing images of nature and its neural substrate. Int. J. Environ. Res. Public Health 2021, 18, 5500. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Hofmann, M.; Frey, D.; Moretti, M.; Bauer, N. Psychological restoration in urban gardens related to garden type, biodiversity and garden-related stress. Landsc. Urban Plan. 2020, 198, 103777. [Google Scholar] [CrossRef]
- Sia, A.; Tan, P.; Wong, J.; Araib, S.; Ang, W.; Er, K. The impact of gardening on mental resilience in times of stress: A case study during the COVID-19 pandemic in Singapore. Urban For. Urban Green. 2022, 68, 127448. [Google Scholar] [CrossRef]
- Koay, W.; Dillon, D. Community gardening: Stress, well-being, and resilience potentials. Int. J. Environ. Res. Public Health 2020, 17, 6740. [Google Scholar] [CrossRef]
- Lampert, T.; Costa, J.; Santos, O.; Sousa, J.; Ribeiro, T.; Freire, E. Evidence on the contribution of community gardens to promote physical and mental health and well-being of non-institutionalized individuals: A systematic review. PLoS ONE 2021, 16, e0255621. [Google Scholar] [CrossRef]
- Mejia, A.; Bhattacharya, M.; Miraglia, J. Community gardening as a way to build cross-cultural community resilience in intersectionally diverse gardeners: Community-based participatory research and campus-community-partnered proposal. JMIR Res. Protoc. 2020, 9, e21218. [Google Scholar] [CrossRef]
- ACSM. ACSM´s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolkers Klumer: Philadelphia, PA, USA, 2022. [Google Scholar]
- Ainsworth, B.; Haskell, W.; Herrmann, S.; Meckes, N.; Bassett, D.; Tudor-Locke, C.; Greer, J.; Vezina, J.; Whitt-Glover, M.; Leon, A. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Shoemaker, C.; Haub, M. Can older gardeners meet the physical activity recommendation through gardening? HortTechnology 2008, 18, 639–643. [Google Scholar] [CrossRef]
- White, M.; Alcock, I.; Grellier, J.; Wheeler, B.; Hartig, T.; Warber, S.; Bone, A.; Depledge, M.; Fleming, L. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooyman, A.; Malek-Ahmadi, M.; Fauth, E.; Schaefer, S. Challenging the relationship of grip strength with cognitive status in older adults. Int. J. Geriatr. Psychiatry 2021, 36, 433–442. [Google Scholar] [CrossRef]
- Wiegert, E.; da Silva, N.; de Oliveira, L.; Calixto-Lima, L. Reference values for handgrip strength and their association with survival in patients with incurable cancer. Eur. J. Clin. Nutr. 2022, 76, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Boonpor, J.; Parra-Soto, S.; Petermann-Rocha, F.; Ferrari, G.; Welsh, P.; Pell, J.; Sattar, N.; Gill, J.; Ho, F.; Gray, S.; et al. Associations between grip strength and incident type 2 diabetes: Findings from the UK Biobank prospective cohort study. BMJ Open Diabetes Res. Care 2021, 9, e001865. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, H.; Hsu, N.; Chou, P. Using hand grip strength to detect slow walking speed in older adults: The Yilan study. BMC Geriatr. 2021, 21, 428. [Google Scholar] [CrossRef]
- Leong, D.; Teo, K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Shin, J.; Parab, K.; An, R.; Grigsby-Toussaint, D. Greenspace exposure and sleep: A systematic review. Environ. Res. 2020, 182, 109081. [Google Scholar] [CrossRef]
- Grigsby-Toussaint, D.; Turi, K.; Krupa, M.; Williams, N.; Pandi-Perumal, S.; Jean-Louis, G. Sleep insufficiency and the natural environment: Results from the US Behavioral Risk Factor Surveillance System survey. Prev. Med. 2015, 78, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Gunata, M.; Parlakpinar, H.; Acet, H. Melatonin: A review of its potential functions and effects on neurological diseases. Rev. Neurol.—Fr. 2020, 176, 148–165. [Google Scholar] [CrossRef]
- Van den Berg, J.; Miedema, H.; Tulen, J.; Hofman, A.; Neven, A.; Tiemeier, H. Sex differences in subjective and actigraphic sleep measures: A population-based study of elderly persons. Sleep 2009, 32, 1367–1375. [Google Scholar] [CrossRef]
- Danik, J.; Manson, J. Vitamin D and cardiovascular disease. Curr. Treat. Options Cardiovasc. Med. 2012, 14, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erem, A.; Razzaque, M. Vitamin D-independent benefits of safe sunlight exposure. J. Steroid Biochem. Mol. Biol. 2021, 213, 105957. [Google Scholar] [CrossRef] [PubMed]
- Soni, M.; Kos, K.; Lang, I.; Jones, K.; Melzer, D.; Llewellyn, D. Vitamin D and cognitive function. Scand. J. Clin. Lab. Investig. 2012, 72, 79–82. [Google Scholar] [CrossRef]
- Menon, V.; Kar, S.; Suthar, N.; Nebhinani, N. Vitamin D and depression: A critical appraisal of the evidence and future directions. Indian J. Psychol. Med. 2020, 42, 11–21. [Google Scholar] [CrossRef]
- Garland, C.; Garland, F.; Gorham, E.; Lipkin, M.; Newmark, H.; Mohr, S.; Holick, M. The role of vitamin D in cancer prevention. Am. J. Public Health 2006, 96, 252–261. [Google Scholar] [CrossRef]
- Wu, Z.; Malihi, Z.; Stewart, A.; Lawes, C.; Scragg, R. The association between vitamin D concentration and pain: A systematic review and meta-analysis. Public Health Nutr. 2018, 21, 2022–2037. [Google Scholar] [CrossRef] [Green Version]
- Zadro, J.; Shirley, D.; Ferreira, M.; Carvalho-Silva, A.; Lamb, S.; Cooper, C.; Ferreira, P. Mapping the association between vitamin D and low back pain: A systematic review and meta-analysis of observational studies. Pain Physician 2017, 20, 611–640. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Shinn, L.; Reeser, G.; Browning, M.; Schwingel, A.; Khan, N.; Holscher, H. Fecal and soil microbiota composition of gardening and non-gardening families. Sci. Rep. 2022, 12, 1595. [Google Scholar] [CrossRef]
- Lowry, C.; Hollis, J.; de Vries, A.; Pan, B.; Brunet, L.; Hunt, J.; Paton, J.; van Kampen, E.; Knight, D.; Evans, A.; et al. Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior. Neuroscience 2007, 146, 756–772. [Google Scholar] [CrossRef]
- Jiang, X.; Li, C.; Feng, G.; Luo, M.; Sun, Q. Inhalation of nebulized Mycobacterium vaccae can protect against allergic bronchial asthma in mice by regulating the TGF-β/Smad signal transduction pathway. Allergy Asthma Clin. Immunol. 2020, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Saini, A.; Smith, I.; Webb, A.; Gregory, K.; Mendes, R.; Ryan, C.; Priest, K.; Bromelow, K.; Palmer, R.; et al. A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br. J. Cancer 2000, 83, 853–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, J.; Breed, M.; Weinstein, P. Exposure to greenspaces could reduce the high global burden of pain. Environ. Res. 2020, 187, 109641. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, A.Y.; Park, H.; Lee, W. Benefits of gardening activities for cognitive function according to measurement of brain nerve growth factor levels. Int. J. Environ. Res. Public Health 2019, 16, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Son, S.; Lee, A.; Park, H.; Lee, W.; Lee, C. Metabolite profiling revealed that a gardening activity program improves cognitive ability correlated with BDNF levels and serotonin metabolism in the elderly. Int. J. Environ. Res. Public Health 2020, 17, 541. [Google Scholar] [CrossRef] [Green Version]
- Scahill, R.; Frost, C.; Jenkins, R.; Whitwell, J.; Rossor, M.; Fox, N. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol-Chic. 2003, 60, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J. Sport Health Sci. 2020, 9, 74–81. [Google Scholar] [CrossRef]
- Simons, L.; Simons, J.; McCallum, J.; Friedlander, Y. Lifestyle factors and risk of dementia: Dubbo Study of the elderly. Med. J. Aust. 2006, 184, 68–70. [Google Scholar] [CrossRef]
- White, P.; Wyatt, J.; Chalfont, G.; Bland, J.; Neale, C.; Trepel, D.; Graham, H. Exposure to nature gardens has time-dependent associations with mood improvements for people with mid- and late-stage dementia: Innovative practice. Dementia 2018, 17, 627–634. [Google Scholar] [CrossRef]
- Newton, R.; Keady, J.; Tsekleves, E.; Adams Obe, S. ‘My father is a gardener: A systematic narrative review on access and use of the garden by people living with dementia. Health Place 2021, 68, 102516. [Google Scholar] [CrossRef]
- Smith-Carrier, T.; Béres, L.; Johnson, K.; Blake, C.; Howard, J. Digging into the experiences of therapeutic gardening for people with dementia: An interpretative phenomenological analysis. Dementia 2019, 20, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.; Cushing, D.; Brough, M. “I’ve always lived in a place with gardens”: Residents’ homemaking experiences in Australian aged-care gardens. Health Place 2020, 61, 102259. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Dale, A. Nature, place and the creative class: Three Canadian case studies. Landsc. Urban Plan. 2011, 99, 239–247. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Grbic, M.; Lecic-Tosevski, D.; Vukovic, O.; Toskovic, O. Nature based solution for improving mental health and well-being in urban areas. Environ. Res. 2017, 158, 385–392. [Google Scholar] [CrossRef]
- Gardener, A.; Lemes de Oliveira, F. Urban environment cues for health and well-being in the elderly. Cities Health 2020, 4, 117–134. [Google Scholar] [CrossRef]
- Kirkpatrick, J.; Davison, A. Home-grown: Gardens, practices and motivations in urban domestic vegetable production. Landsc. Urban Plan. 2018, 170, 24–33. [Google Scholar] [CrossRef]
- King, A.; Shackleton, C. Maintenance of public and private urban green infrastructure provides significant employment in Eastern Cape towns, South Africa. Urban For. Urban Green. 2020, 54, 126740. [Google Scholar] [CrossRef]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Grebitus, C.; Chenarides, L.; Muenich, R.; Mahalov, A. Consumers’ perception of urban farming—An exploratory study. Front. Sustain. Food Syst. 2020, 4, 79. [Google Scholar] [CrossRef]
- Printezis, I.; Grebitus, C. Marketing Channels for Local Food. Ecol. Econ. 2018, 152, 161–171. [Google Scholar] [CrossRef]
- Anderson, C.; Reynolds, T.; Merfeld, J.; Biscaye, P. Relating seasonal hunger and prevention and coping strategies: A panel analysis of Malawian Farm Households. J. Dev. Stud. 2017, 54, 1737–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonuedi, I.; Kornher, L.; Gerber, N. Agricultural seasonality, market access, and food security in Sierra Leone. Food Secur. 2022, 14, 471–494. [Google Scholar] [CrossRef]
- Hirvonen, K.; Hoddinott, J.; Minten, B.; Stifel, D. Children’s diets, nutrition knowledge, and access to markets. World Dev. 2017, 95, 303–315. [Google Scholar] [CrossRef]
- Aguilar-Støen, M.; Moe, S.; Camargo-Ricalde, S. Home gardens sustain crop diversity and improve farm resilience in Candelaria Loxicha, Oaxaca, Mexico. Hum. Ecol. 2009, 37, 55–77. [Google Scholar] [CrossRef]
- Nogeire-McRae, T.; Ryan, E.; Jablonski, B.; Carolan, M.; Arathi, H.; Brown, C.; Saki, H.; McKeen, S.; Lapansky, E.; Schipanski, M. The role of urban agriculture in a secure, healthy, and sustainable food system. BioScience 2018, 68, 748–759. [Google Scholar] [CrossRef]
- Harika, R.; Faber, M.; Samuel, F.; Kimiywe, J.; Mulugeta, A.; Eilander, A. Micronutrient status and dietary intake of iron, vitamin A, iodine, folate and zinc in women of reproductive age and pregnant women in Ethiopia, Kenya, Nigeria and South Africa: A Systematic Review of data from 2005 to 2015. Nutrients 2017, 9, 1096. [Google Scholar] [CrossRef]
- WHO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets. Available online: https://www.fao.org/documents/card/en/c/ca9692en (accessed on 1 February 2022).
- Cordain, L.; Eaton, B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.; O’Keefe, J.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Kuczmarski, M.; Brewer, B.; Rawal, R.; Pohlig, R.; Zonderman, A.; Evans, M. Aspects of dietary diversity differ in their association with atherosclerotic cardiovascular risk in a racially diverse US adult population. Nutrients 2019, 11, 1034. [Google Scholar] [CrossRef] [Green Version]
- Lachat, C.; Raneri, J.; Smith, K.; Kolsteren, P.; Van Damme, P.; Verzelen, K.; Penafiel, D.; Vanhove, W.; Kennedy, G.; Hunter, D.; et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl. Acad. Sci. USA 2017, 115, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Blakstad, M.; Mosha, D.; Bellows, A.; Canavan, C.; Chen, J.; Mlalama, K.; Noor, R.; Kinabo, J.; Masanja, H.; Fawzi, W. Home gardening improves dietary diversity, a cluster-randomized controlled trial among Tanzanian women. Matern. Child Nutr. 2021, 17, e13096. [Google Scholar] [CrossRef]
- Weinberger, K. Home and community gardens in Southeast Asia: Potential and opportunities for contributing to nutrition-sensitive food systems. Food Secur. 2013, 5, 847–856. [Google Scholar] [CrossRef]
- Bhaskar, A.V.; Nithya, D.J.; Raju, S.; Bhavani, R.V. Establishing integrated agriculture-nutrition programmes to diversify household food and diets in rural India. Food Secur. 2017, 9, 981–999. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, A.; Sathanandham, R.; Panda, A.; Wagh, R. Improving household diet diversity through promotion of nutrition gardens in India. Am. J. Food Technol. 2018, 5, 43–51. [Google Scholar]
- Alaimo, K.; Packnett, E.; Miles, R.A.; Kruger, D.J. Fruit and vegetable intake among urban community gardeners. J. Nutr. Educ. Behav. 2008, 40, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Barnidge, E.K.; Hipp, P.R.; Estlund, A.; Duggan, K.; Barnhart, K.J.; Brownson, R.C. Association between community garden participation and fruit and vegetable consumption in rural Missouri. Int. J. Behav. Nutr. Phys. 2013, 10, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzokwe, U.; Giweze, E.; Ofuoku, A. Contribution of home gardening to family food security in Delta North Agricultural Zone, Delta State, Nigeria. Int. J. Agric. Ext. Rural Dev. Stud. 2016, 3, 26–33. [Google Scholar]
- Baliki, G.; Brück, T.; Schreinemachers, P.; Uddin, M. Long-term behavioural impact of an integrated home garden intervention: Evidence from Bangladesh. Food Secur. 2019, 11, 1217–1230. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, D.; Piya, S.; Bhattarai, D. Impact of home garden interventions on household access to vegetables for nutrition security in kavreplanchok district of Nepal. Hort. Int. J. Med. 2021, 5, 187–190. [Google Scholar] [CrossRef]
- Siegner, A.; Sowerwine, J.; Acey, C. Does urban agriculture improve food security? Examining the nexus of food access and distribution of urban produced foods in the United States: A systematic review. Sustainability 2018, 10, 2988. [Google Scholar] [CrossRef] [Green Version]
- Veen, E.; Bock, B.; Van Den Berg, W.; Visser, A.; Wiskerke, J. Community gardening and social cohesion: Different designs, different motivations. Local Environ. 2016, 21, 1271–1287. [Google Scholar] [CrossRef]
- Cattivelli, V. The motivation of urban gardens in mountain areas. The case of South Tyrol. Sustainability 2020, 12, 4304. [Google Scholar] [CrossRef]
- Lin, B.; Egerer, M.; Liere, H.; Jha, S.; Bichier, P.; Philpott, S. Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Sci. Total Environ. 2018, 610–611, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, K.; Wells, M.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, D.; Phares, N.; Nightingale, K.; Weatherby, R.; Radis, W.; Ballard, J.; Campagna, M.; Kurtz, D.; Livingston, K.; Riechers, G.; et al. The potential for urban household vegetable gardens to reduce greenhouse gas emissions. Landsc. Urban Plan. 2017, 157, 365–374. [Google Scholar] [CrossRef]
- Lee, G.; Lee, H.; Lee, J. Greenhouse gas emission reduction effect in the transportation sector by urban agriculture in Seoul, Korea. Landsc. Urban Plan. 2015, 140, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vávra, J.; Daněk, P.; Jehlička, P. What is the contribution of food self-provisioning towards environmental sustainability? A case study of active gardeners. J. Clean. Prod. 2018, 185, 1015–1023. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Nair, J. The impact of landfilling and composting on greenhouse gas emissions—A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef]
- Thomson, A.; Giannopoulos, G.; Pretty, J.; Baggs, E.; Richardson, D. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- Artmann, M.; Sartison, K. The role of urban agriculture as a nature-based solution: A review for developing a systemic assessment framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Galford, G.; Peña, O.; Sullivan, A.; Nash, J.; Gurwick, N.; Pirolli, G.; Richards, M.; White, J.; Wollenberg, E. Agricultural development addresses food loss and waste while reducing greenhouse gas emissions. Sci. Total Environ. 2020, 699, 134318. [Google Scholar] [CrossRef]
- Shaw, A.; Miller, K.; Wescott, G. Wildlife gardening and connectedness to nature: Engaging the unengaged. Environ. Values 2013, 22, 483–502. [Google Scholar] [CrossRef]
- Lindemann-Matthies, P.; Marty, T. Does ecological gardening increase species richness and aesthetic quality of a garden? Biol. Conserv. 2013, 159, 37–44. [Google Scholar] [CrossRef]
- Hobbs, R. Managing plant populations in fragmented landscapes: Restoration or gardening? Aust. J. Bot. 2007, 55, 371–374. [Google Scholar] [CrossRef]
- Goddard, M.; Dougill, A.; Benton, T. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Apfelbeck, B.; Snep, R.; Hauck, T.; Ferguson, J.; Holy, M.; Jakoby, C.; Scott MacIvor, J.; Schär, L.; Taylor, M.; Weisser, W. Designing wildlife-inclusive cities that support human-animal co-existence. Landsc. Urban Plan. 2020, 200, 103817. [Google Scholar] [CrossRef]
- Doody, B.; Sullivan, J.; Meurk, C.; Stewart, G.; Perkins, H. Urban realities: The contribution of residential gardens to the conservation of urban forest remnants. Biodivers. Conserv. 2010, 19, 1385–1400. [Google Scholar] [CrossRef]
- Baldock, K.C.R. Opportunities and threats for pollinator conservation in global towns and cities. Curr. Opin. Insect Sci. 2020, 38, 63–71. [Google Scholar] [CrossRef]
- Pardee, G.; Philpott, S. Native plants are the bee’s knees: Local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 2014, 17, 641–659. [Google Scholar] [CrossRef] [Green Version]
- Aronson, M.; Lepczyk, C.; Evans, K.; Goddard, M.; Lerman, S.; MacIvor, J.; Nilon, C.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, A.; van Winsum-Westra, M. Manicured, romantic, or wild? The relation between need for structure and preferences for garden styles. Urban For. Urban Green. 2010, 9, 179–186. [Google Scholar] [CrossRef]
- Smith, R.; Gaston, K.; Warren, P.; Thompson, K. Urban domestic gardens (V): Relationships between landcover composition, housing and landscape. Landsc. Ecol. 2005, 20, 235–253. [Google Scholar] [CrossRef]
- Thompson, K.; Austin, K.; Smith, R.; Warren, P.; Angold, P.; Gaston, K. Urban domestic gardens (I): Putting small-scale plant diversity in context. J. Veg. Sci. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Laws, B. In a History of the Garden in Fifty Tools; University of Chicago Press: Chicago, IL, USA, 2014; pp. 55–110. [Google Scholar]
- Šlachta, M.; Erban, T.; Votavová, A.; Bešta, T.; Skalský, M.; Václavíková, M.; Halešová, T.; Edwards-Jonášová, M.; Včeláková, R.; Cudlín, P. Domestic gardens mitigate risk of exposure of pollinators to pesticides—An urban-rural case study using a Red Mason Bee species for biomonitoring. Sustainability 2020, 12, 9427. [Google Scholar] [CrossRef]
- Loram, A.; Warren, P.; Thompson, K.; Gaston, K. Urban domestic gardens: The effects of human interventions on garden composition. Environ. Manag. 2011, 48, 808–824. [Google Scholar] [CrossRef]
- Seress, G.; Bókony, V.; Pipoly, I.; Szép, T.; Nagy, K.; Liker, A. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 2012, 43, 403–414. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Strzałkowska-Abramek, M. Floral reward and insect visitors in six ornamental Lonicera species—Plants suitable for urban bee-friendly gardens. Urban For. Urban Green. 2019, 44, 126390. [Google Scholar] [CrossRef]
- Bergerot, B.; Fontaine, B.; Renard, M.; Cadi, A.; Julliard, R. Preferences for exotic flowers do not promote urban life in butterflies. Landsc. Urban Plan. 2010, 96, 98–107. [Google Scholar] [CrossRef]
- Rollings, R.; Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 2019, 23, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Soufflet-Freslon, V.; Araou, E.; Jeauffre, J.; Thouroude, T.; Chastellier, A.; Michel, G.; Mikanagi, Y.; Kawamura, K.; Banfield, M.; Oghina-Pavie, C.; et al. Diversity and selection of the continuous-flowering gene, RoKSN, in rose. Hortic. Res. 2021, 8, 76. [Google Scholar] [CrossRef]
- Mach, B.; Potter, D. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS ONE 2018, 13, e0208428. [Google Scholar] [CrossRef] [Green Version]
- Shackleton, C.; Shackleton, R. Knowledge, perceptions and willingness to control designated invasive tree species in urban household gardens in South Africa. Biol. Invasions 2016, 18, 1599–1609. [Google Scholar] [CrossRef]
- Ignatieva, M.; Ahrné, K.; Wissman, J.; Eriksson, T.; Tidåker, P.; Hedblom, M.; Kätterer, T.; Marstorp, H.; Berg, P.; Eriksson, T.; et al. Lawn as a cultural and ecological phenomenon: A conceptual framework for transdisciplinary research. Urban For. Urban Green. 2015, 14, 383–387. [Google Scholar] [CrossRef]
- Sehrt, M.; Bossdorf, O.; Freitag, M.; Bucharova, A. Less is more! Rapid increase in plant species richness after reduced mowing in urban grasslands. Basic Appl. Ecol. 2020, 42, 47–53. [Google Scholar] [CrossRef]
- Lerman, S.B.; Contosta, A.R.; Milam, J.; Bang, C. To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biol. Conserv. 2018, 221, 160–174. [Google Scholar] [CrossRef]
- Rasmussen, S.L.; Schrøder, A.E.; Mathiesen, R.; Nielsen, J.L.; Pertoldi, C.; Macdonald, D.W. Wildlife Conservation at a Garden Level: The Effect of Robotic Lawn Mowers on European Hedgehogs (Erinaceus europaeus). Animals 2021, 11, 1191. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Yue, Z.; Tan, Y. Observation of floristic succession and biodiversity on rewilded lawns in a tropical city. Landsc. Res. 2017, 42, 106–119. [Google Scholar] [CrossRef]
- Chollet, S.; Brabant, C.; Tessier, S.; Jung, V. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landsc. Urban Plan. 2018, 180, 121–124. [Google Scholar] [CrossRef]
- Castro, M.; Ponte-e-Sousa, C. Lawns and ornamental meadows as an alternative in the South Europe. In Proceedings of the Cytiplantastic—8th annual World in Denmark Conference, Copenhagen, Denmark, 17–19 September 2012. [Google Scholar]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in cities: From a globalised urban green space phenomenon to sustainable nature-based solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Broyles, M.; Larzleer, H.; Fellowes, M. Adding ecological value to the urban lawnscape. Insect abundance and diversity in grass-free lawns. Biodivers. Conserv. 2015, 24, 47–62. [Google Scholar] [CrossRef]
- Francis, R. Artificial lawns: Environmental and societal considerations of an ecological simulacrum. Urban For. Urban Green. 2018, 30, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Loram, A.; Warren, P.; Gaston, K. Urban domestic gardens (XIV): The characteristics of gardens in five cities. Environ. Manag. 2008, 42, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Van Heezik, Y.; Freeman, C.; Porter, S.; Dickinson, K. Native and exotic woody vegetation communities in domestic gardens in relation to social and environmental factors. Ecol. Soc. 2014, 19, 17. [Google Scholar] [CrossRef]
- Davies, Z.; Fuller, R.; Loram, A.; Irvine, K.; Sims, V.; Gaston, K. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 2009, 142, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Chalker-Scott, L. Nonnative, noninvasive woody species can enhance urban landscape biodiversity. Arboric. Urban 2015, 41, 173–186. [Google Scholar] [CrossRef]
- Singh, A.; Gohain, I.; Datta, M. Upscaling of agroforestry homestead gardens for economic and livelihood security in mid–tropical plain zone of India. Agrofor. Syst. 2016, 90, 1103–1112. [Google Scholar] [CrossRef]
- Cabral, I.; Keim, J.; Engelmann, R.; Kraemer, R.; Siebert, J.; Bonn, A. Ecosystem services of allotment and community gardens: A Leipzig, Germany case study. Urban For. Urban Green. 2017, 23, 44–53. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.; Cirella, G.; Zerbe, S. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 2017, 242, 53–66. [Google Scholar] [CrossRef]
- Hassall, C. The ecology and biodiversity of urban ponds. WIREs Water 2014, 1, 187–206. [Google Scholar] [CrossRef]
- Hill, M.; Biggs, J.; Thornhill, I.; Briers, R.; Gledhill, D.; White, J.; Wood, P.; Hassall, C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob. Change Biol. 2017, 23, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Leu, T.; Lüscher, B.; Zumbach, S.; Schmidt, B. Small fish (Leucaspius delineatus) that are often released into garden ponds and amphibian breeding sites prey on eggs and tadpoles of the common frog (Rana temporaria). Amphib. Reptil. 2009, 30, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Oertli, B.; Parris, K. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef] [Green Version]
- Byrd, R.; Haque, M.; Tai, L.; McLellan, G.; Knight, E. Designing a children’s water garden as an outdoor learning Lab for Environmental Education. Appl. Environ. Educ. Commun. 2007, 6, 39–47. [Google Scholar] [CrossRef]
- Wood, P.; Greenwood, M.; Agnew, M. Pond Biodiversity and Habitat Loss in the UK. Area 2003, 35, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Bonthoux, S.; Voisin, L.; Bouché-Pillon, S.; Chollet, S. More than weeds: Spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 2019, 185, 163–172. [Google Scholar] [CrossRef]
- Fagot, M.; De Cauwer, B.; Beeldens, A.B.E.; Bulcke, R.; Reheul, D. Weed flora in paved areas in relation to environment, pavement characteristics and weed control. Weed Res. 2011, 51, 650–660. [Google Scholar] [CrossRef]
- Schaub, T.; Meffert, P.; Kerth, G. Nest-boxes for common Swifts Apus Apus as compensatory measures in the context of building renovation: Efficacy and predictors of occupancy. Bird Conserv. Int. 2016, 26, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Mao, L.; Qiu, Y.; Cui, J.; Wang, Y. Walls offer potential to improve urban biodiversity. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Mayrand, F.; Clergeau, P. Green roofs and green walls for biodiversity conservation: A contribution to urban connectivity? Sustainability 2018, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Fathallah, F. Musculoskeletal disorders in labor-intensive agriculture. Appl. Ergon. 2010, 41, 738–743. [Google Scholar] [CrossRef]
- Innes, E.; Crowther, A.; Fonti, F.; Quayle, L. Women’s health at work program: Musculoskeletal pain experienced by women of Chinese background working on market gardens in the Sydney Basin. Work 2010, 36, 129–140. [Google Scholar] [CrossRef]
- Lee, H.; Oh, J.; Yoo, J.; Ko, S.; Kang, J.; Lee, S.; Jeong, W.; Seong, G.; Kang, C.; Song, S. Prevalence of low back pain and associated risk factors among Farmers in Jeju. Saf. Health Work 2021, 12, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Steele, T. Occurrence and distribution of Legionella species in composted plant materials. Appl. Environ. Microbiol. 1994, 60, 2003–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douwes, J.; Eduard, W.; Thorne, P. Bioaerosols. In International Encyclopedia of Public Health; Heggenhougen, H.K., Ed.; Academic Press: Oxford, UK, 2008; pp. 287–297. [Google Scholar]
- Millins, C.; Leo, W.; MacInnes, I.; Ferguson, J.; Charlesworth, G.; Nayar, D.; Davison, R.; Yardley, J.; Kilbride, E.; Huntley, S.; et al. Emergence of Lyme Disease on Treeless Islands, Scotland, United Kingdom. Emerg. Infect. Dis. 2021, 27, 538–546. [Google Scholar] [CrossRef]
- Radolf, J.; Strle, K.; Lemieux, J.; Strle, F. Lyme disease in humans. Curr. Issues Mol. Biol. 2021, 42, 333–384. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Attanayake, C.P.; Hettiarachchi, G.M.; Harms, A.; Presley, D.; Martin, S.; Pierzynski, G.M. Field evaluations on soil plant transfer of lead from an urban garden soil. J. Environ. Qual. 2014, 43, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Antisari, L.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustain. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- Masri, S.; LeBrón, A.; Logue, M.; Valencia, E.; Ruiz, A.; Reyes, A.; Wu, J. Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: Implications for health and environmental justice. Environ. Sci. Process. Impacts 2021, 23, 812–830. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.; Son, K. Determining exercise intensities of gardening tasks as a physical activity using metabolic equivalents in older adults. HortScience 2011, 46, 1706–1710. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Mawodza, T.; Sarkar, B.; Menon, M. Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicol. Environ. Saf. 2019, 170, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Schmeltz, M.; Grassman, J.; Cheng, Z. Assessing soil lead exposure for gardeners in New York City—A pilot study. In Green Technologies and Infrastructure to Enhance Urban Ecosystem Services; Springer: Cham, Switzerland, 2020; pp. 4–11. [Google Scholar]
- Konwuruk, N.; Borquaye, L.; Darko, G.; Dodd, M. Distribution, bioaccessibility and human health risks of toxic metals in peri-urban topsoils of the Kumasi Metropolis. Sci. Afr. 2021, 11, e00701. [Google Scholar] [CrossRef]
- Gatiboni, L.; Crozier, C.; Bradley, L. Minimizing Risks of Soil Contaminants in Urban Gardens. Available online: https://content.ces.ncsu.edu/minimizing-risks-of-soil-contaminants-in-urban-gardens (accessed on 1 February 2022).
- Sandler, C.; Dowler, C. We Were Able to Buy Illegal and Dangerous Pesticides on eBay. Available online: https://unearthed.greenpeace.org/2018/07/25/ebay-pesticides-westminster-trading-standards-eu/ (accessed on 1 February 2022).
- Badami, M.; Ramankutty, N. Urban agriculture and food security: A critique based on an assessment of urban land constraints. Glob. Food Sec. 2015, 4, 8–15. [Google Scholar] [CrossRef]
- Mumaw, L.; Mata, L. Wildlife gardening: An urban nexus of social and ecological relationships. Front. Ecol. Environ. 2022, 20, 379–385. [Google Scholar] [CrossRef]
- Hulme, P. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 2011, 26, 168–174. [Google Scholar] [CrossRef]
- Twardek, W.; Peiman, K.; Gallagher, A.; Cooke, S. Fido, fluffy, and wildlife conservation: The environmental consequences of domesticated animals. Environ. Rev. 2017, 25, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Morin, D.; Lesmeister, D.; Nielsen, C.; Schauber, E. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 2018, 15, e00413. [Google Scholar] [CrossRef]
- Wondafrash, M.; Wingfield, M.; Wilson, J.; Hurley, B.; Slippers, B.; Paap, T. Botanical gardens as key resources and hazards for biosecurity. Biodivers. Conserv. 2021, 30, 1929–1946. [Google Scholar] [CrossRef]
- Bertoncini, A.; Machon, N.; Pavoine, S.; Muratet, A. Local gardening practices shape urban lawn floristic communities. Landsc. Urban Plan. 2012, 105, 53–61. [Google Scholar] [CrossRef]
- Muratet, A.; Fontaine, B. Contrasting impacts of pesticides on butterflies and bumblebees in private gardens in France. Biol. Conserv. 2015, 182, 148–154. [Google Scholar] [CrossRef]
- Hulme, P.; Brundu, G.; Carboni, M.; Dehnen-Schmutz, K.; Early, R.; Dullinger, S.; Essl, F.; González-Moreno, P.; Groom, Q.; Kueffer, C.; et al. Integrating invasive species policies across ornamental horticulture supply-chains to prevent plant invasions. J. Appl. Ecol. 2017, 55, 92–98. [Google Scholar] [CrossRef]
- Reyes-Paecke, S.; Gironás, J.; Melo, O.; Vicuna, S.; Herrera, J. Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps and opportunities for climate change adaptation. Landsc. Urban Plan. 2018, 182, 34–43. [Google Scholar] [CrossRef]
- Morote-Seguido, Á.; Hernández-Hernández, M. Green areas and water management in residential developments in the European Western Mediterranean. A case study of Alicante, Spain. Geogr. Tidsskr. 2016, 116, 190–201. [Google Scholar] [CrossRef]
- Turrisi, T.; Bittel, K.; West, A.; Hojjatinia, S.; Hojjatinia, S.; Mama, S.; Lagoa, C.; Conroy, D. Seasons, weather, and device-measured movement behaviors: A scoping review from 2006 to 2020. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 24. [Google Scholar] [CrossRef]
- Bell, S.; White, M.; Griffiths, A.; Darlow, A.; Taylor, T.; Wheeler, B.; Lovell, R. Spending time in the garden is positively associated with health and wellbeing: Results from a national survey in England. Landsc. Urban Plan. 2020, 200, 103836. [Google Scholar] [CrossRef]
- WHO. Guidelines on Physical Activiy and Sedentary Behaviour; World Health Organization: Geneve, Switzerland, 2020. [Google Scholar]
- Zhang, X.; Zhang, Y.; Zhai, J. Home Garden with Eco-Healing Functions Benefiting Mental Health and Biodiversity During and After the COVID-19 Pandemic: A Scoping Review. Front. Public Health 2021, 9, 740187. [Google Scholar] [CrossRef]
- Palar, K.; Lemus Hufstedler, E.; Hernandez, K.; Chang, A.; Ferguson, L.; Lozano, R.; Weiser, S. Nutrition and health improvements after participation in an urban home garden program. J. Nutr. Educ. Behav. 2019, 51, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gómez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Policy 2016, 62, 14–23. [Google Scholar] [CrossRef]
- Guitart, D.; Pickering, C.; Byrne, J. Past results and future directions in urban community gardens research. Urban For. Urban Green. 2012, 11, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Razani, N.; Morshed, S.; Kohn, M.; Wells, N.; Thompson, D.; Alqassari, M.; Agodi, A.; Rutherford, G. Effect of park prescriptions with and without group visits to parks on stress reduction in low-income parents: SHINE randomized trial. PLoS ONE 2018, 13, e0192921. [Google Scholar] [CrossRef] [Green Version]
- Twedt, E.; Rainey, R.; Proffitt, D. Designed natural spaces: Informal gardens are perceived to be more restorative than formal gardens. Front. Psychol. 2016, 7, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engemann, K.; Pedersen, C.; Arge, L.; Tsirogiannis, C.M.; Svenning, J.P. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 116, 5188–5193. [Google Scholar] [CrossRef] [PubMed]
- Burton, E. Measuring urban compactness in UK towns and cities. Environ. Plan. B Urban Anal. City Sci. 2002, 29, 219–250. [Google Scholar] [CrossRef]
- Galewski, T.; Devictor, V. When common birds became rare: Historical records shed light on long-term responses of bird communities to global change in the Largest Wetland of France. PLoS ONE 2016, 11, e0165542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clucas, B.; Parker, I.; Feldpausch-Parker, A. A systematic review of the relationship between urban agriculture and biodiversity. Urban Ecosyst. 2018, 21, 635–643. [Google Scholar] [CrossRef]
- Majewska, A.; Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 2020, 34, 15–25. [Google Scholar] [CrossRef]
- Lomba, A.; Alves, P.; Jongman, R.; McCracken, D. Reconciling nature conservation and traditional farming practices: A spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside. Ecol. Evol. 2015, 5, 1031–1044. [Google Scholar] [CrossRef]
- Milligan, M.; Johnson, M.; Garfinkel, M.; Smith, C.; Njoroge, P. Quantifying pest control services by birds and ants in Kenyan coffee farms. Biol. Conserv. 2016, 194, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, L.; Caron, P.; Campbell, B.; Lipper, L.; Mainka, S.; Rabbinge, R.; Babin, D.; Pulleman, M. Reconciling biodiversity conservation and food security: Scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2010, 2, 34–42. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Wood, S.; Karp, D.; DeClerck, F.; Kremen, C.; Naeem, S.; Palm, C. Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends Ecol. Evol. 2015, 30, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.; Bastos, R.; Cabral, J. Converting conventional ecological datasets in dynamic and dynamic spatially explicit simulations: Current advances and future applications of the Stochastic Dynamic Methodology (StDM). Ecol. Model. 2013, 258, 91–100. [Google Scholar] [CrossRef]
Lawn and Garden | Low Intensity (1.6–2.9 METs) | Moderate Intensity (3.0–5.9 METs) | Vigorous Intensity (≥6 METs) |
---|---|---|---|
Digging, spading, filling garden, composting, vigorous effort | 7.8 | ||
Chopping wood, splitting logs, vigorous effort | 6.3 | ||
Clearing brush/land, undergrowth, or ground, hauling branches, wheelbarrow chores, vigorous effort | 6.3 | ||
Laying crushed rock | 6.3 | ||
Gardening with heavy power tools, tilling a garden, chainsaw | 5.8 | ||
Carrying, loading or stacking wood, loading/unloading or carrying lumber | 5.5 | ||
Wheelbarrow, pushing garden cart or wheelbarrow | 5.5 | ||
Mowing lawn, general | 5.5 | ||
Felling trees, small–medium sizes | 5.3 | ||
Digging sandbox, shoveling sand | 5.0 | ||
Mowing lawn, walk, power mower, moderate or vigorous effort | 5.0 | ||
Digging, spading, filling garden, compositing | 5.0 | ||
Weeding, cultivating garden, using a hoe, moderate-to-vigorous effort | 5.0 | ||
Hopping wood, splitting logs, moderate effort | 4.5 | ||
Planting trees | 4.5 | ||
Picking fruit off trees, gleaning fruits, picking fruits/vegetables, climbing ladder to pick fruit, vigorous effort | 4.5 | ||
Planting seedlings, shrub, stooping, moderate effort | 4.3 | ||
Trimming shrubs or trees, manual cutter | 4.0 | ||
Raking lawn or leaves, moderate effort | 3.8 | ||
Gardening, general, moderate effort | 3.8 | ||
Clearing light brush, thinning garden, moderate effort | 3.5 | ||
Digging, spading, filling garden, composting, light-to-moderate effort | 3.5 | ||
Trimming shrubs or trees, power cutter, using leaf blower, edge, moderate effort | 3.5 | ||
Picking fruit off trees, picking fruits/vegetables, moderate effort | 3.5 | ||
Weeding, cultivating garden, light-to-moderate effort | 3.5 | ||
Carrying, loading or stacking wood, loading/unloading or carrying lumber, light-to-moderate effort | 3.3 | ||
Walking, applying fertilizer or seeding a lawn, push applicator | 3.0 | ||
Walking, gathering gardening tools | 3.0 | ||
Driving tractor | 2.8 | ||
Gardening, using containers, older adults >60 years | 2.8 | ||
Planting, potting, transplanting seedlings or plants, light effort | 2.0 | ||
Watering lawn or garden, standing or walking | 1.5 |
Benefits |
---|
|
|
|
|
|
|
|
|
Benefits |
---|
|
|
|
|
Risks/Drawbacks |
---|
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.; Moreira, H.; Cabral, J.A.; Gabriel, R.; Teixeira, A.; Bastos, R.; Aires, A. Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay. Int. J. Environ. Res. Public Health 2022, 19, 13715. https://doi.org/10.3390/ijerph192013715
Santos M, Moreira H, Cabral JA, Gabriel R, Teixeira A, Bastos R, Aires A. Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay. International Journal of Environmental Research and Public Health. 2022; 19(20):13715. https://doi.org/10.3390/ijerph192013715
Chicago/Turabian StyleSantos, Mário, Helena Moreira, João Alexandre Cabral, Ronaldo Gabriel, Andreia Teixeira, Rita Bastos, and Alfredo Aires. 2022. "Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay" International Journal of Environmental Research and Public Health 19, no. 20: 13715. https://doi.org/10.3390/ijerph192013715