Motivational Influences Affecting Middle-Aged and Elderly Users’ Participation Intention in Health-Related Social Media
Abstract
:1. Introduction
2. Research Framework
2.1. Literature Review
2.1.1. Motivation Research into Social Media Use
2.1.2. Middle-Aged and Elderly People, Health-Related Social Media
2.2. Hypotheses Development
2.2.1. Protection Motivation and Social Motivation
2.2.2. Perceived Usefulness and Perceived Entertainment
2.2.3. Continued Intention to Participate
3. Materials and Methods
3.1. Measurement Items
3.2. Sample
3.3. Data Analysis
4. Results
4.1. Measurement Model Analysis
4.2. Structural Model Analysis
5. Discussion
5.1. Discussion of Empirical Research Results
5.2. Implications
5.2.1. Theoretical Implications
5.2.2. Practical Implications
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, A.; Lee, R.; Network, N.T.A. Six Ways Population Change Will Affect the Global Economy. Popul. Dev. Rev. 2022, 48, 51–73. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Sevcikova, H.; Li, N.; Gu, D.A.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y.; Skirbekk, V.F.; Tyrovolas, S.; Kassebaum, N.J.; Dieleman, J.L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017. Lancet Public Health 2019, 4, E159–E167. [Google Scholar] [CrossRef]
- Bui, H.T. Exploring and explaining older consumers’ behaviour in the boom of social media. Int. J. Consum. Stud. 2022, 46, 601–620. [Google Scholar] [CrossRef]
- Kruse, C.S.; Mileski, M.; Moreno, J. Mobile health solutions for the aging population: A systematic narrative analysis. J. Telemed. Telecare 2017, 23, 439–451. [Google Scholar] [CrossRef]
- Sophia van Zyl, A. The impact of Social Networking 2.0 on organisations. Electron. Libr. 2009, 27, 906–918. [Google Scholar] [CrossRef]
- Pilar, L.; Stanislavska, L.K.; Kvasnicka, R. Healthy Food on the Twitter Social Network: Vegan, Homemade, and Organic Food. Int. J. Environ. Res. Public Health 2021, 18, 3815. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.N.; Tansil, K.A.; Elder, R.W.; Soler, R.E.; Labre, M.P.; Mercer, S.L.; Eroglu, D.; Baur, C.; Lyon-Daniel, K.; Fridinger, F.; et al. Mass Media Health Communication Campaigns Combined with Health-Related Product Distribution A Community Guide Systematic Review. Am. J. Prev. Med. 2014, 47, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Konig, H.H. Social Isolation and Loneliness of Older Adults in Times of the COVID-19 Pandemic: Can Use of Online Social Media Sites and Video Chats Assist in Mitigating Social Isolation and Loneliness? Gerontology 2021, 67, 121–123. [Google Scholar] [CrossRef]
- Moorhead, S.A.; Hazlett, D.E.; Harrison, L.; Carroll, J.K.; Irwin, A.; Hoving, C. A New Dimension of Health Care: Systematic Review of the Uses, Benefits, and Limitations of Social Media for Health Communication. J. Med. Internet Res. 2013, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Pianese, T.; Belfiore, P. Exploring the Social Networks’ Use in the Health-Care Industry: A Multi-Level Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7295. [Google Scholar] [CrossRef]
- Goodyear, V.A.; Armour, K.M.; Wood, H. Young people and their engagement with health-related social media: New perspectives. Sport Educ. Soc. 2019, 24, 673–688. [Google Scholar] [CrossRef]
- Goodyear, V.A.; Armour, K.M. Young People’s health-related learning through social media: What do teachers need to know? Teach. Teach. Educ. 2021, 102, 103340. [Google Scholar] [CrossRef] [PubMed]
- Eshah, N.F. Investigating cardiovascular patients’ preferences and expectations regarding the use of social media in health education. Contemp. Nurse 2018, 54, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Greenhow, C.; Lewin, C. Social media and education: Reconceptualizing the boundaries of formal and informal learning. Learn. Media Technol. 2016, 41, 6–30. [Google Scholar] [CrossRef]
- Cheston, C.C.; Flickinger, T.E.; Chisolm, M.S. Social Media Use in Medical Education: A Systematic Review. Acad. Med. 2013, 88, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Tess, P.A. The role of social media in higher education classes (real and virtual)—A literature review. Comput. Hum. Behav. 2013, 29, A60–A68. [Google Scholar] [CrossRef]
- Dabbagh, N.; Kitsantas, A. Personal Learning Environments, social media, and self-regulated learning: A natural formula for connecting formal and informal learning. Internet High. Educ. 2012, 15, 3–8. [Google Scholar] [CrossRef]
- Yang, Q.H.; Liu, J.Y.; Lochbuehler, K.; Hornik, R. Does Seeking e-Cigarette Information Lead to Vaping? Evidence from a National Longitudinal Survey of Youth and Young Adults. Health Commun. 2019, 34, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.J.; Liu, D.Y.; Fang, J. An Examination of Factors Contributing to the Acceptance of Online Health Misinformation. Front. Psychol. 2021, 12, 630268. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Luque, L.; Bau, T. Health and social media: Perfect storm of information. Healthc. Inform. Res. 2015, 21, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.Y.S.; Oh, A.; Klein, W.M.P. Addressing Health-Related Misinformation on Social Media. JAMA-J. Am. Med. Assoc. 2018, 320, 2417–2418. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.G.; Lefevre, C.E. Instagram use is linked to increased symptoms of orthorexia nervosa. Eat. Weight Disord.-Stud. Anorex. 2017, 22, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Pfeil, U.; Arjan, R.; Zaphiris, P. Age differences in online social networking—A study of user profiles and the social capital divide among teenagers and older users in MySpace. Comput. Hum. Behav. 2009, 25, 643–654. [Google Scholar] [CrossRef]
- Cipolletta, S.; Gris, F. Older People’s Lived Perspectives of Social Isolation during the First Wave of the COVID-19 Pandemic in Italy. Int. J. Environ. Res. Public Health 2021, 18, 11832. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.M.; Alber, J.; Gold, R.S. A social media primer for professionals: Digital dos and don’ts. Health Promot. Pract. 2014, 15, 168–172. [Google Scholar] [CrossRef]
- Thackeray, R.; Crookston, B.T.; West, J.H. Correlates of Health-Related Social Media Use Among Adults. J. Med. Internet Res. 2013, 15, e2297. [Google Scholar] [CrossRef]
- Medlock, S.; Eslami, S.; Askari, M.; Arts, D.L.; Sent, D.; de Rooij, S.E.; Abu-Hanna, A. Health Information-Seeking Behavior of Seniors Who Use the Internet: A Survey. J. Med. Internet Res. 2015, 17, e3749. [Google Scholar] [CrossRef]
- Langford, A.; Loeb, S. Perceived Patient-Provider Communication Quality and Sociodemographic Factors Associated With Watching Health-Related Videos on YouTube: A Cross-Sectional Analysis. J. Med. Internet Res. 2019, 21, e13512. [Google Scholar] [CrossRef] [PubMed]
- Zulman, D.M.; Kirch, M.; Zheng, K.; An, L.C. Trust in the Internet as a Health Resource among Older Adults: Analysis of Data from a Nationally Representative Survey. J. Med. Internet Res. 2011, 13, 202–211. [Google Scholar] [CrossRef]
- Diaz, J.A.; Griffith, R.A.; Ng, J.J.; Reinert, S.E.; Friedmann, P.D.; Moulton, A.W. Patients’ use of the Internet for medical information. J. Gen. Intern. Med. 2002, 17, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, K.; Wu, X.F.; Qing, L.B.; Peng, Y.H. Analysis and Detection of Health-Related Misinformation on Chinese Social Media. IEEE Access 2019, 7, 154480–154489. [Google Scholar] [CrossRef]
- Leonard, N.H.; Beauvais, L.L.; Scholl, R.W. Work Motivation: The Incorporation of Self-Concept-Based Processes. Hum. Relat. 1999, 52, 969–998. [Google Scholar] [CrossRef]
- Amabile, T.M. Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Hum. Resour. Manag. Rev. 1993, 3, 185–201. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Li, W.J.; Bhutto, T.A.; Wang, X.H.; Maitlo, Q.; Zafar, A.U.; Bhutto, N.A. Unlocking employees’ green creativity: The effects of green transformational leadership, green intrinsic, and extrinsic motivation. J. Clean. Prod. 2020, 255, 120229. [Google Scholar] [CrossRef]
- Good, V.; Hughes, D.E.; Kirca, A.H.; McGrath, S. A self-determination theory-based meta-analysis on the differential effects of intrinsic and extrinsic motivation on salesperson performance. J. Acad. Mark. Sci. 2022, 50, 586–614. [Google Scholar] [CrossRef]
- Epstein, H.A.B. Multilingual Health-Related Online Resources. J. Consum. Health Internet 2020, 24, 314–320. [Google Scholar] [CrossRef]
- Cline, R.J.W.; Haynes, K.M. Consumer health information seeking on the Internet: The state of the art. Health Educ. Res. 2001, 16, 671–692. [Google Scholar] [CrossRef] [PubMed]
- Van de Belt, T.H.; Berben, S.A.A.; Samsom, M.; Engelen, L.J.L.P.G.; Schoonhoven, L. Use of social media by Western European hospitals: Longitudinal study. J. Med. Internet Res. 2012, 14, e61. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Mitra, S.; Turel, O. Motivational Impacts on Intent to Use Health-Related Social Media. J. Comput. Inf. Syst. 2020, 60, 136–145. [Google Scholar] [CrossRef]
- Hardiker, N.R.; Grant, M.J. Factors that influence public engagement with eHealth: A literature review. Int. J. Med. Inform. 2011, 80, 1–12. [Google Scholar] [CrossRef]
- Rahim, A.I.A.; Ibrahim, M.I.; Musa, K.I.; Chua, S.L. Facebook Reviews as a Supplemental Tool for Hospital Patient Satisfaction and Its Relationship with Hospital Accreditation in Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 7454. [Google Scholar] [CrossRef]
- Antheunis, M.L.; Tates, K.; Nieboer, T.E. Patients’ and health professionals’ use of social media in health care: Motives, barriers and expectations. Patient Educ. Couns. 2013, 92, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Abbasi-Perez, A.; Alvarez-Mon, M.A.; Donat-Vargas, C.; Ortega, M.A.; Monserrat, J.; Perez-Gomez, A.; Sanz, I.; Alvarez-Mon, M. Analysis of Tweets Containing Information Related to Rheumatological Diseases on Twitter. Int. J. Environ. Res. Public Health 2021, 18, 9094. [Google Scholar] [CrossRef] [PubMed]
- Rolls, K.; Hansen, M.; Jackson, D.; Elliott, D. How Health Care Professionals Use Social Media to Create Virtual Communities: An Integrative Review. J. Med. Internet Res. 2016, 18, e5312. [Google Scholar] [CrossRef]
- Sawesi, S.; Rashrash, M.; Phalakornkule, K.; Carpenter, J.S.; Jones, J.F. The Impact of Information Technology on Patient Engagement and Health Behavior Change: A Systematic Review of the Literature. JMIR Med. Inform. 2016, 4, e4514. [Google Scholar] [CrossRef]
- Goodyear, V.; Quennerstedt, M. #Gymlad-young boys learning processes and health-related social media. Qual. Res. Sport Exerc. Health 2020, 12, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Ittefaq, M.; Seo, H.; Abwao, M.; Baines, A. Social media use for health, cultural characteristics, and demographics: A survey of Pakistani millennials. Digit. Health 2022, 8, 20552076221089454. [Google Scholar] [CrossRef] [PubMed]
- Hajli, M.; Bugshan, H.; Lin, X.; Featherman, M. From e-learning to social learning—A health care study. Eur. J. Train. Dev. 2013, 37, 851–863. [Google Scholar] [CrossRef]
- He, T.; Huang, C.Q.; Li, M.; Zhou, Y.Q.; Li, S.H. Social participation of the elderly in China: The roles of conventional media, digital access and social media engagement. Telemat. Inform. 2020, 48, 101347. [Google Scholar] [CrossRef]
- Bonsaksen, T.; Ruffolo, M.; Leung, J.; Price, D.; Thygesen, H.; Schoultz, M.; Geirdal, A.O. Loneliness and Its Association with Social Media Use During the COVID-19 Outbreak. Soc. Med. Soc. 2021, 7, 20563051211033821. [Google Scholar] [CrossRef]
- Tennant, B.; Stellefson, M.; Dodd, V.; Chaney, B.; Chaney, D.; Paige, S.; Alber, J. eHealth Literacy and Web 2.0 Health Information Seeking Behaviors Among Baby Boomers and Older Adults. J. Med. Internet Res. 2015, 17, e3992. [Google Scholar] [CrossRef] [PubMed]
- Brunello, G.; Fort, M.; Schneeweis, N.; Winter-Ebmer, R. The Causal Effect of Education on Health: What is the Role of Health Behaviors? Health Econ. 2016, 25, 314–336. [Google Scholar] [CrossRef]
- Khoo, S.S.; Yang, H. Social media use improves executive functions in middle-aged and older adults: A structural equation modeling analysis. Comput. Hum. Behav. 2020, 111, 106388. [Google Scholar] [CrossRef]
- Parida, V.; Mostaghel, R.; Oghazi, P. Factors for Elderly Use of Social Media for Health-Related Activities. Psychol. Mark. 2016, 33, 1134–1141. [Google Scholar] [CrossRef]
- Casanova, G.; Abbondanza, S.; Rolandi, E.; Vaccaro, R.; Pettinato, L.; Colombo, M.; Guaita, A. New Older Users’ Attitudes Toward Social Networking Sites and Loneliness: The Case of the Oldest-Old Residents in a Small Italian City. Soc. Med. Soc. 2021, 7, 20563051211052905. [Google Scholar] [CrossRef]
- Han, M.; Tan, X.Y.; Lee, R.; Lee, J.K.; Mahendran, R. Impact of Social Media on Health-Related Outcomes Among Older Adults in Singapore: Qualitative Study. JMIR Aging 2021, 4, e23826. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Hu, D.N.; Wang, H.J. Differential impacts of social influence on initial and sustained participation in open source software projects. J. Assoc. Inf. Sci. Technol. 2021, 72, 1133–1147. [Google Scholar] [CrossRef]
- Lin, H.F. Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. J. Inf. Sci. 2007, 33, 135–149. [Google Scholar] [CrossRef]
- Floyd, D.L.; Prentice-Dunn, S.; Rogers, R.W. A meta-analysis of research on protection motivation theory. J. Appl. Soc. Psychol. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- Lindner, C.; Kotta, I.; Marschalko, E.E.; Szabo, K.; Kalcza-Janosi, K.; Retelsdorf, J. Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 5098. [Google Scholar] [CrossRef]
- Rehman, S.; Rehman, N.; Mumtaz, A.; Jiang, J.D. Association of Mortality-Related Risk Factors in Patients with COVID-19: A Retrospective Cohort Study. Healthcare 2021, 9, 1468. [Google Scholar] [CrossRef]
- Greenblatt-Kimron, L.; Kestler-Peleg, M.; Even-Zohar, A.; Lavenda, O. Death Anxiety and Loneliness among Older Adults: Role of Parental Self-Efficacy. Int. J. Environ. Res. Public Health 2021, 18, 9857. [Google Scholar] [CrossRef]
- Zhu, Y.; Wen, X.W.; Chu, M.; Zhang, G.L.; Liu, X.F. Consumers’ Food Safety Risk Communication on Social Media Following the Suan Tang Zi Accident: An Extended Protection Motivation Theory Perspective. Int. J. Environ. Res. Public Health 2021, 18, 8080. [Google Scholar] [CrossRef]
- Chen, G.M. Tweet this: A uses and gratifications perspective on how active Twitter use gratifies a need to connect with others. Comput. Hum. Behav. 2011, 27, 755–762. [Google Scholar] [CrossRef]
- Haridakis, P.; Hanson, G. Social Interaction and Co-Viewing With YouTube: Blending Mass Communication Reception and Social Connection. J. Broadcasting Electron. Media 2009, 53, 317–335. [Google Scholar] [CrossRef]
- Leist, A.K. Social Media Use of Older Adults: A Mini-Review. Gerontology 2013, 59, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Rivas, R.; Sadah, S.A.; Guo, Y.H.; Hristidis, V. Classification of Health-Related Social Media Posts: Evaluation of Post Content-Classifier Models and Analysis of User Demographics. JMIR Public Health Surveill. 2020, 6, 25–43. [Google Scholar] [CrossRef]
- Corbett, T.; Cummings, A.; Calman, L.; Farrington, N.; Fenerty, V.; Foster, C.; Richardson, A.; Wiseman, T.; Bridges, J. Self-management in older people living with cancer and multi-morbidity: A systematic review and synthesis of qualitative studies. Psycho-Oncology 2020, 29, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Skinner, B.F. Intellectual self-management in old age. Am. Psychol. 1983, 38, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Teo, T.S.H.; Lim, V.K.G.; Lai, R.Y.C. Intrinsic and extrinsic motivation in Internet usage. Omega-Int. J. Manag. Sci. 1999, 27, 25–37. [Google Scholar] [CrossRef]
- Saridakis, C.; Baltas, G.; Oghazi, P.; Hultman, M. Motivation Recipes for Brand-Related Social Media Use: A BooleanfsQCA Approach. Psychol. Mark. 2016, 33, 1062–1070. [Google Scholar] [CrossRef]
- Bandura, A. Health promotion from the perspective of social cognitive theory. Psychol. Mark. 1998, 13, 623–649. [Google Scholar] [CrossRef]
- Calvillo, J.; Roman, I.; Roa, L.M. How technology is empowering patients? A literature review. Health Expect. 2015, 18, 643–652. [Google Scholar] [CrossRef]
- Igbaria, M.; Schiffman, S.J.; Wieckowski, T.J. The respective roles of perceived usefulness and perceived fun in the acceptance of microcomputer technology. Behav. Inf. Technol. 1994, 13, 349–361. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Ihm, J.; Lee, S.G. How Perceived Costs and Benefits of Initial Social Media Participation Affect Subsequent Community-Based Participation. Voluntas 2021, 32, 1320–1331. [Google Scholar] [CrossRef]
- Moon, J.W.; Kim, Y.G. Extending the TAM for a World-Wide-Web context. Inf. Manag. 2001, 38, 217–230. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Choi, J.Y. The adoption of virtual reality devices: The technology acceptance model integrating enjoyment, social interaction, and strength of the social ties. Telemat. Inform. 2019, 39, 37–48. [Google Scholar] [CrossRef]
- Hsu, C.L.; Chang, K.C.; Chen, M.C. The impact of website quality on customer satisfaction and purchase intention: Perceived playfulness and perceived flow as mediators. Inf. Syst. e-Bus. Manag. 2012, 10, 549–570. [Google Scholar] [CrossRef]
- Curras-Perez, R.; Ruiz-Mafe, C.; Sanz-Blas, S. Determinants of user behaviour and recommendation in social networks An integrative approach from the uses and gratifications perspective. Ind. Manag. Data Syst. 2014, 114, 1477–1498. [Google Scholar] [CrossRef]
- Wang, X. The motivations and uses of mainstream and social media during the COVID-19 pandemic in China: A structural equation modeling approach. Comput. Hum. Behav. Rep. 2021, 4, 100098. [Google Scholar] [CrossRef]
- Kumar, A.; Bezawada, R.; Rishika, R.; Janakiraman, R.; Kannan, P.K. From Social to Sale: The Effects of Firm-Generated Content in Social Media on Customer Behavior. J. Mark. 2016, 80, 7–25. [Google Scholar] [CrossRef]
- Dholakia, U.M.; Bagozzi, R.P.; Pearo, L.K. A social influence model of consumer participation in network- and small-group-based virtual communities. Int. J. Res. Mark. 2004, 21, 241–263. [Google Scholar] [CrossRef]
- Park, N.; Kee, K.F.; Valenzuela, S. Being Immersed in Social Networking Environment: Facebook Groups, Uses and Gratifications, and Social Outcomes. Cyberpsychol. Behav. 2009, 12, 729–733. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Struct. Equ. Modeling 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Schubring, S.; Lorscheid, I.; Meyer, M.; Ringle, C.M. The PLS agent: Predictive modeling with PLS-SEM and agent-based simulation. J. Bus. Res. 2016, 69, 4604–4612. [Google Scholar] [CrossRef]
- Wang, J.; Liu-Lastres, B.J.; Ritchie, B.W.; Mills, D.J. Travellers’ self-protections against health risks: An application of the full Protection Motivation Theory. Ann. Tour. Res. 2019, 78, 102743. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef]
- Cacchione, P.Z. World Health Organization Leads the 2021 to 2030-Decade of Healthy Ageing. Clin. Nurs. Res. 2022, 31, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Ogbonnaya, U.I. Adoption and Perceived Usefulness of Social Media by Pre-service Teachers in Nigeria. Int. J. Interact. Mob. Technol. 2019, 13, 52–67. [Google Scholar] [CrossRef]
- Khan, M.L. Social media engagement: What motivates user participation and consumption on YouTube? Comput. Hum. Behav. 2017, 66, 236–247. [Google Scholar] [CrossRef]
- Ko, H.J.; Cho, C.H.; Roberts, M.S. Internet uses and gratifications—A structural equation model of interactive advertising. J. Advert. 2005, 34, 57–70. [Google Scholar] [CrossRef]
- Benetoli, A.; Chen, T.F.; Aslani, P. Consumer Health-Related Activities on Social Media: Exploratory Study. J. Med. Internet Res. 2017, 19, e7656. [Google Scholar] [CrossRef]
- Quan-Haase, A.; Young, A.L. Uses and Gratifications of Social Media: A Comparison of Facebook and Instant Messaging. Bull. Sci. Technol. Soc. 2010, 30, 350–361. [Google Scholar] [CrossRef]
- Coto, M.; Lizano, F.; Mora, S.; Fuentes, J. Social Media and Elderly People: Research Trends. In Proceedings of the 9th International Conference on Social Computing and Social Media (SCSM) Held as Part of 19th International Conference on Human-Computer Interaction (HCI International), Vancouver, BC, Canada, 9–14 July 2017; pp. 65–81. [Google Scholar]
- Cole, J.; Watkins, C.; Kleine, D. Health Advice from Internet Discussion Forums: How Bad Is Dangerous? J. Med. Internet Res. 2016, 18, e5051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strekalova, Y.A. Health Risk Information Engagement and Amplification on Social Media: News About an Emerging Pandemic on Facebook. Health Educ. Behav. 2017, 44, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.L.; Fan, X.C.; Ji, R.R.; Jiang, Y. Perceived Community Support, Users’ Interactions, and Value Co-Creation in Online Health Community: The Moderating Effect of Social Exclusion. Int. J. Environ. Res. Public Health 2020, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Halmdienst, N.; Radhuber, M.; Winter-Ebmer, R. Attitudes of elderly Austrians towards new technologies: Communication and entertainment versus health and support use. Eur. J. Ageing 2019, 16, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.M.; Meadows, M.; Wong, D.N.; Xia, S.M. Understanding consumers’ social media engagement behaviour: An examination of the moderation effect of social media context. J. Bus. Res. 2021, 122, 835–846. [Google Scholar] [CrossRef]
- Wang, E.S.-T.; Lin, H.-C.; Liao, Y.-T. Effects of social capital of social networking site on social identity and continuous participant behavior. Online Inf. Rev. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
Constructs and Items | Reference |
---|---|
Protective Motivation (Prot) | [65] |
Prot.1 I hope to get the necessary health information on HRSM. | |
Prot.2 I am willing to learn health skills and health-related knowledge on HRSM. | |
Prot.3 I hope to get professional health advice through HRSM. | |
Social Motivation (Soci) | [84] |
Soci.1 I hope to meet and make people through HRSM. | |
Soci.2 I am willing to ask questions, reply and comment to participate in the interaction. | |
Soci.3 I want to get a sense of belonging. | |
Initial Participation (Init) | [59,85] |
Init.1 I searched and browsed the health information. | |
Init.2 I participated in interactions (for example, questions, comments, answer, and discussion). | |
Init.3 I use other functions such as like and share. | |
Perceived Usefulness (Usef) | [72,78] |
Usef.1 I think participating in HRSM can improve my health. | |
Usef.2 Participating in HRSM makes me feel relaxed and improves self-efficiency. | |
Usef.3 I think participating in HRSM help improve self-efficacy. | |
PerceivedEntertainment (Ente) | [86] |
Ente.1 By participating in HRSM, I feel fun. | |
Ente.2 By Participating in HRSM, I feel relieved and relaxed. | |
Ente.3 By participating in HRSM, I think I can pass time. | |
Continual Participation Intention (Cont) | [87] |
Cont.1 I am willing to continue to use the functions of HRSM. | |
Cont.2 I would like to spend considerable time in HRSM. | |
Cont.3 I am willing to continue to participate in HRSM-related activities. |
Measure | Category | N | Percent |
---|---|---|---|
Gender | Male | 183 | 52.6% |
Female | 165 | 47.4% | |
Age | 45–54 | 63 | 18.1% |
55–64 | 194 | 55.7% | |
Over 65 | 91 | 26.1% | |
Education | High School and below | 49 | 14.1% |
College | 104 | 29.9% | |
Undergraduate | 143 | 41.1% | |
Postgraduate | 52 | 14.9% |
Construct | CA | rho_A | CR | AVE |
---|---|---|---|---|
Cont | 0.949 | 0.949 | 0.967 | 0.907 |
Usef | 0.889 | 0.891 | 0.931 | 0.818 |
Ente | 0.915 | 0.917 | 0.946 | 0.855 |
Inti | 0.971 | 0.971 | 0.981 | 0.945 |
Prot | 0.970 | 0.974 | 0.981 | 0.944 |
Soci | 0.901 | 0.907 | 0.938 | 0.834 |
Construct | Cont | Usef | Ente | Init | Prot | Soci |
---|---|---|---|---|---|---|
Cont | 0.952 | |||||
Usef | 0.861 | 0.904 | ||||
Ente | 0.554 | 0.553 | 0.924 | |||
Inti | −0.028 | 0.221 | 0.218 | 0.972 | ||
Prot | −0.599 | −0.366 | −0.075 | 0.495 | 0.972 | |
Soci | −0.006 | 0.068 | 0.269 | 0.264 | 0.122 | 0.913 |
Construct | Cont | Usef | Ente | Init | Prot | Soci |
---|---|---|---|---|---|---|
Cont.1 | 0.954 | 0.830 | 0.576 | −0.012 | −0.535 | 0.020 |
Cont.2 | 0.944 | 0.804 | 0.506 | −0.036 | −0.574 | −0.013 |
Cont.3 | 0.958 | 0.824 | 0.500 | −0.031 | −0.603 | −0.025 |
Usef.1 | 0.747 | 0.887 | 0.500 | 0.234 | −0.313 | 0.047 |
Usef.2 | 0.828 | 0.928 | 0.542 | 0.186 | −0.360 | 0.043 |
Usef.3 | 0.757 | 0.898 | 0.456 | 0.180 | −0.320 | 0.097 |
Ente.1 | 0.471 | 0.499 | 0.907 | 0.227 | −0.038 | 0.282 |
Ente.2 | 0.543 | 0.517 | 0.934 | 0.190 | −0.097 | 0.244 |
Ente.3 | 0.520 | 0.517 | 0.931 | 0.190 | −0.071 | 0.222 |
Init.1 | −0.023 | 0.209 | 0.194 | 0.970 | 0.470 | 0.256 |
Init.2 | −0.038 | 0.214 | 0.202 | 0.975 | 0.490 | 0.263 |
Init.3 | −0.020 | 0.220 | 0.239 | 0.972 | 0.483 | 0.251 |
Prot.1 | −0.614 | −0.384 | −0.076 | 0.510 | 0.972 | 0.120 |
Prot.2 | −0.575 | −0.355 | −0.073 | 0.473 | 0.977 | 0.098 |
Prot.3 | −0.553 | −0.326 | −0.070 | 0.456 | 0.966 | 0.138 |
Soci.1 | 0.006 | 0.082 | 0.256 | 0.261 | 0.111 | 0.913 |
Soci.2 | −0.039 | 0.017 | 0.230 | 0.219 | 0.119 | 0.908 |
Soci.3 | 0.014 | 0.082 | 0.248 | 0.241 | 0.105 | 0.919 |
T Statistics (|O/STDEV|) | p Values | |
---|---|---|
Usef → Cont | 31.971 | 0.000 |
Ente → Cont | 2.813 | 0.005 |
Inti → Usef | 4.905 | 0.000 |
Inti →Ente | 2.733 | 0.006 |
Prot → Inti | 9.031 | 0.000 |
Soci → Inti | 3.395 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Li, D.; Xu, Q.; Shao, X. Motivational Influences Affecting Middle-Aged and Elderly Users’ Participation Intention in Health-Related Social Media. Int. J. Environ. Res. Public Health 2022, 19, 11240. https://doi.org/10.3390/ijerph191811240
Cao C, Li D, Xu Q, Shao X. Motivational Influences Affecting Middle-Aged and Elderly Users’ Participation Intention in Health-Related Social Media. International Journal of Environmental Research and Public Health. 2022; 19(18):11240. https://doi.org/10.3390/ijerph191811240
Chicago/Turabian StyleCao, Cong, Dan Li, Qianwen Xu, and Xiuyan Shao. 2022. "Motivational Influences Affecting Middle-Aged and Elderly Users’ Participation Intention in Health-Related Social Media" International Journal of Environmental Research and Public Health 19, no. 18: 11240. https://doi.org/10.3390/ijerph191811240
APA StyleCao, C., Li, D., Xu, Q., & Shao, X. (2022). Motivational Influences Affecting Middle-Aged and Elderly Users’ Participation Intention in Health-Related Social Media. International Journal of Environmental Research and Public Health, 19(18), 11240. https://doi.org/10.3390/ijerph191811240