Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Approval
2.3. Measurements
- 20 m PACER test (measures basic endurance),
- Paced curl-up test (measures muscular strength and endurance, especially that of the abdominal muscles),
- Trunk-lift test (measures the strength and elasticity of the spinal erector muscles),
- Handgrip strength test (measures the maximum strength of the handgrip),
- Paced push-up test (measures in a complex way the muscular strength of the upper part of the trunk, including the shoulder girdle and the arms, the back, the abdomen, and the lateral abdominal muscles),
- Standing long jump test (measures the dynamic muscle strength of the legs).
2.4. Statistical Analyses
3. Results
Comparison of the Data Obtained in the School against the National Data
4. Discussion
5. Conclusions
6. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, H.; Jing, Y.; Chen, J.; Wu, Y.; Wan, Y. Recent Trends in Sedentary Time: A Systematic Literature Review. Healthcare 2021, 9, 969. [Google Scholar] [CrossRef] [PubMed]
- Aldenaini, N.; Alqahtani, F.; Orji, R.; Sampalli, S. Trends in Persuasive Technologies for Physical Activity and Sedentary Behavior: A Systematic Review. Front. Artif. Intell. 2020, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.; Laddu, D.R.; Phillips, S.A.; Lavie, C.J.; Arena, R. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog. Cardiovasc. Dis. 2021, 64, 108. [Google Scholar] [CrossRef] [PubMed]
- Merriam-Webster. “Social Distancing”. 2020. Available online: https://www.merriam-webster.com/dictionary/social%20distancing (accessed on 2 December 2021).
- Miller, K. Here’s What a Shelter in Place Order Means during the Coronavirus Pandemic. 2020. Available online: https://www.prevention.com/health/a31738348/shelter-in-place-order-coronavirus/ (accessed on 2 December 2021).
- World Health Organization. Physical Inactivity: A global Public Health Problem; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Fennell, C.; Barkley, J.E.; Lepp, A. The relationship between cell phone use, physical activity, and sedentary behavior in adults aged 18–80. Comput. Hum. Behav. 2019, 90, 53–59. [Google Scholar] [CrossRef]
- Dixit, S.; Nandakumar, G. Promoting healthy lifestyles using information technology during the COVID-19 pandemic. Rev. Cardiovasc. Med. 2021, 22, 115–125. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Olds, T.S. Secular Changes in Pediatric Aerobic Fitness Test Performance: The Global Picture. Med. Sport Sci. 2007, 50, 46–66. [Google Scholar]
- Katzmarzyk, P.T.; Malina, R.M.; Song, T.; Bouchard, C. Physical activity and health-related fitness in youth: A multivariate analysis. Med. Sci. Sports Exerc. 1998, 30, 709–714. [Google Scholar] [CrossRef]
- Hussey, J.; Bell, C.; Bennett, K.; O’dwyer, J.; Gormley, J. Relationship between the intensity of physical activity, inactivity, cardiorespiratory fitness and body composition in 7–10-year-old Dublin children. Br. J. Sports Med. 2007, 41, 311–316. [Google Scholar] [CrossRef]
- Sola, K.; Brekke, N.; Brekke, M. An activity-based intervention for obese and physically inactive children organized in primary care: Feasibility and impact on fitness and BMI: A one-year follow-up study. Scand. J. Prim. Health Care 2010, 28, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Arnaoutis, G.; Georgoulis, M.; Psarra, G.; Milkonidou, A.; Panagiotakos, D.B.; Kyriakou, D.; Bellou, E.; Tambalis, K.D.; Sidossis, L.S. Association of Anthropometric and Lifestyle Parameters with Fitness Levels in Greek Schoolchildren: Results from the EYZHN Program. Front. Nutr. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, G.L.D.M.; Matsudo, V.K.R.; Fisberg, M. Changes in physical fitness and nutritional status of schoolchildren in a period of 30 years (1980–2010). Rev. Paul. Pediatr. 2015, 33, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; Espana-Romero, V.; Jimenez-Pavon, D.; Vicente-Rodriguez, G.; Moreno, L.A.; Manios, Y.; Beghin, L.; Ottevaere, C.; et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2009, 45, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleland, V.J.; Ball, K.; Magnussen, C.; Dwyer, T.; Venn, A. Socioeconomic Position and the Tracking of Physical Activity and Cardiorespiratory Fitness From Childhood to Adulthood. Am. J. Epidemiol. 2009, 170, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Charlton, R.; Gravenor, M.B.; Rees, A.; Knox, G.; Hill, R.; Rahman, M.A.; Jones, K.; Christian, D.; Baker, J.S.; Stratton, G.; et al. Factors associated with low fitness in adolescents–A mixed methods study. BMC Public Health 2014, 14, 764. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Laoues-Czimbalmos, N.; Müller, A. The role of socio-economic background variables in NETFIT measurement. Spec. Treat. 2018, 4, 33–44. [Google Scholar]
- Jiménez-Pavón, D.; Ortega, F.B.; Ruiz, J.R.; Chillón, P.; Castillo, R.; Artero, E.G.; Martinez-Gómez, D.; Vicente-Rodriguez, G.; Rey-López, J.P.; Gracia, L.A. Influence of socioeconomic factors on fitness and fatness in Spanish adolescents: The AVENA study. Int. J. Pediatric Obes. 2010, 5, 467–473. [Google Scholar] [CrossRef]
- Golle, K.; Granacher, U.; Hoffmann, M.; Wick, D.; Muehlbauer, T. Effect of living area and sports club participation on physical fitness in children: A 4 year longitudinal study. BMC Public Health 2014, 14, 499. [Google Scholar] [CrossRef] [Green Version]
- Welk, G.J.; Saint-Maurice, P.F.; Csányi, T. Health-Related Physical Fitness in Hungarian Youth: Age, Sex, and Regional Profiles. Res. Q. Exerc. Sport 2015, 86, S45–S57. [Google Scholar] [CrossRef]
- Shephard, R.J. Fitness of Canadian Children: Range from Traditional Inuit to Sedentary City Dwellers, and Assessment of Secular Changes. Pediatr. Fit. 2007, 50, 91–103. [Google Scholar] [CrossRef]
- Huotari, P.R.T.; Nupponen, H.; Laakso, L.; Kujala, U.M. Secular trends in aerobic fitness performance in 13-18-year-old adolescents from 1976 to 2001. Br. J. Sports Med. 2009, 44, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Welsman, J.R. Aerobic fitness: What are we measuring? Pediatr. Fit. 2007, 50, 5–25. [Google Scholar]
- Arboix-Alió, J.; Buscà, B.; Sebastiani, E.M.; Aguilera-Castells, J.; Marcaida, S.; Garcia Eroles, L.; Sánchez López, M.J. Temporal trend of cardiorespiratory endurance in urban Catalan high school students over a 20 year period. PeerJ 2020, 8, e10365. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2017, 53, 478–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mészáros, J.; Szabó, T.; Mohácsi, J.; Pheng, L.C.; Tatár, A. The secular trend of physical abilities. Hung. Sports Sci. Rev. 2002, 3, 4–7. [Google Scholar]
- Erdei, G.; Bakacs, M.; Illés, É.; Nagy, B.; Kaposvári, C.; Mák, E.; Nagy, E.S.; Cserháti, Z.; Kovács, V.A. Substantial variation across geographic regions in the obesity prevalence among 6–8 years old Hungarian children (COSI Hungary 2016). BMC Public Health 2018, 18, 611. [Google Scholar] [CrossRef] [Green Version]
- Kaj, M.; Csányi, T.; Karsai, I.; Marton, O.; Csányi, T. A Manual for the Application of the National Unified Student Fitness Test/NETFIT®; Hungarian School Sport Federation: Budapest, Hungary, 2014; Volume 216, ISBN 978-963-08-8654-3. [Google Scholar]
- Kaj, M. Cross-Validity Study of Methods for Estimating Maximal Oxygen Uptake Capacity in Hungarian School-Age Children. Ph.D. Thesis, University of Pécs, Pécs, Hungary, 2018. [Google Scholar]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2016; Available online: https://www.r-project.org/ (accessed on 10 December 2021)ISBN 3-900051-07-0.
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- SISA Simple Interactive Statistical Analysis. Available online: https://www.quantitativeskills.com/sisa/statistics/t-test.htm (accessed on 10 December 2021).
- Rohlf, F.J.; Corti, M. Use of Two-Block Partial Least-Squares to Study Covariation in Shape. Syst. Biol. 2000, 49, 740–753. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, N.R.; De Veaux, R.D.; Velleman, P.F. Nonparametric Methods (i4cp). In Business Statistics Global Edition; Pearson: New York, NY, USA, 2018; Chapter 22. [Google Scholar]
- Ketskeméty, L.; Izsó, L.; Könyves Tóth, E. Introduction to IBM SPSS Statistics; Artéria Studio LLC.: Budapest, Hungary, 2011; pp. 1–576. [Google Scholar]
- McClave, J.; Sincich, T. Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses. In Statistics, Global Edition, 13th ed.; Pearson: New York, NY, USA, 2018; Chapter 9. [Google Scholar]
- SPSS. SPSS Base 8.0. Applications Guide; SPPS Inc.: Chicago, IL, USA, 1998. [Google Scholar]
- Tokmakidis, S.P.; Kasambalis, A.; Christodoulos, A.D. Fitness levels of Greek primary schoolchildren in relationship to overweight and obesity. Eur. J. Pediatr. 2006, 165, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.; Panagiotakos, D.; Arnaoutis, G.; Sidossis, L. Endurance, explosive power, and muscle strength in relation to body mass index and physical fitness in Greek children aged 7–10 years. Pediatric Exerc. Sci. 2013, 25, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, F.; Marcovecchio, M.L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 2008, 159 (Suppl. 1), S67–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockray, S.; Susman, E.J.; Dorn, L.D. Depression, cortisol reactivity, and obesity in childhood and adolescence. J. Adolesc. Health 2009, 45, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiess, W.; Galler, A.; Reich, A.; Müller, G.; Kapellen, T.; Deutscher, J.; Raile, K.; Kratzsch, J. Clinical aspects of obesity in childhood and adolescence. Obes. Rev. 2001, 2, 29–36. [Google Scholar] [CrossRef]
- Simmonds, M.; Burch, J.; Llewellyn, A.; Griffiths, C.; Yang, H.; Owen, C.; Duffy, S.; Woolacott, N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: A systematic review and meta-analysis. Health Technol. Assess. 2015, 19, 1–336. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, L.A.; Arena, R.; Beckie, T.M.; Brubaker, P.H.; Church, T.S.; Forman, D.E.; Franklin, B.A.; Gulati, M.; Lavie, C.J.; Myers, J. The importance of cardiorespiratory fitness in the United States: The need for a national registry: A policy statement from the American Heart Association. Circulation 2013, 127, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The Health Benefits of Muscular Fitness for Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- Luke, A.; Philpott, J.; Brett, K.; Cruz, L.; Lun, V.; Prasad, N.; Zetaruk, M. Physical inactivity in children and adolescents: CASM AdHoc Committee on Children’s Fitness. Clin. J. Sport Med. 2004, 14, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Högström, G.; Nordström, A.; Eriksson, M.; Nordström, P. Risk factors assessed in adolescence and the later risk of stroke in men: A 33-year follow-up study. Cerebrovasc. Dis. 2015, 39, 63–71. [Google Scholar] [CrossRef]
- Wilson, B.; Barnett, L.M. Physical activity interventions to improve the health of children and adolescents in out of home care–A systematic review of the literature. Child. Youth Serv. Rev. 2020, 110, 104765. [Google Scholar] [CrossRef]
- Pinto, J.B.D.C.; Cruz, J.; De Pinho, T.M.P.; Marques, A.S.P.D.D. Health-related physical fitness of children and adolescents in Portugal. Child. Youth Serv. Rev. 2020, 117, 105279. [Google Scholar] [CrossRef]
- Bába, B.; Ráthonyi, G.; Müller, A.; Ráthonyi-Odor, K.; Balogh, P.; Ádány, R.; Bács, Z. Physical Activity of the Population of the Most Obese Country in Europe, Hungary. Front. Public Health 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
Age Group | National Data | School Data | t-Statistics | |||
---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |||
Paced push-ups (number) | 14 | 17.4 | 9.7 | 26.5 | 10.1 | 5.49 ** |
15 | 19.0 | 9.5 | 30.6 | 19.1 | 9.22 ** | |
16 | 20.2 | 9.8 | 29.3 | 12.8 | 9.49 ** | |
17 | 20.9 | 10.1 | 27.2 | 13.9 | 5.56 ** | |
18+ | 21.3 | 10.3 | 36.7 | 20.0 | 7.27 ** | |
VO2 max (mL/kg/min) | 15 | 46.2 | 8.1 | 36.4 | 19.7 | −7.23 ** |
16 | 45.5 | 8.2 | 40.4 | 21.1 | −2.96 ** | |
17 | 44.5 | 8.2 | 35.9 | 23.7 | −4.24 ** | |
Paced curl-ups (number) | 15 | 59.5 | 23.5 | 70.0 | 18.6 | 8.78 ** |
16 | 59.7 | 23.5 | 67.0 | 20.3 | 4.97 ** | |
17 | 59.8 | 23.4 | 66.6 | 22.7 | 3.76 ** | |
18+ | 58.7 | 23.7 | 64.5 | 23.0 | 2.38 ** | |
Handgrip strength (kg) | 14 | 35.5 | 9.1 | 39.9 | 10.0 | 2.83 ** |
17 | 45.9 | 9.5 | 40.4 | 14.2 | −4.94 ** | |
Standing long jumps (cm) | 15 | 194.0 | 33.0 | 184.4 | 46.5 | −3.18 ** |
16 | 200.3 | 32.6 | 189.0 | 41.2 | −3.70 ** | |
17 | 204.0 | 33.3 | 189.1 | 45.5 | −4.26 ** |
Matrix | Variable | Dimensions | |
---|---|---|---|
1 (Thinner) | 2 (Taller) | ||
F1 (Block1) | body height (BH) | −0.073 | 0.806 |
body weight (BW) | −0.928 | 0.162 | |
% of body fat (BFP) | −0.336 | −0.570 | |
F2 (Block2) | progressive aerobic cardiorespiratory endurance run (PACER) | 0.843 | −0.074 |
trunk-lift (TL) | 0.016 | −0.058 | |
standing broad jump (SBJ) | 0.048 | 0.751 | |
handgrip (HG) | −0.374 | 0.422 | |
push-ups (PU) | 0.276 | 0.250 | |
back-saver sit-and-reach (BSR) | 0.268 | 0.433 | |
Correlation | 0.298 * | 0.176 * | |
Variance explained | 78.9% | 20.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, A.; Nagy, Z.; Kovács, S.; Szőke, S.; Bendíková, E.; Ráthonyi, G.; Ráthonyi-Ódor, K.; Szabados, G.; Gabnai, Z.; Bába, É.B. Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles. Int. J. Environ. Res. Public Health 2022, 19, 8765. https://doi.org/10.3390/ijerph19148765
Müller A, Nagy Z, Kovács S, Szőke S, Bendíková E, Ráthonyi G, Ráthonyi-Ódor K, Szabados G, Gabnai Z, Bába ÉB. Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles. International Journal of Environmental Research and Public Health. 2022; 19(14):8765. https://doi.org/10.3390/ijerph19148765
Chicago/Turabian StyleMüller, Anetta, Zsuzsa Nagy, Sándor Kovács, Szilvia Szőke, Elena Bendíková, Gergely Ráthonyi, Kinga Ráthonyi-Ódor, György Szabados, Zoltán Gabnai, and Éva Bácsné Bába. 2022. "Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles" International Journal of Environmental Research and Public Health 19, no. 14: 8765. https://doi.org/10.3390/ijerph19148765
APA StyleMüller, A., Nagy, Z., Kovács, S., Szőke, S., Bendíková, E., Ráthonyi, G., Ráthonyi-Ódor, K., Szabados, G., Gabnai, Z., & Bába, É. B. (2022). Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles. International Journal of Environmental Research and Public Health, 19(14), 8765. https://doi.org/10.3390/ijerph19148765