Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Waste Water Sample Collection
Wastewater Sample Processing and RNA Concentration
2.3. RNA Extraction
2.4. Master Mix and RT-PCR Test
2.5. RT-PCR Signal Detection
2.6. Quality Control and Interpretation of the PCR Result
3. Results
3.1. Optimization of SARS-CoV-2 Wastewater RT-PCR Testing
3.2. Stored and Fresh Wastewater Processing Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAWSA | Addis Ababa Water and Sewage Authority |
ABI 7500 | Applied Biosystems Real-Time PCR Instrument 7500 |
BOD | Biochemical Oxygen Demand |
BSL | Bio-Safety Level |
CIHLMU | Center for International Health at Ludwig-Maximilians-Universität |
COVID-19 | Corona Virus Disease 2019 |
FAM | Fluorescein AMides |
ICR | Internal Control Reaction |
LMIC | Low- and Middle-Income-Country |
MBR | Membrane Bio-Reactors |
NAHDIC | National Animal Health Diagnostic and Investigation Center |
NTC | No Template Control |
RT-PCR | Real-Time Reverse-Transcription Polymerase Chain Reaction |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Corona Virus 2 |
SPHMMC | St. Paul’s Hospital Millennium Medical College |
VIC | Victoria |
Appendix A. Detail Description of the Wastewater SARS-CoV-2 RNA RT-PCR Tests Performed to Adapt the Technology to the Local Context
References
- Aliabadi, H.A.M.; Eivazzadeh-Keihan, R.; Parikhani, A.B.; Mehraban, S.F.; Maleki, A.; Fereshteh, S.; Bazaz, M.; Zolriasatein, A.; Bozorgnia, B.; Rahmati, S.; et al. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm 2022, 3, e115. [Google Scholar] [CrossRef]
- Mangindaan, D.; Adib, A.; Febrianta, H.; Hutabarat, D.J.C. Systematic Literature Review and Bibliometric Study of Waste Management in Indonesia in the COVID-19 Pandemic Era. Sustainability 2022, 14, 2556. [Google Scholar] [CrossRef]
- COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2022. Available online: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 29 June 2022).
- Coronavirus (COVID-19) Testing. 2020. Available online: https://ourworldindata.org/coronavirus-testing#world-map-total#tests-performed-relative-to-the-size-of-population (accessed on 29 June 2022).
- Ethiopian Federal Health Minster COVID-19 Daily Report. 2022. Available online: https://covid19.who.int/region/afro/country/et (accessed on 29 June 2022).
- Gudina, E.K.; Ali, S.; Girma, E.; Gize, A.; Tegene, B.; Hundie, G.B.; Sime, W.T.; Ambachew, R.; Gebreyohanns, A.; Bekele, M.; et al. Sero epidemiology and model-based prediction of SARS-CoV-2 in Ethiopia: Longitudinal cohort study among front-line hospital workers and communities. Lancet Glob. Health 2021, 9, e1517–e1527. [Google Scholar] [CrossRef]
- Ethiopian Health Data COVID-19 Ethiopian Case Tracker Dashboard. Available online: https://ethiopianhealthdata.org/dashboard/covid19-ethiopia (accessed on 4 March 2022).
- World Health Organization Advice for the Public to Prevent COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 9 March 2022).
- Rubio-Acero, R.; Beyerl, J.; Muenchhoff, M.; Roth, M.S.; Castelletti, N.; Paunovic, I.; Radon, K.; Springer, B.; Nagel, C.; Boehm, B.; et al. Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich—One year of experience. Sci. Total Environ. 2021, 797, 149031. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Ferraro, G.B.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K.K.; Wilkinson, R.; Wiedenheft, B. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Rep. Med. 2020, 1, 100098. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Sherchan, S.P.; Shahin, S.; Ward, L.M.; Tandukar, S.; Aw, T.G.; Schmitz, B.; Ahmed, W.; Kitajima, M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020, 743, 140621. [Google Scholar] [CrossRef] [PubMed]
- Street, R.; Mathee, A.; Mangwana, N.; Dias, S.; Sharma, J.R.; Ramharack, P.; Louw, J.; Reddy, T.; Brocker, L.; Surujlal-Naicker, S.; et al. Spatial and Temporal Trends of SARS-CoV-2 RNA from Wastewater Treatment Plants over 6 Weeks in Cape Town, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 12085. [Google Scholar] [CrossRef]
- Wurtzer, S.; Marechal, V.; Mouchel, J.M.; Moulin, L. Time Course Quantitative Detection of SARS-CoV-2 in Parisian Wastewaters Correlates with COVID-19 Confirmed Cases. medRxiv 2020, 4, 10–13. [Google Scholar] [CrossRef]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xiao, A.; Zhang, J.; Gu, X.; Lee, W.L.; Kauffman, K.; Hanage, W.P.; Matus, M.; Ghaeli, N.; Endo, N.; et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Hovi, T.; Shulman, L.M.; Van Der Avoort, H.; Deshpande, J.; Roivainen, M.; De Gourville, E.M. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol. Infect. 2012, 140, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability 2022, 14, 4746. [Google Scholar] [CrossRef]
- Shammi, M.; Rahman, M.; Ali, L.; Khan, A.S.M.; Siddique, A.B.; Ashadudzaman; Doza, B.; Alam, G.M.; Tareq, S.M. Application of short and rapid strategic environmental assessment (SEA) for biomedical waste management in Bangladesh. Case Stud. Chem. Environ. Eng. 2021, 5, 100177. [Google Scholar] [CrossRef]
- Kothari, R.; Sahab, S.; Singh, H.M.; Singh, R.P.; Singh, B.; Pathania, D.; Singh, A.; Yadav, S.; Allen, T.; Singh, S.; et al. COVID-19 and waste management in Indian scenario: Challenges and possible solutions. Environ. Sci. Pollut. Res. 2021, 28, 52702–52723. [Google Scholar] [CrossRef]
- Barasarathi, J.; Agamuthu, P. Clinical waste management under COVID-19 scenario in Malaysia. Waste Manag. Res. 2021, 39 (Suppl. 1), 18–26. [Google Scholar]
- World Population Review, Addis Ababa Population 2022. Available online: https://worldpopulationreview.com/world-cities/addis-ababa-population (accessed on 2 March 2022).
- Cirolia, L.R.; Hailu, T.; King, J.; Cruz, N.F.; Beall, J. Infrastructure governance in the post-networked city: State-led, high-tech sanitation in Addis Ababa’s condominium housing. EPC Politics Space 2021, 39, 1606–1624. [Google Scholar] [CrossRef]
- Mahlet, M. Performance Evaluation and Model-Based Optimization of Membrane Bioreactors: The Case of Addis Ababa Package Treatment Plant. AAU M.Sc Thesis. 2017. Available online: http://213.55.95.56/bitstream/handle/123456789/24825/Mahlet%20Melaku.pdf?sequence=1&isAllowed=y (accessed on 6 March 2022).
- Belaineh, R. Study on LSD Vaccine Efficacy Using Kenyan SGPV and Neethling (Poster). Available online: http://hpc.ilri.cgiar.org/beca/training/IMBB/posters/alemu.pdf (accessed on 2 March 2022).
- QIAamp® Viral RNA Mini Handbook July 2022. Available online: https://www.qiagen.com/us/resources/download.aspx?id=c80685c0-4103-49ea-aa72-8989420e3018&lang=en (accessed on 30 November 2021).
- AllPrep® PowerViral® DNA/RNA Kit Handbook For the Isolation of Viral or Bacterial Total Nucleic Acids from Waste Water and Stool Samples. 2018. Available online: https://www.qiagen.com/cn/resources/download.aspx?id=41a1323f-581c-4e65-8d66-2491be4c625e&lang=en (accessed on 28 December 2021).
- Real-Time Fluorescent RT-PCR Kit for Detecting SARS-CoV-2, BGI Genomics Co. Ltd. (“BGI”). 2021. Available online: https://www.bgi.com/wp-content/uploads/sites/2/2021/04/EUA200034-S003.Instructions-for-Use.03292021.pdf (accessed on 30 November 2021).
- RIDA®GENE SARS-CoV-2, r-Biopharm. 2020. Available online: https://clinical.r-biopharm.com/wp-content/uploads/2020/06/pg6815_ridagene_sars-cov-2_2020-07-27_en_final.pdf (accessed on 28 December 2021).
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Simpson, S.L.; Bertsch, P.M.; Bibby, K.; Bivins, A.; Blackall, L.L.; Bofill-Mas, S.; Bosch, A.; Brandão, J.; Choi, P.M.; et al. Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Sci. Total Environ. 2021, 805, 149877. [Google Scholar] [CrossRef]
- Hong, P.-Y.; Rachmadi, A.T.; Mantilla-Calderon, D.; Alkahtani, M.; Bashawri, Y.M.; Al Qarni, H.; O’Reilly, K.M.; Zhou, J. Estimating the minimum number of SARS-CoV-2 infected cases needed to detect viral RNA in wastewater: To what extent of the outbreak can surveillance of wastewater tell us? Environ. Res. 2021, 195, 110748. [Google Scholar] [CrossRef]
- Takeda, T.; Kitajima, M.; Huong, N.T.T.; Setiyawan, A.S.; Setiadi, T.; Hung, D.T.; Haramoto, E. Institutionalising wastewater surveillance systems to minimise the impact of COVID-19: Cases of Indonesia, Japan and Viet Nam. Water Sci. Technol. 2020, 83, 251–256. [Google Scholar] [CrossRef]
- Yigezu, A.; Zewdie, S.A.; Mirkuzie, A.H.; Abera, A.; Hailu, A.; Agachew, M.; Memirie, S.T. Cost-analysis of COVID-19 sample collection, diagnosis, and contact tracing in low resource setting: The case of Addis Ababa, Ethiopia. PLoS ONE 2022, 17, e0269458. [Google Scholar] [CrossRef]
QA Metrics | VIC | FAM | Interpretation |
---|---|---|---|
BGI-RT-PCR Kit for Detecting SARS-CoV-2 | |||
NTC/Blank control | Ct value is 0 or no data available | Ct vale is 0 or no data available | Pass |
Standard | S shape amplification curve with Ct ≤ 32 | S shape amplification curve with Ct ≤ 32 | |
Positive sample | S shape amplification curve with Ct ≤ 32 | S shape amplification curve with Ct ≤ 38 | Valid positive |
Negative sample | S shape amplification curve with Ct ≤ 32 | Amplification curve not S-shaped with Ct of 0 or No data available | Valid negative |
Sample | S shape amplification curve with Ct ≤ 32 | S-shape standard curve with Ct > 38 | Invalid/inhibited |
Sample | Amplification curve with Ct > 32 | Amplification curve not S shape with Ct value as 0 or no data available | Invalid/inhibited |
RIDA GENE SARS-CoV-2 RUO Test | |||
NTC | Amplification signal with Ct > 20 | No Amplification signal with Ct 0 | Pass |
Standard/Positive control | Amplification signal may or may not be detected. | Amplification signal with Ct range between 25–31 | Pass |
Positive sample | Amplification signal may or may not be detected. | Amplification signal with Ct < 42 | SARS-CoV-2 detectable |
Negative sample | Amplification signal with Ct > 20 | No amplification signal or Ct > 42 | Target gene not detectable |
Negative sample | No amplification signal | No amplification signal | Invalid |
Trials | Sample | FAM Detector (Ct) | VIC Detector Ct) | PCR Testing | Interpretation |
---|---|---|---|---|---|
I | The 12 stored wastewater samples | Undetected | Undetected | * RIDA | Fail |
No template control | Undetected | Undetected | |||
Positive control | 30 | Undetected | |||
The 12 stored wastewater samples | Undetected | Undetected | * BGI | Fail | |
No template control | Undetected | Undetected | |||
Positive control | 29 | Undetected | |||
II | The 12 stored wastewater samples | Undetected | Undetected | * RIDA (Repeat) | Fail |
No template control | Undetected | Undetected | |||
Positive control | 29 | Undetected | |||
III | The 5 stored wastewater samples | Undetected | Undetected | * RIDA Master mix | Fail and invalid test result |
Known PCR negative swab sample | Undetected | Undetected | |||
Known PCR positive swab sample | 29 | Undetected | |||
Known PCR positive swab eluate I | 25 | Undetected | |||
Known PCR positive swab eluate II | 24 | Undetected | |||
Known PCR positive swab eluate III | 36 | Undetected | |||
No template control | Undetected | Undetected | |||
Positive control | 31 | Undetected | |||
IV | The 5 stored wastewater samples | Undetected | Undetected | * BGI master mix | Pass and valid test result for eluate II and III |
Known PCR negative swab sample | Undetected | Undetected | |||
Known PCR positive swab sample | 33 | 31 | |||
Known PCR positive eluate I | 29 | 37 | |||
Known PCR positive eluate II | 27 | 32 | |||
Known PCR positive eluate III | 39 | 28 | |||
No template control | Undetected | Undetected | |||
Positive control | 31 | 33 | |||
V | Stored wastewater sample I | Undetected | 30 | ** RIDA | Pass and valid test result |
Stored wastewater sample II | Undetected | 31 | |||
Stored wastewater sample III | Undetected | 31 | |||
Stored wastewater sample IV | Undetected | 32 | |||
Stored wastewater sample V | Undetected | 30 | |||
Stored wastewater sample VI | Undetected | 30 | |||
Stored wastewater sample VII | 44.7 | 31 | |||
Stored wastewater sample VIII | Undetected | 31 | |||
Known PCR positive Patient swab sample | 29.85 | 31 | |||
Known PCR negative patient swab sample | Undetected | 34 | |||
No template control | Undetected | 30 | |||
Positive control | 28 | 28 | |||
VI | 1:10 diluted + ve control | 38.12 | Undetected | *** RIDA | Fail and invalid test result |
The 100 μL each wastewater + known PCR positive | Undetected | Undetected | |||
The 7 wastewater samples | Undetected | Undetected | |||
Known PCR positive swab | Undetected | Undetected | |||
No template control | Undetected | Undetected | |||
Positive control | 30 | Undetected |
Site of Collection | 25 December 2021 | 2 January 2022 | 9 January 2022 | |||
---|---|---|---|---|---|---|
Inlet Ct Value | Aeration | Inlet Ct Value | Aeration | Inlet Ct Value | Aeration | |
Arabsa-01 | 32.59 | NA | 29 | NA | 32 | NA |
Arabsa-02 | Undetected | Undetected | Undetected | Undetected | 38 | Undetected |
Arabsa-03 | 32 | Undetected | 31 | Undetected | 32 | Undetected |
Tulu Dimtu-01 | 38 | Undetected | 31 | Undetected | 39 | Undetected |
Tulu Dimtu-02 | Undetected | Undetected | 34 | Undetected | 32 | Undetected |
Tulu Dimtu-03 | 37 | Undetected | 30 | Undetected | 35 | Undetected |
Oromia-01 | 32 | Undetected | 32 | Undetected | 35 | Undetected |
Oromia-02 | 34 | Undetected | 34 | Undetected | 34 | Undetected |
Bulbula | 32 | Undetected | 32 | Undetected | 35 | Undetected |
Tap water | Undetected | Undetected | Undetected | Undetected | Undetected | Undetected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Gudina, E.K.; Gize, A.; Aliy, A.; Adankie, B.T.; Tsegaye, W.; Hundie, G.B.; Muleta, M.B.; Chibssa, T.R.; Belaineh, R.; et al. Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context. Int. J. Environ. Res. Public Health 2022, 19, 8515. https://doi.org/10.3390/ijerph19148515
Ali S, Gudina EK, Gize A, Aliy A, Adankie BT, Tsegaye W, Hundie GB, Muleta MB, Chibssa TR, Belaineh R, et al. Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context. International Journal of Environmental Research and Public Health. 2022; 19(14):8515. https://doi.org/10.3390/ijerph19148515
Chicago/Turabian StyleAli, Solomon, Esayas Kebede Gudina, Addisu Gize, Abde Aliy, Birhanemeskel Tegene Adankie, Wondwossen Tsegaye, Gadissa Bedada Hundie, Mahteme Bekele Muleta, Tesfaye Rufael Chibssa, Rediet Belaineh, and et al. 2022. "Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context" International Journal of Environmental Research and Public Health 19, no. 14: 8515. https://doi.org/10.3390/ijerph19148515
APA StyleAli, S., Gudina, E. K., Gize, A., Aliy, A., Adankie, B. T., Tsegaye, W., Hundie, G. B., Muleta, M. B., Chibssa, T. R., Belaineh, R., Negessu, D., Shegu, D., Froeschl, G., & Wieser, A. (2022). Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context. International Journal of Environmental Research and Public Health, 19(14), 8515. https://doi.org/10.3390/ijerph19148515