Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particulate Matter and Meteorological Measurements
2.2. Data Processing and Model Training
2.3. Meteorological Normalization (De-Weathering)
3. Results
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Chen, G.; Liu, F.; Mao, S.; Liu, Y.; Hou, Y.; Lu, Y.; Liu, S.; Wang, C.; Xiang, H.; et al. Associations of long-term exposure to ambient PM1 with hypertension and blood pressure in rural Chinese population: The Henan rural cohort study. Environ. Int. 2019, 128, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Guo, Y.M.; Bloom, M.S.; Dharmagee, S.C.; Morawska, L.; Heinrich, J.; Jalaludin, B.; Markevychd, I.; Knibbsf, L.D.; Lin, S.; et al. Is PM1 similar to PM2.5? A new insight into the association of PM1 and PM2.5 with children’s lung function. Environ. Int. 2020, 145, 106092. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, I.; Sever Štrukil, Z.; Godec, R.; Bešlić, I.; Davila, S.; Lovrić, M.; Pehnec, G. Pollution Sources and Carcinogenic Risk of PAHs in PM1 Particle Fraction in an Urban Area. Int. J. Environ. Res. Public Health 2020, 17, 9587. [Google Scholar] [CrossRef] [PubMed]
- Stojić, A.; Stojić, S.S.; Reljin, I.; Čabarkapa, M.; Šoštarić, A.; Perišić, M.; Mijić, Z. Comprehensive analysis of PM10 in Belgrade urban area on the basis of long-term measurements. Environ. Sci. Pollut. Res. 2016, 23, 10722–10732. [Google Scholar] [CrossRef]
- Wiedensohler, A.; Andrade, M.; Weinhold, K.; Müller, T.; Birmili, W.; Velarde, F.; Moreno, I.; Forno, R.; Sanchez, M.F.; Laj, P.; et al. Black carbon emission and transport mechanisms to the free troposphere at the La Paz/El Alto (Bolivia) metropolitan area based on the Day of Census (2012). Atmos. Environ. 2018, 194, 158–169. [Google Scholar] [CrossRef]
- Lovrić, M.; Antunović, M.; Šunić, I.; Vuković, M.; Kecorius, S.; Kröll, M.; Bešlić, I.; Šimić, I.; Pehnec, G. Insignificant Changes in Particulate Matter during the COVID-19 Lockdown: A Machine Learning Study in Zagreb, Croatia. In Proceedings of the Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering (CSEE’22); Naggar, H., El Barros, J., Eds.; INTERNATIONAL ASET INC: Lisbon, Portugal, 2022. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M.M. The effect of the COVID-19 lockdown on air quality in three italian medium-sized cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat COVID-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Pavlović, K.; Vuković, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2020, 274, 115900. [Google Scholar] [CrossRef] [PubMed]
- Grange, S.K.; Lee, J.D.; Drysdale, W.S.; Lewis, A.C.; Hueglin, C.; Emmenegger, L.; Carslaw, D.C. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmos. Chem. Phys. 2021, 21, 4169–4185. [Google Scholar] [CrossRef]
- Agency, E.E. Air Quality and COVID-19—European Environment Agency. Available online: https://www.eea.europa.eu/themes/air/air-quality-and-covid19 (accessed on 1 May 2022).
- Pinto, J.N.; Garcia, M.; Borrega, J.; Coelho, L.M.R. Airborne PM Impact on Health, Overview of Variables, and Key Factors to Decision Making in Air Quality. In Air Pollution-Monitoring, Quantification and Removal of Gases and Particles; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ljubenkov, I.; Haddout, S.; Priya, K.L.; Hoguane, A.M. SARS-CoV-2 epidemic: Changes in air quality during the lockdown in Zagreb (Republic of Croatia). Toxicol. Environ. Chem. 2020, 102, 302–303. [Google Scholar] [CrossRef]
- Jakovljević, I.; Štrukil, Z.S.; Godec, R.; Davila, S.; Pehnec, G. Influence of lockdown caused by the COVID-19 pandemic on air pollution and carcinogenic content of particulate matter observed in Croatia. Air Qual. Atmos. Health 2021, 14, 467–472. [Google Scholar] [CrossRef]
- Dimovska, M.; Gjorgjev, D. The effects of COVID-19 lockdown on air quality in Macedonia. Open Access Maced. J. Med. Sci. 2020, 8, 353–362. [Google Scholar] [CrossRef]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A COVID19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Wyche, K.P.; Nichols, M.; Parfitt, H.; Beckett, P.; Gregg, D.J.; Smallbone, K.L.; Monks, P.S. Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Sci. Total Environ. 2021, 755, 142526. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Shit, P.K.; Sengupta, N.; Saha, S. Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata (India) and amelioration of environmental health. Environ. Dev. Sustain. 2020, 23, 6913–6940. [Google Scholar] [CrossRef] [PubMed]
- Granella, F.; Reis, L.A.; Bosetti, V.; Tavoni, M. COVID-19 lockdown only partially alleviates health impacts of air pollution in Northern Italy. Environ. Res. Lett. 2021, 16, 035012. [Google Scholar] [CrossRef]
- Tadano, Y.S.; Potgieter-Vermaak, S.; Kachba, Y.R.; Chiroli, D.M.G.; Casacio, L.; Santos-Silva, J.C.; Moreira, C.A.B.; Machado, V.; Alves, T.A.; Siqueira, H.; et al. Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown. Environ. Pollut. 2021, 268, 115920. [Google Scholar] [CrossRef] [PubMed]
- Chau, P.N.; Zalakeviciute, R.; Thomas, I.; Rybarczyk, Y. Deep Learning Approach for Assessing Air Quality During COVID-19 Lockdown in Quito. Front. Big Data 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef] [Green Version]
- Grange, S.K.; Carslaw, D.C. Using meteorological normalisation to detect interventions in air quality time series. Sci. Total Environ. 2019, 653, 578–588. [Google Scholar] [CrossRef]
- Šimić, I.; Lovrić, M.; Godec, R.; Kröll, M.; Bešlić, I. Applying machine learning methods to better understand, model and estimate mass concentrations of traffic-related pollutants at a typical street canyon. Environ. Pollut. 2020, 263, 114587. [Google Scholar] [CrossRef]
- Kuo, C.P.; Fu, J.S. Evaluating the impact of mobility on COVID-19 pandemic with machine learning hybrid predictions. Sci. Total Environ. 2021, 758, 144151. [Google Scholar] [CrossRef]
- Brancher, M. Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna’s first COVID-19 lockdown: Significance for air quality management. Environ. Pollut. 2021, 284, 117153. [Google Scholar] [CrossRef]
- Etchie, T.O.; Etchie, A.T.; Jauro, A.; Pinker, R.T.; Swaminathan, N. Season, not lockdown, improved air quality during COVID-19 State of Emergency in Nigeria. Sci. Total Environ. 2021, 768, 145187. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, R.; Hu, X.; Han, W.; Wang, Y.; Huang, J.; Li, G. The improvement of air quality and associated mortality during the COVID-19 lockdown in one megacity of china: An empirical strategy. Int. J. Environ. Res. Public Health 2021, 18, 8702. [Google Scholar] [CrossRef] [PubMed]
- Gope, S.; Dawn, S.; Das, S.S. Effect of COVID-19 pandemic on air quality: A study based on Air Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 35564–35583. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, I.; Pehnec, G.; Vađić, V.; Čačković, M.; Tomašić, V.; Jelinić, J.D. Polycyclic aromatic hydrocarbons in PM10, PM2.5 and PM1 particle fractions in an urban area. Air Qual. Atmos. Health 2018, 11, 843–854. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I. Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size. Int. J. Environ. Res. Public Health 2018, 15, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godec, R.; Jakovljević, I.; Šega, K.; Čačković, M.; Bešlić, I.; Davila, S.; Pehnec, G. Carbon species in PM10 particle fraction at different monitoring sites. Environ. Pollut. 2016, 216, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Air Quality in the Republic of Croatia. Available online: http://iszz.azo.hr/iskzl/ (accessed on 30 May 2022).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228.
- Šimić, I.; Lovrić, M.; Bešlić, I.; Pehnec, G.; Godec, R. Particulate matter concentrations (PM1, PM2.5, PM10) since 2009 for a measurement sites in Zagreb, Croatia. Zenodo 2022. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 2017, 3147–3155. [Google Scholar]
- Zhong, J.; Zhang, X.; Gui, K.; Wang, Y.; Che, H.; Shen, X.; Zhang, L.; Zhang, Y.; Sun, J.; Zhang, W. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Natl. Sci. Rev. 2021, 8, nwaa307. [Google Scholar] [CrossRef]
- Lovrić, M.; Meister, R.; Steck, T.; Fadljević, L.; Gerdenitsch, J.; Schuster, S.; Schiefermüller, L.; Lindstaedt, S.; Kern, R. Parasitic resistance as a predictor of faulty anodes in electro galvanizing: A comparison of machine learning, physical and hybrid models. Adv. Model. Simul. Eng. Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Žuvela, P.; Spataru, A.; Lučić, B.; Kern, R.; Wong, M.W. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J. Chemom. 2021, 35, e3349. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the NIPS 2012, Lake Tahoe, NV, USA, 3–8 December 2012; Volume 4, pp. 2951–2959. [Google Scholar]
- About, A. What’s the Government Response Timeline for Croatia? | Ask About. Available online: https://askabout.io/covid-19/ask/what-is-the-government-response-timeline-for-croatia/ (accessed on 30 May 2022).
- IUS-INFO: Decisions of the Civil Protection Headquarters of the Republic of Croatia in 2020 and Relevant Regulations in the Conditions of the Coronavirus Epidemic. Available online: https://www.iusinfo.hr/aktualno/u-sredistu/41376#travanj2020 (accessed on 30 May 2022).
- Government of the Republic of Croatia—Coronavirus Protection Measures. Available online: https://vlada.gov.hr/coronavirus-protection-measures/28950 (accessed on 30 May 2022).
- Stipaničev, D.; Repec, S.; Vucić, M.; Lovrić, M.; Klobučar, G. COVID-19 Lockdowns–Effect on Concentration of Pharmaceuticals and Illicit Drugs in Two Major Croatian Rivers. Toxics 2022, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Federal Office: MeteoSwiss Saharan dust events—MeteoSwiss. Available online: https://www.meteoswiss.admin.ch/home/climate/the-climate-of-switzerland/specialties-of-the-swiss-climate/saharan-dust-events.html (accessed on 31 July 2020).
- Davidović, M.; Dmitrašinović, S.; Jovanović, M.; Radonić, J.; Jovašević-stojanović, M. Diurnal, temporal and spatial variations of main air pollutants before and during emergency lockdown in the city of novi sad (Serbia). Appl. Sci. 2021, 11, 1212. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadis, K.; Gini, M.I.; Diapouli, E.; Vratolis, S.; Vasilatou, V.; Fetfatzis, P.; Manousakas, M.I. Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Gorrochategui, E.; Hernandez, I.; Pérez-gabucio, E. Temporal Air Quality (NO2, O3 and PM10) Changes in Urban and Rural Stations in Catalonia during COVID-19 Lockdown: An Association with Human Mobility and Satellite Data. Environ. Sci. Pollut. Res. 2022, 29, 18905–18922. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Higham, J.E.; Ramírez, C.A.; Green, M.A.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 2021, 14, 325–332. [Google Scholar] [CrossRef]
- Orak, N.H.; Ozdemir, O. The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human mobility across Turkey. Environ. Res. 2021, 197, 111018. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef] [PubMed]
- Al-Hemoud, A.; Al-Khayat, A.; Al-Dashti, H.; Li, J.; Alahmad, B.; Koutrakis, P. PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates. Environ. Challenges 2021, 5, 100215. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- Meji, M.A.; Dennison, M.S.; Mobisha, M.; Umar, M.M. Impact of COVID-19 Induced Lockdown on the Air Quality in the Southern Key Regions of India. i-Manager’s J. Futur. Eng. Technol. 2021, 16, 11. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented temporary reduction in global air pollution associated with COVID-19 forced confinement: A continental and city scale analysis. Remote Sens. 2020, 12, 2420. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the COVID-19 pandemic lockdown on air pollution in 20 major cities around the world. Atmosphere 2020, 11, 1189. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef] [PubMed]
- Connerton, P.; de Assunção, J.V.; de Miranda, R.M.; Slovic, A.D.; Pérez-Martínez, P.J.; Ribeiro, H. Air quality during COVID-19 in four megacities: Lessons and challenges for public health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Santos, S.; González-Pardo, J.; Carslaw, D.C.; Santurtún, A.; Santibáñez, M.; Fernández-Olmo, I. Meteorological Normalisation Using Boosted Regression Trees to Estimate the Impact of COVID-19 Restrictions on Air Quality Levels. Int. J. Environ. Res. Public Health 2021, 18, 13347. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, J.G.; Ofner, A.B.; Rohrhofer, F.M.; Lovric, M.; Kern, R.; Lindstaedt, S.; Geiger, B.C. Theory-inspired machine learning—Towards a synergy between knowledge and data. Weld. World 2022, 66, 1291–1304. [Google Scholar] [CrossRef]
Pollutant | RMSE | R2 Score | Winning Algorithm |
---|---|---|---|
PM10 | 10.47 | 0.77 | Random Forests |
PM2.5 | 9.87 | 0.78 | Random Forests |
PM1 | 6.49 | 0.77 | LightGBM |
Geographic Location | Pollutants | Methods | Data Used | Ref. |
---|---|---|---|---|
Zagreb, Croatia | PM10, PM2.5, PM1.0 | MLN | Training: from 1 January 2019 to 31 December 2019 (114 samples) Validation: 3 smaller datasets in 2020 (10 samples); Test: 4 May to 13 May 12020 (10 samples) | This study |
Zagreb, Croatia | NO2, PM10 | DS | Comparison between lockdown period (26 February–7 May 2020) and the same period in 2019 | [17] |
Zagreb, Croatia | NO2, PM1.0, PAHs | DS | Comparison between lockdown period (March–May 2020) and the same period in 2019 | [18] |
Novi Sad, Serbia | PM2.5, NO2, NO, NOx, CO, SO2 + Met | DS | Comparison before and after entering the state of emergency (1 February to 30 April) | [53] |
Skopje, Bitola, Tetovo, Kumanovo, Macedonia | PM10, PM2.5, NO2, O3, CO, Met | DS | Comparison of COVID19 period (last week of February 2020 to the end of May 2020) with the same period in 2017–2019 (nonCOVID-19 period) | [19] |
Milan, Italy | PM10, PM2.5, O3, NO2, SO2, CO, air quality index (AQI) + Met | DS | Comparison between pre-lockdown (January–February 2020) and lockdown period (March–April 2020) | [54] |
Milan, Italy | PM10, PM2.5, BC, benzene, CO, NO2, O3, NOx + Met | DS | Comparison between periods: CTRL (from 7 February 2020 to February 20), PL (from 9 March 2020 to 22 March 2020), and TL (from 23 March 2020 to 5 April 2020) | [55] |
Milan, Bologna, Florence, Rome, Naples, and Palermo, Italy | PM10, PM2.5, NO2, O3 + Met | DS | Comparison between 2019-period (25 February–2 May 2019) and 2020-period (24 February–30 April 2020) | [20] |
Athens, Greece | PM2.5, PM1.0, eBC, EC, OC, paricle number size distribution, SO42-, NO3-, Cl-, NH+ + Met | DS | Comparison of reference period (1 January–10 March 2020) the two lockdown periods (11 March–22 March 2020 & 23 March–12 April 2020) with the respective periods in 2018 and 2019 | [56] |
Barcelona & Catalonia, Spain | NO2, O3, PM10—hourly samples | DS | Comparisons during the before (15 February to 13 March), during (14 March to 21 June) and after lockdown (22 June to 31 August) | [57] |
Barcelona, Spain | PM10, NO2, SO2, O3, BC + Met | DS | Comparison for the periods before (16 February to 13 March) and during the lockdown (14 March to 30 March) | [58] |
Madrid, Barcelona, Spain | NO2—hourly samples + Met | DS | Comparison of March in the years 2018, 2019 and 2020 | [21] |
South East of the UK | NO2, PM2.5, PM10, O3 + Met | DS | Comparison between lockdown period (March–May 2020) with the same period in 2015–2019 | [22] |
UK | NO, NO2, NOx, O3, PM10, PM2.5—hourly samples | DS | Comparison between lockdown period (1 January to 30 June 2020) with the period from 1 January 2015 to 31 December 2019 | [23] |
London, Glasgow, Belfast, Birmingham, Manchester and Liverpool, UK | NOx, SO2, PM2.5, O3 + Met | DS | Comparison of 100 days post-lockdown (23 March to 30 June 2020) with the same period from the previous 7 years | [59] |
Turkey | PM10, SO2, | DS | Comparison of 2020 to the average of the 5-year period (2015–2019) | [60] |
Baghdad, Iraq | NO2, O3, PM2.5, PM10, AQI | DS | Comparison of the periods before the lockdown from 16 January to 29 February 2020, and during four periods of partial and total lockdown from (1 March to 24 July 2020) | [61] |
Kuwait | PM10, PM2.5 + Met | DS | Comparison between the lockdown in 2020 with the corresponding periods of the years 2017–2019 | [62] |
India | PM2.5, PM10, NO2, O3, CO, SO2 + Met—hourly | DS | Comparison between lockdown period (25 March–3 May 2020) and the same period in 2017–2019 | [63] |
Southern regions of India | PM2.5, PM10, NO, CO, O3 | DS | Comparison between lockdown period (1 April to 31 July 2020) and the same periods in 2018 and 2019 | [64] |
Kolkata City, India | PM10, PM2.5, O3, SO2, NO2, CO | UM | Comparison of lockdown period (25 March to 15 May 2020), with the similar time frame in 2017, 2018 and 2019 | [24] |
Sao Paulo, Brazil | NO, NO2, CO, PM2.5, PM10, SO2, O3, NOx | DS | Comparison the partial lockdown periods (25 February 2020 to 23 March 2020 and from 24 March 2020 to 20 April 2020) to the five-year monthly trend (February, March and April of the years 2015, 2016, 2017, 2018 and 2019) | [65] |
Nice (France), Rome and Turin (Italy), Valencia (Spain) and Wuhan (China) | NOx, PM2.5, PM10, O3 | DS | Comparison of lock down period (1 January 2017 until 18 April 2020) with the same period over the three previous years (2017–2019) | [66] |
sixteen selected cities located in South Asia, East Asia, Europe, and North America | NO2, CO, PM2.5, O3, SO2 | DS | Comparison between from 1 January–15 May for the year of 2015–2019 (defined as baseline period) and 2020 (lockdown) | [67] |
50 most polluted capital cities in the world | PM2.5, AQI | DS | Comparison between before and during quarantine | [68] |
34 countries | NO2, O3, PM2.5 | DS | Comparison between from 1 January–15 May for the year of 2017–2019 and 2020 (lockdown) | [69] |
Multiple locations * | NO2, SO2, CO, O3, PM10, PM2.5, AQI | DS | Comparison between lockdown period in 2020 to the same period of 2017, 2018 and 2019 | [70] |
New York, Los Angeles, Zaragoza, Rome, Dubai, Delhi, Mumbai, Beijing and Shanghai | PM2.5 | DS | Comparison of lockdown period (December 2019–March 2020), and the same period in earlier years 2017–2019 | [71] |
São Paulo in Brazil; Paris in France; and Los Angeles and New York in the USA | NO2, CO, PM2.5, O3 + meteorology | DS | Comparison of March in the years 2015–2020 | [72] |
Graz, Austria | NO2, PM10, O3, Ox + Met | ML | Training: from 3 January 2014 to 31 December 2019 (daily) Validation: from 3 January 2020 to 10 March 2020 (daily), Test:l lockdown set, LD (10 March 2020 to 2 May 2020—daily samples), and a hard lockdown set, HLD (20 March 2020 to 14 April 2020—daily samples) | [13] |
Lombardy, Italy | NO2, PM2.5 + Met | ML | Training: from 2012 through 2019 Validation: months from January to April for 2016–2020 Test: from January through early May 2020 | [25] |
Sao Paulo, Brazil | CO, O3, NO2, NO, PM2.5, PM10 + Met | ML | Training: from 1 January to 23 April 2020 (114 samples); Validation: 24 April to 3 May 2020 (10 samples); Test: 4 May to 13 May 2020 (10 samples) | [26] |
Quito, Ecuador | CO, NO2, PM2.5, SO2, O3 | MLN | Training: from 1 January 2016 to 15 January 2020 (2 months before the COVID-19 lockdown) Test: from 16 January 2020 to 15 March 2020 (the day of the national lockdown). | [27] |
Cantabria, Spain | NO, NO2, PM10, O3, Met | MLN | Data from 11 stations (2013–2020) Training data 2013–2019, test set lockdown and new normal 2020 | [73] |
Vienna, Austria |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovrić, M.; Antunović, M.; Šunić, I.; Vuković, M.; Kecorius, S.; Kröll, M.; Bešlić, I.; Godec, R.; Pehnec, G.; Geiger, B.C.; et al. Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia. Int. J. Environ. Res. Public Health 2022, 19, 6937. https://doi.org/10.3390/ijerph19116937
Lovrić M, Antunović M, Šunić I, Vuković M, Kecorius S, Kröll M, Bešlić I, Godec R, Pehnec G, Geiger BC, et al. Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia. International Journal of Environmental Research and Public Health. 2022; 19(11):6937. https://doi.org/10.3390/ijerph19116937
Chicago/Turabian StyleLovrić, Mario, Mario Antunović, Iva Šunić, Matej Vuković, Simonas Kecorius, Mark Kröll, Ivan Bešlić, Ranka Godec, Gordana Pehnec, Bernhard C. Geiger, and et al. 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia" International Journal of Environmental Research and Public Health 19, no. 11: 6937. https://doi.org/10.3390/ijerph19116937
APA StyleLovrić, M., Antunović, M., Šunić, I., Vuković, M., Kecorius, S., Kröll, M., Bešlić, I., Godec, R., Pehnec, G., Geiger, B. C., Grange, S. K., & Šimić, I. (2022). Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia. International Journal of Environmental Research and Public Health, 19(11), 6937. https://doi.org/10.3390/ijerph19116937