Estimated Oxygen Consumption with the Abbreviated Method and Its Association with Vaccination and PCR Tests for COVID-19 from Socio-Demographic, Anthropometric, Lifestyle, and Morbidity Outcomes in Chilean Adults
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministerio de Salud. Available online: https://www.minsal.cl/ (accessed on 22 October 2021).
- Ministerio de Salud. Available online: https://www.gob.cl/yomevacuno/#vacunados (accessed on 22 October 2021).
- Agencia Nacional de Investigación y Desarrollo. Available online: https://ayuda.anid.cl/hc/es/articles/360048066052--Cuáles-son-las-Macrozonas-del-Ministerio-de-Ciencia-Tecnología-Conocimiento-e-Innovación- (accessed on 22 October 2021).
- Ministerio de Salud. Available online: https://informesdeis.minsal.cl/SASVisualAnalytics/?reportUri=%2Freports%2Freports%2F9037e283-1278-422c-84c4-16e42a7026c8§ionIndex=1&sso_guest=true&sas-welcome=false (accessed on 22 October 2021).
- Phansopkar, P.A.; Naqvi, W.M.; Sahu, A.I. COVID-19 pandemic- a curse to the physical well-being of every individual in lock-down. J. Evol. Med. Dent. Sci. 2020, 9, 2561–2566. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, Y.; Zhang, J.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 7, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Clavario, P.; De Marzo, V.; Lotti, R.; Barbara, C.; Porcile, A.; Russo, C.; Beccaria, F.; Bonavia, M.; Bottaro, L.C.; Caltabellotta, M.; et al. Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. ERJ Open Res. 2020, 7, 3. [Google Scholar] [CrossRef]
- Mihalick, V.; Canada, J.; Arena, R.; Abbate, A.; Kirkman, D. Cardiopulmonary exercise testing during the COVID-19 pandemic. Prog. Cardiovasc. Dis. 2021, 67, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Fraser, E. Long term respiratory complications of COVID-19. BMJ (Clin. Res. Ed.) 2020, 370, m3001. [Google Scholar] [CrossRef]
- Faghy, M.; Sylvester, K.; Cooper, B.; Hull, J. Cardiopulmonary exercise testing in the COVID-19 endemic phase. Br. J. Anaesth. 2020, 125, 447–449. [Google Scholar] [CrossRef]
- Burtscher, J.; Millet, G.; MBurtscher, M. Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: Implications for COVID-19. Br. J. Sport. Med. 2021, 55, 413–415. [Google Scholar] [CrossRef]
- Salgado-Aranda, R.; Pérez-Castellano, N.; Núñez-Gil, I.; Orozco, A.J.; Torres-Esquivel, N.; Flores-Soler, J.; Chamaisse-Akari, A.; Mclnerney, A.; Vergara-Uzcategui, C.; Wang, L.; et al. Influence of baseline physical activity as a modifying factor on COVID-19 mortality: A single-center, retrospective study. Infect. Dis. Ther. 2021, 10, 801–814. [Google Scholar] [CrossRef]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; Cohen, D.A. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br. J. Sport. Med. 2021, 55, 1099–1105. [Google Scholar] [CrossRef]
- Jarnig, G.; Jaunig, J.; van Poppel, M. Association of COVID-19 mitigation measures with changes in cardiorespiratory fitness and body mass index among children aged 7 to 10 years in Austria. JAMA Netw. Open 2021, 4, e2121675. [Google Scholar] [CrossRef]
- Conceição, M.S.; Derchain, S.; Vechin, F.C.; Telles, G.; Maginador, G.F.; Sarian, L.O.; Libardi, C.A.; Ugrinowitsch, C. Maintenance of muscle mass and cardiorespiratory fitness to cancer patients during COVID-19 era and after SARS-CoV-2 vaccine. Front. Physiol. 2021, 12, e655955. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Burtscher, M.; Millet, G.P. (Indoor) isolation, stress, and physical inactivity: Vicious circles accelerated by COVID-19? Scand. J. Med. Sci. Sport. 2020, 30, 1544–1545. [Google Scholar] [CrossRef]
- López-Bueno, R.; Calatayud, J.; Andersen, L.L.; Casaña, J.; Ezzatvar, Y.; Casajús, J.A.; López-Sánchez, G.F.; Smith, L. Cardiorespiratory fitness in adolescents before and after the COVID-19 confinement: A prospective cohort study. Eur. J. Pediatr. 2021, 180, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Geijerstam, A.A.; Mehlig, K.; Börjesson, M.; Robertson, J.; Nyberg, J.; Adiels, M.; Rosengren, A.; Åberg, M.; Lissner, L. Fitness, strength and severity of COVID-19: A prospective register study of 1 559 187 Swedish conscripts. BMJ Open 2021, 11, e051316. [Google Scholar] [CrossRef]
- Vásquez-Gómez, J.A.; Garrido-Méndez, A.; Matus-Castillo, C.; Poblete-Valderrama, F.; Díaz-Martínez, X.; Concha-Cisternas, Y.; Cigarroa, I.; Martorell, M.; Martínez-Sanguinetti, M.A.; Leiva-Ordoñez, A.M.; et al. Fitness cardiorrespiratorio estimado mediante ecuación y su caracterización sociodemográfica en población chilena: Resultados de la encuesta nacional de salud 2016-2017. Rev. Med. Chil. 2020, 148, 1750–1758. [Google Scholar] [CrossRef]
- Jackson, A.; Blair, S.; Mahar, M.; Wier, L.; Ross, R.; Stuteville, J. Prediction of functional aerobic capacity without exercise testing. Med. Sci. Sport. Exerc. 1990, 22, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Sloan, R.A.; Haaland, B.A.; Leung, C.; Padmanabhan, U.; Koh, H.C.; Zee, A. Cross-validation of a non-exercise measure for cardiorespiratory fitness in Singaporean adults. Singap. Med. J. 2013, 54, 576–580. [Google Scholar] [CrossRef]
- Cáceres, J.; Ulbrich, A.; Panigas, T.; Benetti, M. Equações de predição da aptidão cardiorrespiratória de adultos sem teste de exercícios físicos. Rev. Bras. Cineantropom. Desempenho. Hum. 2012, 14, 287–295. [Google Scholar] [CrossRef][Green Version]
- Jang, T.; Park, S.; Kim, H.; Kim, J.; Hong, Y.; Kim, B. Estimation of maximal oxygen uptake without exercise testing in Korean healthy adult workers. Tohoku. J. Exp. Med. 2012, 227, 313–319. [Google Scholar] [CrossRef]
- Schembre, S.; Riebe, D. Non-exercise estimation of VO(2)max using the international physical activity questionnaire. Meas. Phys. Educ. Exerc. Sci. 2011, 15, 168–181. [Google Scholar] [CrossRef]
- Peterman, J.E.; Harber, M.P.; Imboden, M.T.; Whaley, M.H.; Fleenor, B.S.; Myers, J.; Arena, R.; Finch, W.H.; Kaminsky, L.A. Accuracy of nonexercise prediction equations for assessing longitudinal changes to cardiorespiratory fitness in apparently healthy adults: BALL ST cohort. J. Am. Heart Assoc. 2020, 9, e015117. [Google Scholar] [CrossRef] [PubMed]
- de Souza e Silva, C.G.; Kaminsky, L.A.; Arena, R.; Christle, J.W.; Araújo, C.G.S.; Lima, R.M.; Ashley, E.A.; Myers, J. A Reference equation for maximal aerobic power for treadmill and cycle ergometer exercise testing: Analysis from the FRIEND registry. Eur. J. Prev. Cardiol. 2018, 25, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Kaminsky, L.; Lima, R.; Christle, J.; Ashley, E.; Arena, R. A reference equation for normal standards for VO 2 max: Analysis from the fitness registry and the importance of exercise national database (FRIEND Registry). Prog. Cardiovasc. Dis. 2017, 60, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Desarrollo Social y Familia. Available online: http://eligevivirsano.gob.cl/noticias/autoridades-detallaron-alcances-de-banda-horaria-elige-vivir-sano-que-rige-desde-hoy/ (accessed on 5 March 2022).
- Salinas, C.J.; Bello, S.S.; Chamorro, R.H.; Gonzalez, C.G. Consejeria en alimentación, actividad fÍsica y tabaco: Instrumento fundamental en la practica profesional. Rev. Chil. Nutr. 2016, 43, 434–442. [Google Scholar] [CrossRef]
- Kosmas, I.; Georgiou, Y.; Marmara, E.; Fotiou, A. Sociodemographic factors and low back pain in municipality physical activity programs for female participants. Phys. Educ. Sport. 2020, 18, 447–456. [Google Scholar] [CrossRef]
- Christensen, R.; Arneja, J.; St Cyr, K.; Sturrock, S.; Brooks, J. The association of estimated cardiorespiratory fitness with COVID-19 incidence and mortality: A cohort study. PLoS ONE 2021, 16, e0250508. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Consejo de Organizaciones Internacionales de las Ciencias Médicas. Available online: https://cioms.ch/wp-content/uploads/2017/12/CIOMS-EthicalGuideline_SP_INTERIOR-FINAL.pdf (accessed on 22 October 2021).
- Kosmas, J.; Georgiou, Y.; Marmara, E.; Fotiou, A. Evaluation of municipal fitness programs for women with low back pain. J. Anthr. Sport. Phys. Educ. 2019, 3, 33–39. [Google Scholar] [CrossRef]
- Ministerio de Salud. Available online: http://web.minsal.cl/wp-content/uploads/2017/11/ENS-2016-17_PRIMEROS-RESULTADOS.pdf (accessed on 5 July 2021).
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Principles of Exercise Testing and Interpretation, 5th ed.; Lippincott, Williams & Wilkins: Baltimore, MD, USA, 2011. [Google Scholar]
- Pistea, C.; Lonsdorfer, E.; Doutreleau, S.; Oswald, M.; Enache, I.; Charloux, A. Maximal aerobic capacity in ageing subjects: Actual measurements versus predicted values. ERJ Open. Res. 2016, 2, e00068. [Google Scholar] [CrossRef]
- Wilmore, J.; Costill, D. Introducción a la Fisiología del Esfuerzo y del Deporte, 6th ed.; Editorial Paidotribo: Barcelona, Spain, 2007. [Google Scholar]
- Loópez Chicharro, J.; Fernaández Vaquero, A. Fisiologiía del Ejercicio, 3rd ed.; Meédica Panamericana: Madrid, Spain, 2006. [Google Scholar]
- Ahmed, I. COVID-19–Does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin. Med. 2020, 20, 282–284. [Google Scholar] [CrossRef]
- Batatinha, H.A.P.; Baker, F.L.; Smith, K.A.; Zuñiga, T.M.; Pedlar, C.R.; Burgess, S.C.; Katsanis, E.; Simpson, R.J. Recent COVID-19 vaccination is associated with modest increases in the physiological demands to graded exercise. medRxiv 2021, 1–15. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Salas-Bravo, C.; Yáñez, A.; Castillo, M. Inactividad física y sedentarismo. La otra cara de los efectos secundarios de la Pandemia de COVID-19. Rev. Med. Chile 2020, 148, 881–886. [Google Scholar] [CrossRef]
- Brandenburg, J.; Lesser, I.; Thomson, C.; Giles, L. Does higher self-reported cardiorespiratory fitness reduce the odds of hospitalization from COVID-19? J. Phys. Act. Health 2021, 18, 782–788. [Google Scholar] [CrossRef]
- Yates, T.; Razieh, C.; Zaccardi, F.; Rowlands, A.V.; Seidu, S.; Davies, M.; Khunti, K. Walking pace and risk of severe COVID-19 and mortality: Analysis of UK Biobank. Int. J. Obes. 2021, 45, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Brawner, C.A.; Ehrman, J.K.; Bole, S.; Kerrigan, D.J.; Parikh, S.S.; Lewis, B.K.; Gindi, R.M.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S.J. Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo. Clin. Proc. 2021, 96, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.; Brawner, C.; Ehrman, J.; Keteyian, S. Cardiorespiratory fitness attenuates the impact of risk factors associated with COVID-19 hospitalization. Mayo Clin. Proc. 2021, 96, 822–823. [Google Scholar] [CrossRef]
- Labarca, G.; Henríquez-Beltrán, M.; Lastra, J.; Enos, D.; Llerena, F.; Cigarroa, I.; Lamperti, L.; Ormazabal, V.; Ramirez, C.; Espejo, E.; et al. Analysis of clinical symptoms, radiological changes and pulmonary function data 4 months after COVID-19. Clin. Respir. J. 2021, 15, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod, M.; et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021, 31, e100683. [Google Scholar] [CrossRef] [PubMed]
- Blokland, I.J.; Ilbrink, S.; Houdijk, H.; Dijkstra, J.-W.; Bennekom, C.A.M.V.; Fickert, R.; De Lijster, R.; Groot, F.P. Exercise capacity after mechanical ventilation because of COVID-19: Cardiopulmonary exercise tests in clinical rehabilitation. Ned. Tijdschr. Geneeskd. 2020, 164, e5253. [Google Scholar]
- Crameri, G.A.G.; Bielecki, M.; Züst, R.; Buehrer, T.W.; Stanga, Z.; Deuel, J.W. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020. Eurosurveillance 2020, 25, e2001542. [Google Scholar] [CrossRef]
- Vásquez-Gómez, J.A.; Beltrán, A.R.; Cigarroa-Cuevas, I.; Lasserre-Laso, N.; Garrido-Méndez, A.; Matus-Castillo, C.; Álvarez, C.; Díaz-Martínez, X.; Salas-Bravo, C.; Martínez-Sanguinetti, M.A.; et al. Auto reporte de la velocidad de marcha y su asociación con marcadores de adiposidad y riesgo cardiovascular en Chile. Rev. Med. Chile 2020, 148, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Molina, D.; Alonso-Cabrera, J.; Nazar, G.; Parra-Rizo, M.A.; Zapata-Lamana, R.; Sanhueza-Campos, C.; Cigarroa, I. Association between the physical activity behavioral profile and sedentary time with subjective well-being and mental health in chilean university students during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 2107. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Becerik-Gerber, B.; Lucas, G.; Roll, S.C. Impacts of working from home during COVID-19 pandemic on physical and mental well-being of office workstation users. J. Occup. Environ. Med. 2021, 63, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jaña, S.; Escobar-Gómez, D.; Cristi-Montero, C.; Castro-Piñero, J.; Rodríguez-Rodríguez, F. Changes in active behaviours, physical activity, sedentary time, and physical fitness in chilean parents during the COVID-19 pandemic: A retrospective study. Int. J. Environ. Res. Public Health 2022, 19, 1846. [Google Scholar] [CrossRef]
- Parra-Soto, S.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Absolute and relative grip strength as predictors of cancer: Prospective cohort study of 445 552 participants in UK Biobank. J. Cachexia Sarcopenia Muscle 2022, 13, 325–332. [Google Scholar] [CrossRef]
- Vásquez-Gómez, J.A.; Matus-Castillo, C.; Petermann-Rocha, F.; Concha-Cisternas, Y.; Leiva, A.M.; Martínez-Sanguinetti, M.A.; Troncoso-Pantoja, C.; Garrido-Mendez, A.; Díaz-Martínez, X.; Salas, C.; et al. Caracterización de los estilos de vida en dueñas de casa chilenas. Análisis de la encuesta nacional de salud 2009–2010. Rev. Med. Chile 2019, 147, 1146–1155. [Google Scholar] [CrossRef]
Variables | Total (557) | Male (256) | Female (301) | p-Value (a) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CI | Mean | SD | CI | Mean | SD | CI | ||
Age (years) | 28.9 | 9.7 | 28.1; 29.8 | 28 | 9.3 | 26.8; 29.1 | 29.8 | 10.1 | 28.6; 30.9 | 0.0166 t |
Weight (kg) | 71.7 | 13.1 | 70.6; 72.8 | 77.6 | 13.1 | 76; 79.2 | 66.6 | 10.8 | 65.4; 67.8 | 0.0001 k |
Height (cm) | 166.7 | 8.7 | 166; 167.5 | 173.5 | 6.4 | 172.7; 174.3 | 161 | 6 | 160.3; 161.7 | 0.0001 k |
BMI (kg/m2) | 25.7 | 3.7 | 25.3; 26 | 25.7 | 3.6 | 25.2; 26.1 | 25.6 | 3.8 | 25.2; 26.1 | 0.5636 t |
BMI,n(%) | 0.333 x2 | |||||||||
Normal | 280 (50.3) | -- | 46.1; 54.4 | 123 (48.1) | -- | 41.9; 54.1 | 157 (52.2) | -- | 46.4; 57.7 | |
Overweight/Obese | 277 (49.7) | -- | 45.5; 53.8 | 133 (51.9) | -- | 45.8; 58 | 144 (47.8) | -- | 42.2; 53.5 | |
O2max (L/min) | 2.48 | 0.71 | 2.42; 2.54 | 3.12 | 0.52 | 3; 3.18 | 1.93 | 0.24 | 1.91; 1.96 | 0.0001 k |
O2max (mL/kg/min) | 34.4 | 6.4 | 33.8; 34.9 | 40.2 | 3.6 | 39.8; 40.7 | 29.4 | 3.6 | 29; 29.8 | 0.0001 k |
O2max, n (%) | 0.08 x2 | |||||||||
Low, very low, or normal | 479 (86) | -- | 82.8; 88.6 | 213 (83.2) | -- | 78; 87.3 | 266 (88.4) | -- | 84.2; 91.5 | |
Good, excellent or higher | 78 (14) | -- | 11.3; 17.1 | 43 (16.8) | -- | 12.6; 21.9 | 35 (11.6) | -- | 8.4; 15.7 | |
Sitting (hours) | 6 | 3.3 | 5.7; 6.3 | 5.6 | 3.4 | 5.2; 5.9 | 6.3 | 3.4 | 6; 6.7 | 0.0021 k |
Area,n(%) | 0.62 x2 | |||||||||
Urban | 492 (88.3) | -- | 85.3; 90.7 | 228 (89.1) | -- | 84.5; 92.3 | 264 (87.7) | -- | 83.4; 90.9 | |
Rural | 65 (11.7) | -- | 9.2; 14.6 | 28 (10.9) | -- | 7.6; 15.4 | 37 (12.3) | -- | 9; 16.5 | |
Vaccine 1,n(%) | 0.965 x2 | |||||||||
Yes | 453 (81.3) | -- | 77.8; 84.3 | 208 (81.3) | -- | 75.9; 85.5 | 245 (81.4) | -- | 76.5; 85.4 | |
No | 104 (18.7) | -- | 15.6; 22.1 | 48 (18.7) | -- | 14.4; 24 | 56 (18.6) | -- | 14.5; 23.4 | |
Vaccine brand, n (%) | <0.001 f | |||||||||
SINOVAC | 281 (63) | -- | 58.4; 67.3 | 114 (55.6) | -- | 48.7; 62.2 | 167 (69.3) | -- | 63.1; 74.8 | |
PFIZER | 128 (28.7) | -- | 24.6; 33 | 67 (32.7) | -- | 26.5; 39.4 | 61 (25.3) | -- | 20.1; 31.2 | |
CANSINO | 23 (5.2) | -- | 3.4; 7.6 | 10 (4.9) | -- | 2.6; 8.8 | 13 (5.4) | -- | 3.1. 9 | |
ASTRAZENECA | 14 (3.1) | -- | 1.8; 5.2 | 14 (6.8) | -- | 4; 11.2 | 0 | -- | 0.0; 0.0 | |
Vaccine 2,n(%) | 0.078 x2 | |||||||||
Yes | 319 (69.2) | -- | 64.8; 73.2 | 138 (65.1) | -- | 58.4; 71.2 | 181 (72.7) | -- | 66.7; 77.8 | |
No | 142 (30.8) | -- | 26.7; 35.1 | 74 (34.9) | -- | 28.7; 41.5 | 68 (27.3) | -- | 22.1; 33.2 | |
PCR,n(%) | 0.03x2 | |||||||||
Yes | 319 (57.3) | -- | 53.1; 61.3 | 134 (52.3) | -- | 46.2; 58.4 | 185 (61.5) | -- | 55.8; 66.8 | |
No | 238 (42.7) | -- | 38.6; 46.8 | 122 (47.7) | -- | 41.5; 53.8 | 116 (38.5) | -- | 33.1; 44.1 | |
PCR results,n(%) | 0.816 x2 | |||||||||
Negative | 290 (89) | -- | 85; 91.9 | 123 (88.5) | -- | 81.9; 92.8 | 167 (89.3) | -- | 83.9; 93 | |
Positive | 36 (11) | -- | 8; 14.9 | 16 (11.5) | -- | 7.1; 218 | 20 (10.7) | -- | 6.9; 16 | |
Smoker,n(%) | 0.286 x2 | |||||||||
Current smoker | 119 (21.4) | -- | 18.1; 24.9 | 53 (20.7) | -- | 16.1; 26.1 | 66 (21.9) | -- | 17.5; 26.9 | |
Former smoker | 110 (19.7) | -- | 16.6; 23.2 | 44 (17.2) | -- | 13; 22.3 | 66 (21.9) | -- | 17.5; 26.9 | |
Never smoked | 328 (58.9) | -- | 54.7; 62.9 | 159 (62.1) | -- | 55.9; 67.8 | 169 (56.2) | -- | 50.4; 61.6 | |
Walking pace,n(%) | 0.039 f | |||||||||
Slow | 23 (4.1) | -- | 2.7; 6.1 | 5 (1.9) | -- | 0.8; 4.6 | 18 (5.9) | -- | 3.7; 9.3 | |
Normal | 352 (63.2) | -- | 59; 67.1 | 161 (62.9) | -- | 56.7; 68.6 | 191 (63.5) | -- | 57.8; 68.7 | |
Hurried | 182 (32.7) | -- | 28.8; 36.6 | 90 (35.2) | -- | 29.5; 41.2 | 92 (30.6) | -- | 25.6; 36 | |
PA practice,n(%) | <0.001x2 | |||||||||
Does not practice | 144 (25.9) | -- | 22.3; 29.6 | 42 (16.4) | -- | 12.3; 21.4 | 102 (33.9) | -- | 28.7; 39.4 | |
Yes, < 4 times/month | 63 (11.3) | -- | 8.9; 14.2 | 27 (10.6) | -- | 7.3; 14.9 | 36 (12) | -- | 8.7; 16.1 | |
Yes, 1–2 times/week | 148 (26.6) | -- | 23; 30.4 | 61 (23.8) | -- | 18.9; 29.4 | 87 (28.9) | -- | 24; 34.3 | |
Yes, ≥ 3 times/week | 202 (36.2) | -- | 32.3; 40.3 | 126 (49.2) | -- | 43.1; 55.3 | 76 (25.2) | -- | 20.6; 30.4 | |
High pressure,n(%) | 0.189 x2 | |||||||||
No, they never told me | 446 (80.1) | -- | 76.5; 83.1 | 202 (78.9) | -- | 73.4; 83.4 | 244 (81.1) | -- | 76.2; 85.1 | |
Yes, one time | 53 (9.5) | -- | 7.3; 12.2 | 30 (11.7) | -- | 8.3; 16.2 | 23 (7.6) | -- | 5.1; 11.2 | |
Yes, more than once | 35 (6.3) | -- | 4.5; 8.6 | 12 (4.7) | -- | 2.6; 8 | 23 (7.6) | -- | 5.1; 11.2 | |
I don’t remember, I’m not sure | 23 (4.1) | -- | 2.7; 6.1 | 12 (4.7) | -- | 2.6; 8 | 11 (3.7) | -- | 2; 6.4 | |
Diabetes,n(%) | 0.019 f | |||||||||
No | 515 (94.5) | -- | 92.2; 96.1 | 245 (96.8) | -- | 93.7; 98.4 | 270 (92.5) | -- | 88.8; 94.9 | |
Yes | 30 (5.5) | -- | 3.8; 7.7 | 8 (3.2) | -- | 1.5; 6.2 | 22 (7.5) | -- | 5; 11.1 | |
High cholesterol, n (%) | 0.067 f | |||||||||
No, they never told me | 434 (77.9) | -- | 74.2; 81.1 | 207 (80.9) | -- | 75.5; 85.2 | 227 (75.4) | -- | 70.2; 79.9 | |
Yes, one time | 69 (12.4) | -- | 9.8; 15.4 | 33 (12.9) | -- | 9.2; 17.6 | 36 (12) | -- | 8.7; 16.1 | |
Yes, more than once | 35 (6.3) | -- | 4.5; 8.6 | 9 (3.5) | -- | 1.8; 6.6 | 26 (8.6) | -- | 5.9; 12.4 | |
I don’t remember, I’m not sure | 19 (3.4) | -- | 2.1; 5.2 | 7 (2.7) | -- | 1.3; 5.6 | 12 (4) | -- | 2.2; 6.9 | |
Heart attack, n(%) | 0.711 f | |||||||||
No | 541 (99.6) | -- | 98.5; 99.9 | 250 (99.6) | -- | 97.2; 99.9 | 291 (99.7) | -- | 97.5; 99.9 | |
Yes | 2 (0.4) | -- | 0.09; 1.4 | 1 (0.4) | -- | 0.05; 2.7 | 1 (0.3) | -- | 0.04; 2.4 | |
Vascular accident or cerebral thrombus,n(%) | 0.448 f | |||||||||
No | 543 (99.5) | -- | 98.3; 99.8 | 252 (99.2) | -- | 96.8; 99.8 | 291 (99.7) | -- | 97.5; 99.9 | |
Yes | 3 (0.5) | -- | 0.1; 1.6 | 2 (0.8) | -- | 0.1; 3.1 | 1 (0.3) | -- | 0.05; 2.4 |
Variable | OR | CI (95%) | p-Value |
---|---|---|---|
Vaccine 1 (yes) | 0.52 | 0.29; 0.95 | 0.019 |
Vaccine 2 (yes) | 0.33 | 0.18; 0.59 | 0.0001 |
PCR (yes) | 0.66 | 0.40; 1.11 | 0.099 |
PCR (−) | 0.62 | 0.22; 1.96 | 0.32 |
PCR (+) | 1.61 | 0.51; 4.34 | 0.32 |
Variable | β | p-Value | CI 95% |
---|---|---|---|
O2max (L/min) | Vaccine first | ||
Model 1 | −0.04 | 0.587 | −0.19; 0.11 |
Model 2 | −0.08 | 0.251 | −0.22; 0.05 |
Model 3 | −0.03 | 0.643 | −0.18; 0.11 |
Model 4 | −0.01 | 0.85 | −0.16; 0.13 |
Model 5 | −0.03 | 0.669 | −0.19; 0.12 |
Model 6 | −0.005 | 0.948 | −0.16; 0.15 |
O2max (L/min) | Vaccine second | ||
Model 1 | −0.13 | 0.059 | −0.27; 0.005 |
Model 2 | −0.24 | <0.001 | −0.37; −0.11 |
Model 3 | −0.1 | 0.173 | −0.24; 0.04 |
Model 4 | −0.12 | 0.072 | −0.27; 0.01 |
Model 5 | −0.11 | 0.144 | −0.26; 0.03 |
Model 6 | −0.08 | 0.288 | −0.23; 0.07 |
O2max (L/min) | PCR | ||
Model 1 | −0.04 | 0.508 | −0.16; 0.07 |
Model 2 | −0.06 | 0.276 | −0.17; 0.05 |
Model 3 | −0.03 | 0.559 | −0.15; 0.08 |
Model 4 | −0.03 | 0.564 | −0.15; 0.08 |
Model 5 | −0.05 | 0.428 | −0.17; 0.07 |
Model 6 | −0.04 | 0.522 | −0.16; 0.08 |
O2max (L/min) | PCR (−) | ||
Model 1 | −0.19 | 0.132 | −0.44; 0.05 |
Model 2 | −0.13 | 0.266 | −0.36; 0.11 |
Model 3 | −0.17 | 0.169 | −0.43; 0.07 |
Model 4 | −0.2 | 0.119 | −0.45; 0.05 |
Model 5 | −0.16 | 0.204 | −0.42; 0.09 |
Model 6 | −0.16 | 0.205 | −0.42; 0.09 |
Variable | β | p-Value | CI 95% |
---|---|---|---|
O2max (mL/kg/min) | Vaccine first | ||
Model 1 | −1.68 | 0.017 | −3.06; −0.30 |
Model 2 | −1.37 | 0.044 | −2.71; −0.03 |
Model 3 | −1.82 | 0.009 | −3.18; −0.46 |
Model 4 | −1.09 | 0.106 | −2.42; 0.23 |
Model 5 | −1.3 | 0.062 | −2.68; 0.06 |
Model 6 | −1.15 | 0.094 | −2.5; 0.19 |
O2max (mL/kg/min) | Vaccine second | ||
Model 1 | −3.44 | <0.001 | −4.68; −2.20 |
Model 2 | −2.92 | <0.001 | −4.15; −1.69 |
Model 3 | −3.05 | <0.001 | −4.30; −1.79 |
Model 4 | −3.28 | <0.001 | −4.48; −2.08 |
Model 5 | −2.92 | <0.001 | −4.19; −1.66 |
Model 6 | −2.54 | <0.001 | −3.8; −1.28 |
O2max (mL/kg/min) | PCR | ||
Model 1 | −0.89 | 0.106 | −1.99; 0.19 |
Model 2 | −0.73 | 0.173 | −1.78; 0.32 |
Model 3 | −0.8 | 0.142 | −1.87; 0.26 |
Model 4 | −0.66 | 0.210 | −1.71; 0.37 |
Model 5 | −0.94 | 0.090 | −2.03; 0.14 |
Model 6 | −0.63 | 0.237 | −1.68; 0.41 |
O2max (mL/kg/min) | PCR (-) | ||
Model 1 | −1.24 | 0.263 | −3.43; 0.93 |
Model 2 | −1.49 | 0.173 | −3.65; 0.66 |
Model 3 | −0.91 | 0.413 | −3.11; 1.28 |
Model 4 | −1.46 | 0.174 | −3.56; 0.64 |
Model 5 | −0.92 | 0.398 | −3.07; 1.2 |
Model 6 | −0.93 | 0.387 | −3.05; 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez-Gómez, J.; Faúndez-Casanova, C.; Souza de Carvalho, R.; Castillo-Retamal, F.; Valenzuela Reyes, P.; Concha-Cisternas, Y.; Luna-Villouta, P.; Álvarez, C.; Godoy-Cumillaf, A.; Hernández-Mosqueira, C.; et al. Estimated Oxygen Consumption with the Abbreviated Method and Its Association with Vaccination and PCR Tests for COVID-19 from Socio-Demographic, Anthropometric, Lifestyle, and Morbidity Outcomes in Chilean Adults. Int. J. Environ. Res. Public Health 2022, 19, 6856. https://doi.org/10.3390/ijerph19116856
Vásquez-Gómez J, Faúndez-Casanova C, Souza de Carvalho R, Castillo-Retamal F, Valenzuela Reyes P, Concha-Cisternas Y, Luna-Villouta P, Álvarez C, Godoy-Cumillaf A, Hernández-Mosqueira C, et al. Estimated Oxygen Consumption with the Abbreviated Method and Its Association with Vaccination and PCR Tests for COVID-19 from Socio-Demographic, Anthropometric, Lifestyle, and Morbidity Outcomes in Chilean Adults. International Journal of Environmental Research and Public Health. 2022; 19(11):6856. https://doi.org/10.3390/ijerph19116856
Chicago/Turabian StyleVásquez-Gómez, Jaime, César Faúndez-Casanova, Ricardo Souza de Carvalho, Franklin Castillo-Retamal, Pedro Valenzuela Reyes, Yeny Concha-Cisternas, Pablo Luna-Villouta, Cristian Álvarez, Andrés Godoy-Cumillaf, Claudio Hernández-Mosqueira, and et al. 2022. "Estimated Oxygen Consumption with the Abbreviated Method and Its Association with Vaccination and PCR Tests for COVID-19 from Socio-Demographic, Anthropometric, Lifestyle, and Morbidity Outcomes in Chilean Adults" International Journal of Environmental Research and Public Health 19, no. 11: 6856. https://doi.org/10.3390/ijerph19116856
APA StyleVásquez-Gómez, J., Faúndez-Casanova, C., Souza de Carvalho, R., Castillo-Retamal, F., Valenzuela Reyes, P., Concha-Cisternas, Y., Luna-Villouta, P., Álvarez, C., Godoy-Cumillaf, A., Hernández-Mosqueira, C., Cigarroa, I., Garrido-Méndez, A., Matus-Castillo, C., Castillo-Retamal, M., & Leao Ribeiro, I. (2022). Estimated Oxygen Consumption with the Abbreviated Method and Its Association with Vaccination and PCR Tests for COVID-19 from Socio-Demographic, Anthropometric, Lifestyle, and Morbidity Outcomes in Chilean Adults. International Journal of Environmental Research and Public Health, 19(11), 6856. https://doi.org/10.3390/ijerph19116856