A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Focused Question
- Population (P): Patients with peri-implantitis.
- Intervention (I): Peri-implantitis treatment performed with systemic antibiotic therapy with pre- and post-operative clinical evaluation.
- Comparison (C): Peri-implantitis treatment performed without systemic antibiotic adjunctive therapy with pre- and post-operative clinical evaluation.
- Outcome (O): Outcomes measuring changes in clinical parameters including PPD and BoP, at implant, before and after (at least 3 months) peri-implantitis treatment.
- Study (S): Randomized controlled trials (RCTs) and observational studies (cohort and case–control studies and case series).
2.3. Search Strategy
2.4. Eligibility: Inclusion and Exclusion Criteria for Studies
- For clinical studies, publications of adult subjects in good general health and at least a three-month follow-up period.
- Studies performing an explicit diagnosis of peri-implantitis.
- Studies assessing the effectiveness by comparing changes in clinical parameters including PPD reduction and BoP reduction.
- -
- In vitro and pre-clinical studies, systematic reviews.
- -
- Full-text publications not available in the English language.
- -
- Studies with less than 3 months of follow-up.
2.5. Study Selection and Data Extraction
2.6. Assessment of Risk of Bias
2.7. Data Analyses
3. Results
3.1. Search Results
3.2. Studies Quality Assessment and Bias Risk
3.3. Primary and Secondary Outcomes
4. Discussion
4.1. Can Systemic Antibiotics Be Efficacious in Bleeding Reduction on Probing (BoP) and Probing Pocket Depth (PPD)?
4.2. Did the Administration of Systemic Antibiotics Affect Other Secondary Outcomes That Were Analyzed?
4.3. Study Limitations and Biased Quality of the Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deeb, M.A.; Alsahhaf, A.; Mubaraki, S.A.; Alhamoudi, N.; Al-Aali, K.A.; Abduljabbar, T. Clinical and Microbiological Outcomes of Photodynamic and Systemic Antimicrobial Therapy in Smokers with Peri-Implant Inflammation. Photodiagnosis Photodyn. Ther. 2020, 29, 101587. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Schaller, D.; Håkansson, J.; Wennström, J.L.; Tomasi, C.; Berglundh, T. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-Implantitis. J. Dent. Res. 2016, 95, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-Implant Diseases and Conditions: Consensus Report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S286–S291. [Google Scholar] [CrossRef]
- Lindhe, J.; Berglundh, T.; Ericsson, I.; Liljenberg, B.; Marinello, C. Experimental Breakdown of Peri-Implant and Periodontal Tissues. A Study in the Beagle Dog. Clin. Oral Implant. Res. 1992, 3, 9–16. [Google Scholar] [CrossRef]
- Salvi, G.E.; Cosgarea, R.; Sculean, A. Prevalence and Mechanisms of Peri-Implant Diseases. J. Dent. Res. 2017, 96, 31–37. [Google Scholar] [CrossRef] [PubMed]
- De Waal, Y.C.M.; Vangsted, T.E.; Van Winkelhoff, A.J. Systemic Antibiotic Therapy as an Adjunct to Non-Surgical Peri-Implantitis Treatment: A Single-Blind RCT. J. Clin. Periodontol. 2021, 48, 996–1006. [Google Scholar] [CrossRef]
- Dabdoub, S.M.; Tsigarida, A.A.; Kumar, P.S. Patient-Specific Analysis of Periodontal and Peri-Implant Microbiomes. J. Dent. Res. 2013, 92, 168S–175S. [Google Scholar] [CrossRef]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef]
- Kormas, I.; Pedercini, C.; Pedercini, A.; Raptopoulos, M.; Alassy, H.; Wolff, L.F. Peri-Implant Diseases: Diagnosis, Clinical, Histological, Microbiological Characteristics and Treatment Strategies. A Narrative Review. Antibiotics 2020, 9, 835. [Google Scholar] [CrossRef]
- Charalampakis, G.; Leonhardt, Å.; Rabe, P.; Dahlén, G. Clinical and Microbiological Characteristics of Peri-Implantitis Cases: A Retrospective Multicentre Study. Clin. Oral Implant. Res. 2012, 23, 1045–1054. [Google Scholar] [CrossRef]
- Persson, G.R.; Renvert, S. Cluster of Bacteria Associated with Peri-Implantitis. Clin. Implant Dent. Relat Res. 2014, 16, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Belibasakis, G.N.; Manoil, D. Microbial Community-Driven Etiopathogenesis of Peri-Implantitis. J. Dent. Res. 2021, 100, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Roos-Jansåker, A.-M.; Claffey, N. Non-Surgical Treatment of Peri-Implant Mucositis and Peri-Implantitis: A Literature Review. J. Clin. Periodontol. 2008, 35, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Schaller, D.; Håkansson, J.; Wennström, J.L.; Tomasi, C.; Berglundh, T. Peri-Implantitis—Onset and Pattern of Progression. J. Clin. Periodontol. 2016, 43, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Osorio, M.T.; Vallecillo-Rivas, M.; Toledano-Osorio, M.; Rodríguez-Archilla, A.; Toledano, R.; Osorio, R. Efficacy of Local Antibiotic Therapy in the Treatment of Peri-Implantitis: A Systematic Review and Meta-Analysis. J. Dent. 2021, 113, 103790. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A.; Lang, N.P. Antimicrobial Treatment of Peri-Implant Infections. Clin. Oral Implant. Res. 1992, 3, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F.; Buchmann, R. Surgical Therapy of Peri-Implant Disease: A 3-Year Follow-up Study of Cases Treated with 3 Different Techniques of Bone Regeneration. J. Periodontol. 2001, 72, 1498–1508. [Google Scholar] [CrossRef]
- Stein, J.M.; Hammächer, C.; Said-Yekta Michael, S. Combination of Ultrasonic Decontamination, Soft Tissue Curettage and Submucosal Air Polishing With Povidone-Iodine Application for Non-Surgical Therapy of Peri-Implantitis: 12 Months Clinical Outcomes. J. Periodontol. 2017, 89, 139–147. [Google Scholar] [CrossRef]
- Nibali, L.; Pometti, D.; Tu, Y.-K.; Donos, N. Clinical and Radiographic Outcomes Following Non-Surgical Therapy of Periodontal Infrabony Defects: A Retrospective Study. J. Clin. Periodontol. 2011, 38, 50–57. [Google Scholar] [CrossRef]
- Øen, M.; Leknes, K.N.; Lund, B.; Bunæs, D.F. The Efficacy of Systemic Antibiotics as an Adjunct to Surgical Treatment of Peri-Implantitis: A Systematic Review. BMC Oral Health 2021, 21, 666. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Mombelli, A. The Therapy of Peri-Implantitis: A Systematic Review. Int. J. Oral Maxillofac. Implants 2014, 29, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Dahlén, G.; Renvert, S. Five-Year Clinical, Microbiological, and Radiological Outcome Following Treatment of Peri-Implantitis in Man. J. Periodontol. 2003, 74, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Slots, J.; Ting, M. Systemic Antibiotics in the Treatment of Periodontal Disease. Periodontology 2000 2002, 28, 106–176. [Google Scholar] [CrossRef] [PubMed]
- Carcuac, O.; Derks, J.; Charalampakis, G.; Abrahamsson, I.; Wennström, J.; Berglundh, T. Adjunctive Systemic and Local Antimicrobial Therapy in the Surgical Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J. Dent. Res. 2016, 95, 50–57. [Google Scholar] [CrossRef]
- Carey, B.; Cryan, B. Antibiotic Misuse in the Community-a Contributor to Resistance? Ir. Med. J. 2003, 96, 43,44,46. [Google Scholar]
- Gillings, M.R. Evolutionary Consequences of Antibiotic Use for the Resistome, Mobilome and Microbial Pangenome. Front. Microbiol. 2013, 4, 4. [Google Scholar] [CrossRef]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-Implantitis. J. Clin. Periodontol. 2018, 45, S246–S266. [Google Scholar] [CrossRef]
- Lang, N.P.; Berglundh, T. Working Group 4 of Seventh European Workshop on Periodontology Periimplant Diseases: Where Are We Now?—Consensus of the Seventh European Workshop on Periodontology. J. Clin. Periodontol. 2011, 38, 178–181. [Google Scholar] [CrossRef]
- Berglundh, T.; Wennström, J.L.; Lindhe, J. Long-Term Outcome of Surgical Treatment of Peri-Implantitis. A 2-11-Year Retrospective Study. Clin. Oral Implant. Res. 2018, 29, 404–410. [Google Scholar] [CrossRef]
- Hallström, H.; Persson, G.R.; Lindgren, S.; Renvert, S. Open Flap Debridement of Peri-Implantitis with or without Adjunctive Systemic Antibiotics: A Randomized Clinical Trial. J. Clin. Periodontol. 2017, 44, 1285–1293. [Google Scholar] [CrossRef]
- Gomi, K.; Yashima, A.; Nagano, T.; Kanazashi, M.; Maeda, N.; Arai, T. Effects of Full-Mouth Scaling and Root Planing in Conjunction with Systemically Administered Azithromycin. J. Periodontol. 2007, 78, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Tavelli, L.; Ravidà, A.; Barootchi, S.; Chambrone, L.; Giannobile, W.V. Recombinant Human Platelet-Derived Growth Factor: A Systematic Review of Clinical Findings in Oral Regenerative Procedures. JDR Clin. Trans. Res. 2021, 6, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Cosgarea, R.; Eick, S.; Jepsen, S.; Arweiler, N.B.; Juncar, R.; Tristiu, R.; Salvi, G.E.; Heumann, C.; Sculean, A. Microbiological and Host-Derived Biomarker Evaluation Following Non-Surgical Periodontal Therapy with Short-Term Administration of Systemic Antimicrobials: Secondary Outcomes of an RCT. Sci. Rep. 2020, 10, 16322. [Google Scholar] [CrossRef]
- Hallström, H.; Persson, G.R.; Lindgren, S.; Olofsson, M.; Renvert, S. Systemic Antibiotics and Debridement of Peri-Implant Mucositis. A Randomized Clinical Trial. J. Clin. Periodontol. 2012, 39, 574–581. [Google Scholar] [CrossRef]
- Ramos, U.D.; Ayub, L.G.; Reino, D.M.; Grisi, M.F.M.; Taba, M.; Souza, S.L.S.; Palioto, D.B.; Novaes, A.B. Antimicrobial Photodynamic Therapy as an Alternative to Systemic Antibiotics: Results from a Double-Blind, Randomized, Placebo-Controlled, Clinical Study on Type 2 Diabetics. J. Clin. Periodontol. 2016, 43, 147–155. [Google Scholar] [CrossRef]
- Buser, D.; Weber, H.P.; Lang, N.P. Tissue Integration of Non-Submerged Implants. 1-Year Results of a Prospective Study with 100 ITI Hollow-Cylinder and Hollow-Screw Implants. Clin. Oral Implant. Res. 1990, 1, 33–40. [Google Scholar] [CrossRef]
- Nart, J.; de Tapia, B.; Pujol, À.; Pascual, A.; Valles, C. Vancomycin and Tobramycin Impregnated Mineralized Allograft for the Surgical Regenerative Treatment of Peri-Implantitis: A 1-Year Follow-up Case Series. Clin. Oral Investig. 2018, 22, 2199–2207. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Nguyen, V.T.; Chen, J. Effects of Topical Antibiotic Prophylaxis on Wound Healing After Flapless Implant Surgery: A Pilot Study. J. Periodontol. 2016, 87, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Masaki, C.; Tsuka, S.; Mukaibo, T.; Kondo, Y.; Hosokawa, R. The Effects of Lactobacillus Reuteri Probiotics Combined with Azithromycin on Peri-Implantitis: A Randomized Placebo-Controlled Study. J. Prosthodont Res. 2018, 62, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Brignardello-Petersen, R. Insufficient Evidence to Support the Lack of Association between Bone Defects and Hard-Tissue and Soft-Tissue Outcomes of Immediate Implants in the Posterior Zone. J. Am. Dent. Assoc. 2017, 148, e201. [Google Scholar] [CrossRef] [PubMed]
- Verdugo, F. Risk of Superinfection in Peri-Implantitis After Systemic Broad Spectrum Antibiotics. Int. J. Periodontics Restor. Dent. 2018, 38, 443–450. [Google Scholar] [CrossRef]
- Suh, J.-J.; Simon, Z.; Jeon, Y.-S.; Choi, B.-G.; Kim, C.-K. The Use of Implantoplasty and Guided Bone Regeneration in the Treatment of Peri-Implantitis: Two Case Reports. Implant. Dent. 2003, 12, 277–282. [Google Scholar] [CrossRef]
- Khoury, S.B.; Thomas, L.; Walters, J.D.; Sheridan, J.F.; Leblebicioglu, B. Early Wound Healing Following One-Stage Dental Implant Placement with and without Antibiotic Prophylaxis: A Pilot Study. J. Periodontol. 2008, 79, 1904–1912. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Salvi, G.E.; Mombelli, A.; Loup, P.-J.; Heitz, F.; Kruger, E.; Lang, N.P. Supportive Peri-Implant Therapy Following Anti-Infective Surgical Peri-Implantitis Treatment: 5-Year Survival and Success. Clin. Oral Implant. Res. 2018, 29, 1–6. [Google Scholar] [CrossRef]
- Shibli, J.A.; Ferrari, D.S.; Siroma, R.S.; de Figueiredo, L.C.; de Faveri, M.; Feres, M. Microbiological and Clinical Effects of Adjunctive Systemic Metronidazole and Amoxicillin in the Non-Surgical Treatment of Peri-Implantitis: 1 Year Follow-Up. Braz. Oral Res. 2019, 33, e080. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Abrahamsson, I.; Wennström, J.L.; Petzold, M.; Berglundh, T. Surgical Treatment of Peri-Implantitis: 3-Year Results from a Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2017, 44, 1294–1303. [Google Scholar] [CrossRef]
- Alqahtani, F.; AlShaikh, M.; Mehmood, A.; Alqhtani, N.; Alkhtani, F.; AlEnazi, A. Efficacy of Antibiotic versus Probiotics as Adjuncts to Mechanical Debridement for Managing Peri-Implant Mucositis. J. Oral Implantol. 2021. [Google Scholar] [CrossRef]
- Gomi, K.; Matsushima, Y.; Ujiie, Y.; Shirakawa, S.; Nagano, T.; Kanazashi, M.; Yashima, A. Full-Mouth Scaling and Root Planing Combined with Azithromycin to Treat Peri-Implantitis. Aust. Dent. J. 2015, 60, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Almohareb, T.; Alhamoudi, N.; Al Deeb, M.; Bin-Shuwaish, M.S.; Mokeem, S.A.; Saad Shafqat, S.; Vohra, F.; Abduljabbar, T. Clinical Efficacy of Photodynamic Therapy as an Adjunct to Mechanical Debridement in the Treatment of Per-Implantitis with Abscess. Photodiagnosis Photodyn. Ther. 2020, 30, 101750. [Google Scholar] [CrossRef]
- Liñares, A.; Pico, A.; Blanco, C.; Blanco, J. Adjunctive Systemic Metronidazole to Nonsurgical Therapy of Peri-Implantitis with Intrabony Defects: A Retrospective Case Series Study. Int. J. Oral Maxillofac. Implants 2019, 34, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Nart, J.; Pons, R.; Valles, C.; Esmatges, A.; Sanz-Martín, I.; Monje, A. Non-Surgical Therapeutic Outcomes of Peri-Implantitis: 12-Month Results. Clin. Oral Investig. 2020, 24, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Jepsen, S.; Laine, M.L.; Anssari Moin, D.; Pilloni, A.; Zeza, B.; Sanz, M.; Ortiz-Vigon, A.; Roos-Jansåker, A.M.; Renvert, S. Reconstruction of Peri-Implant Osseous Defects: A Multicenter Randomized Trial. J. Dent. Res. 2016, 95, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.A.; Salvi, G.E.; Mombelli, A.; Faddy, M.; Lang, N.P. Anti-Infective Surgical Therapy of Peri-Implantitis. A 12-Month Prospective Clinical Study. Clin. Oral Implant. Res. 2012, 23, 205–210. [Google Scholar] [CrossRef]
- Irshad, M.; Alam, M.K.; Ali, S.; Alawneh, A.; Alhadi, M.; Alhadi, A.; Alfawzan, A.A. Effects of Implant Surface Debridement and Systemic Antibiotics on the Clinical and Microbiological Variables of Periimplantitis. Biomed. Res. Int. 2021, 2021, 6660052. [Google Scholar] [CrossRef]
- Berglundh, T.; Lindhe, J.; Marinello, C.; Ericsson, I.; Liljenberg, B. Soft Tissue Reaction to de Novo Plaque Formation on Implants and Teeth. An Experimental Study in the Dog. Clin. Oral Implant. Res. 1992, 3, 1–8. [Google Scholar] [CrossRef]
- Ericsson, I.; Berglundh, T.; Marinello, C.; Liljenberg, B.; Lindhe, J. Long-Standing Plaque and Gingivitis at Implants and Teeth in the Dog. Clin. Oral Implant. Res. 1992, 3, 99–103. [Google Scholar] [CrossRef]
- Karlsson, K.; Derks, J.; Håkansson, J.; Wennström, J.L.; Petzold, M.; Berglundh, T. Interventions for Peri-Implantitis and Their Effects on Further Bone Loss: A Retrospective Analysis of a Registry-Based Cohort. J. Clin. Periodontol. 2019, 46, 872–879. [Google Scholar] [CrossRef]
- Ramberg, P.; Rosling, B.; Serino, G.; Hellström, M.K.; Socransky, S.S.; Lindhe, J. The Long-Term Effect of Systemic Tetracycline Used as an Adjunct to Non-Surgical Treatment of Advanced Periodontitis. J. Clin. Periodontol. 2001, 28, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Kricker, J.A.; Page, C.P.; Gardarsson, F.R.; Baldursson, O.; Gudjonsson, T.; Parnham, M.J. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol. Rev. 2021, 73, 233–262. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Alonso, B.; León, R.; Roldán, S.; Sanz, M. Antimicrobial Therapy in Periodontitis: The Use of Systemic Antimicrobials against the Subgingival Biofilm. J. Clin. Periodontol. 2008, 35, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Zitzmann, N.U.; Donati, M. Are Peri-Implantitis Lesions Different from Periodontitis Lesions? J. Clin. Periodontol. 2011, 38, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Paolillo, R.; Guida, L.; Annunziata, M.; Bevilacqua, N.; Tufano, M.A. Effect of Metronidazole and Modulation of Cytokine Production on Human Periodontal Ligament Cells. Int. Immunopharmacol. 2010, 10, 744–750. [Google Scholar] [CrossRef]
- Tan, O.L.; Safii, S.H.; Razali, M. Commercial Local Pharmacotherapeutics and Adjunctive Agents for Nonsurgical Treatment of Periodontitis: A Contemporary Review of Clinical Efficacies and Challenges. Antibiotics 2019, 9, 11. [Google Scholar] [CrossRef]
- Shahabooei, M.; Razavi, S.M.; Minaiyan, M.; Birang, R.; Behfarnia, P.; Yaghini, J.; Naghsh, N.; Ghalayani, P.; Hajisadeghi, S. A Histomorphometric Study of the Effect of Doxycycline and Erythromycin on Bone Formation in Dental Alveolar Socket of Rat. Adv. Biomed. Res. 2015, 4, 71. [Google Scholar] [CrossRef]
- Fransson, C.; Wennström, J.; Berglundh, T. Clinical Characteristics at Implants with a History of Progressive Bone Loss. Clin. Oral Implant. Res. 2008, 19, 142–147. [Google Scholar] [CrossRef]
- Marsh, P.D. Microbial Ecology of Dental Plaque and Its Significance in Health and Disease. Adv. Dent. Res. 1994, 8, 263–271. [Google Scholar] [CrossRef]
- Lin, G.-H.; Chan, H.-L.; Wang, H.-L. The Significance of Keratinized Mucosa on Implant Health: A Systematic Review. J. Periodontol. 2013, 84, 1755–1767. [Google Scholar] [CrossRef]
- Gobbato, L.; Avila-Ortiz, G.; Sohrabi, K.; Wang, C.-W.; Karimbux, N. The Effect of Keratinized Mucosa Width on Peri-Implant Health: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2013, 28, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Gonzalez-Martin, O.; Couso-Queiruga, E.; Wang, H.-L. The Peri-Implant Phenotype. J. Periodontol. 2020, 91, 283–288. [Google Scholar] [CrossRef]
- Verdugo, F.; Laksmana, T.; Uribarri, A. Systemic Antibiotics and the Risk of Superinfection in Peri-Implantitis. Arch. Oral Biol. 2016, 64, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Osorio, M.; Toledano, M.; Manzano-Moreno, F.J.; Vallecillo, C.; Vallecillo-Rivas, M.; Rodriguez-Archilla, A.; Osorio, R. Alveolar Bone Ridge Augmentation Using Polymeric Membranes: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 1172. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Froum, S.J.; Froum, S.H.; Rosen, P.S. Successful Management of Peri-Implantitis with a Regenerative Approach: A Consecutive Series of 51 Treated Implants with 3- to 7.5-Year Follow-Up. Int. J. Periodontics Restor. Dent. 2012, 32, 11–20. [Google Scholar]
- Roccuzzo, M.; Pittoni, D.; Roccuzzo, A.; Charrier, L.; Dalmasso, P. Surgical Treatment of Peri-Implantitis Intrabony Lesions by Means of Deproteinized Bovine Bone Mineral with 10% Collagen: 7-Year-Results. Clin. Oral Implant. Res. 2017, 28, 1577–1583. [Google Scholar] [CrossRef]
- Roos-Jansåker, A.-M.; Persson, G.R.; Lindahl, C.; Renvert, S. Surgical Treatment of Peri-Implantitis Using a Bone Substitute with or without a Resorbable Membrane: A 5-Year Follow-Up. J. Clin. Periodontol. 2014, 41, 1108–1114. [Google Scholar] [CrossRef]
- Schwarz, F.; John, G.; Schmucker, A.; Sahm, N.; Becker, J. Combined Surgical Therapy of Advanced Peri-Implantitis Evaluating Two Methods of Surface Decontamination: A 7-Year Follow-up Observation. J. Clin. Periodontol. 2017, 44, 337–342. [Google Scholar] [CrossRef]
- Serino, G.; Turri, A.; Lang, N.P. Maintenance Therapy in Patients Following the Surgical Treatment of Peri-Implantitis: A 5-Year Follow-up Study. Clin. Oral Implant. Res. 2015, 26, 950–956. [Google Scholar] [CrossRef]
- Thoma, D.S.; Naenni, N.; Figuero, E.; Hämmerle, C.H.F.; Schwarz, F.; Jung, R.E.; Sanz-Sánchez, I. Effects of Soft Tissue Augmentation ProceduRes. on Peri-Implant Health or Disease: A Systematic Review and Meta-Analysis. Clin. Oral Implant. Res. 2018, 29, 32–49. [Google Scholar] [CrossRef] [PubMed]
Article | Reason for Exclusion |
---|---|
Cosgarea et al., 2020 [36], Hallström et al., 2012 [37], Ramos et al., 2016 [38] and Buser et al., 1990 [39] | Not treatment of peri-implantitis |
Nart et al., 2018 [40], Xu et al., 2016 [41] and Tada et al., 2018 [42] | AB therapy (topical application, not as peri-implantitis treatment) |
Brignardello-Petersen et al., 2017 [43] | Review |
Verdugo et al., 2017 [44] and Suh et al., 2003 [45] | No PPD or BoP data |
Khoury et al., 2008 [46] | Less than 3 months of follow-up |
Heitz-Mayfield et al., 2018 [47] | Follow-up of included study |
Author | Study Design | Patients/Implants | Control Group | Test Group | Antibiotic and Dosage | Follow-Up | BoP Mean ± SD (%) | PPD Mean ± SD (mm) |
---|---|---|---|---|---|---|---|---|
Al-Deeb 2020 [1] | RCT | 30 patients 30 implants | MSD + PDT (n = 15) | MSD + AB (n = 15) | AZM 500 mg (1st day) AZM 250 mg (2–4 day) | 6 w 3 m | CG: B = 12.3 ± 4.8 6 w = 7.4 ± 3.6 3 m = 8.0 ± 3.7 | CG: B = 4.8 ± 1.0 6 w = 4.1 ± 1.1 3 m = 3.9 ± 0.9 |
TG: B = 15.7 ± 3.9 6 w = 12.6 ± 3.8 3 m = 10.1 ± 3.1 | TG: B = 4.6 ± 1.1 6 w = 4.0 ± 1.0 3 m = 3.9 ± 1.0 | |||||||
Shibli 2019 [48] | RCT | 40 patients 40 Implants | NSD + Placebo (n = 20) | NSD + AB (n = 20) | MTZ 400 mg + AMX 500 mg 1/8 h for 14 day | 3 m | CG: B = 97.0 ± 34.5 3 m = 90.0 ± 31.6 | CG: B = 7.6 ± 1.8 3 m = 6.5 ± 1.9 |
TG: B = 90.0 ± 31.6 3 m = 90.0 ± 31.6 | TG: B = 9.9 ± 3.6 3 m = 6.9 ± 2.5 | |||||||
Liñares 2019 [49] | PS | 18 patients 25 implants | NSD + AB (n = 25) | MTZ 250 mg 2/8 h for 7 day | 54 m | NR | B = 8.72 ± 2.13 54 m = 4.06 ± 0.8 | |
Nart 2020 [50] | PS | 21 patients 21 implants | MSD + AB (n = 21) | MTZ 500 mg 1/8 h for 7 day | 12 m | B = 78.78 ± 28.26 12 m = 21.22 ± 24.76 | B = 5.34 ± 1.29 12 m = 3.69 ± 0.47 | |
Carcuac 2017 * [51] | RCT | 67 patients 121 implants | MSD (n = 53) | MSD + AB (n = 68) | AMX 750 mg 1/12 h | 36 m | CG: B = 100 B-36 m = 0 | CG: B-36 m = −2.38 ± 2.55 |
TG: B = 100 B-36 m = 0 | TG: B-36 m = −3.00 ± 2.24 | |||||||
Hallström 2017 [30] | RCT | 39 patients 39 implants | OFD (n = 19) | OFD + AB (n = 20) | AZM: −250 mg × 2 the day of surgery −250 mg × 1 for 4 day | 6 m | CG: B = 100 6 m = 6.3 | CG: B = 5.8 ± 0.9 6 m = 4.6 ± 1.1 |
TG: B = 100 6 m = 7.0 | TG: B = 5.8 ± 1.0 6 m = 4.7 ± 1.3 | |||||||
Jepsen 2016 [52] | PS | 63 patients 63 implants | OFD + AB (n = 30) | OFD + PTG + AB (n = 33) | AMX 500 mg/8 h for 8 day MTZ 400 mg/12 h for 8 day | 12 m | CG: B = 85.5 ± 23.9 12 m = 40.4 ± 37.1 | CG: B = 6.3 ± 1.6 12 m = 3.5 ± 1.1 |
TG: B = 89.4 ± 20.7 12 m = 33.3 ± 31.7 | TG: B = 6.3 ± 1.3 12 m = 3.5 ± 1.5 | |||||||
De Waal 2021 [6] | RCT | 62 patients 143 implants | MSD (n = 68) | MSD + AB (n = 75) | AMX 500 mg/8 h 7 day MTZ 500 mg/8 h for 7 day | 3 m | CG: B = 94.66 ± 9.42 3 m = 55.47 ± 31.60 | CG: B = 5.82 ± 1.42 3 m = 4.42 ± 1.38 |
TG: B = 85.96 ± 19.32 3 m = 47.37 ± 30.43 | TG: B = 5.63 ± 1.24 3 m = 3.96 ± 1.21 | |||||||
Heitz-Mayfield 2012 [53] | PS | 24 patients 36 implants | OFD + AB (n = 36) | AMX 500 mg/8 h for 7 day MTZ 400 mg/8 h for 7 day | 3 m PPD 12 m BoP | B = 13.9 ± 11.6 3 m = NR 12 m = 6.9 ± 5.4 | B = 5.3 ± 1.8 3 m = 3.0 ± 0.7 | |
Leonhardt 2003 * [22] | PS | 9 patients 26 implants | CLI (n = 5) MTZ, AMX (n = 4) Tetracycline (n = 5) MTZ, AMX (n = 3) Ciprofloxacin (n = 5) Sulfonamide, Trimetroprim (n = 2) MTZ (n = 2) Dose of antibiotics NR | CLI for 4 w MTZ, AMX for 4 w Tetracycline for 4 w MTZ, AMX for 2 w Ciprofloxacin for 2 w Sulfonamide, Trimetroprim for 2 w MTZ for 2 w | 12 m | B = 100 12 m = 36 | NR | |
Carcuac 2016 [24] | RCT | 51 patients 96 implants | RT+ OFD + AS (n = 49) | RT + OFD + AB (n = 47) | AMX 750 mg/12 h for 10 day (3 day prior to surgery) | 6 m | CG: B = 100 6 m = 26 ± 56.5 | CG: B = 7.79 ± 1.69 B-12 m = −2.18 ± 1.54 |
TG: B = 100 6 m = 16 ± 34 | TG: B = 7.85 ± 1.57 B-12 m = −3.03 ± 1.58 | |||||||
Alqahtani 2021 [54] | RCT | 28 patients 28 implants | MSD + PT (n = 14) | MSD + AB (n = 14) | AMX 500 mg/8 h for 7 day | 6 m | CG: B = 48.6 ± 6.6 6 m = 20.6 ± 14.1 | CG: B = 5.2 ± 0.5 6 m = 1.2 ± 0.3 |
TG: B = 46.2 ± 5.4 6 m = 30.2 ± 6.4 | TG: B = 5 ± 0.6 6 m = 2.6 ± 0.8 | |||||||
Gomi 2015 [55] | RCT | 20 patients 20 implants | FM-SRP (n = 10) | FM-SRP + AB (n = 10) | AZM 500 mg/24 h for 3 day | 1 w 1 m 3 m | CG: B = 25.7 ± 2.8 1 w = 18.3 ± 2.6 1 m = 17.3 ± 3.4 3 m = 19.8 ± 3.3 | CG: B = 4.35 ± 0.22 1 w = 4.33 ± 1.02 1 m = 4.12 ± 0.32 3 m = 4.08 ± 0.30 |
TG: B = 27.9 ± 4.3 1 w = 4.9 ± 1.8 1 m = 2.7 ± 0.4 3 m = 2.6 ± 0.4 | TG: B = 4.28 ± 0.85 1 w = 3.72 ± 0.89 1 m = 3.44 ± 0.54 3 m = 3.35 ± 0.31 | |||||||
Mombelli 1992 * [16] | PS | 9 patients | MSD + AB | Ornidazol 1.000 mg for 10 day | 10 day 1 m 3 m | B = 89 10 day = 33 1 m = 89 3 m = 44 | B = 5.89 10 day = 4.33 1 m = 4.33 3 m = 4.22 | |
Almohareb 2020 [56] | RCT | 40 patients 79 implants | MD +PDT (n = 43) | MD + AB (n = 36) | AMX 500 mg/8 h for 7 day MTZ 400 mg/8 h for 7 day | 6 m | CG: B = 45.3 ± 14.8 6 m = 27.2 ± 13.3 | CG: B = 5.2 ± 2.0 6 m = 4.4 ± 1.1 |
TG: B = 43.8 ± 13.9 6 m = 29.7 ± 13.2 | TG: B = 5.4 ± 2.1 6 m = 4.7 ± 1.0 | |||||||
Khoury 2001 [17] | PS | 14 patients 21 implants | OFD + BG + AB (n = 12) | OFD + BG + RM + AB (n = 9) | 4 w prior to surgery (for 1 w), and 1 day and finishing 7 day after surgery according to individual antimicrobial susceptibility test | 6 m | NR | CG: B = 8.0 ± 0.5 6 m = 6.5 ± 0.8 |
TG: B = 7.7 ± 0.5 6 m = 6.4 ± 0.9 | ||||||||
Heitz-Mayfield 2016 [47] | PS | 24 patients 36 implants | OFD + AB (n = 36) | AMX 500 mg/8 h for 7 day MTZ 400 mg/8 h for 7 day | 12 m | B = 13.9 ± 11.6 12 m = 6.9 ± 5.4 | B = 5.3 ± 1.8 12 m = 2.9 ± 0.8 | |
Irshad 2021 [57] | PS | 46 patients 46 implants | MSD (n = 21) | MSD + AB (n = 25) | AMX 500 mg/8 h for 5 day MTZ 400 mg/8 h for 5 day | 3 m | CG: B = 100 3 m = 86 | CG: B = 7.5 ± 1.6 3 m = 4.6 ± 1.2 |
TG: B = 100 3 m = 78 | TG: B = 7.6 ± 1.4 3 m = 5.2 ± 1.3 |
Author | CG/TG | Plaque Score | Gingival Index | CAL | Suppuration | Recession | Keratinized Mucosa | Bone Loss | Total Bacteria Counts | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|
Al-Deeb 2020 [1] | CG | B:44.5 ± 9.7 6 w:15.7 ± 3.1 * | NR | NR | NR | NR | NR | NR | P. aeruginosa and S. aureus in CG and TG showed SS reductions at 12 w. On inter-group comparison, CG and TG showed no SS differences at follow-up. | NR |
TG | B: 47.4 ± 10.2 6 w: 20.1 ± 4.2 * | NR | NR | NR | NR | NR | NR | NR | ||
Shibli 2019 [48] | CG | B: 60.0 ± 51.6 3 m: 40.0 ± 51.6 | B:50.0 ± 52.7 3 m:10.0 ± 31.6 | B: 7.8 ± 1.9 3 m: 6.7 ± 2.0 | B: 30.0 ± 48.3 3 m: 0 * | NR | NR | NR | Both therapies led to a SS reduction in the proportion of red complex species at 3 m. | NR |
TG | B: 40.0 ± 51.6 3 m: 40.0 ± 51.6 | B: 50.0 ± 52.7 3 m: 0 | B: 9.9 ± 3.6 3 m: 7.1 ± 2.8 * | B: 50.0 ± 52.7 3 m: 0 * | NR | NR | NR | |||
Liñares 2019 [49] | TG | NR | NR | NR | NR | NR | NR | B: 4.52 ± 2.14 54 m:1.92 ± 1.93 * | NR | NR |
Nart 2020 [50] | TG | B:68.17 ± 26.68 12 m:40.91 ± 29.87 * | NR | NR | B: 65.90 ± 45.57 12 m:6.82 ± 21.62 * | B: 0.17 ± 0.47 12 m:0.79 ± 0.72 * | B: 2.59 ± 1.26 12 m:1.95 ± 1.05 | B: 3.76 ± 1.26 12 m:2.45 ± 1.26 * | NR | NR |
Carcuac 2017 [51] | CG | NR | NR | NR | NR | NR | NR | B-36 m: 0.51 ± 1.87 | NR | NR |
TG | NR | NR | NR | NR | NR | NR | B-36 m: −0.32 ± 1.35 | NR | NR | |
Hallström 2017 [30] | CG | NR | NR | NR | NR | NR | NR | B: 4.9 ± 1.7 12 m:4.5 ± 1.5 | No SS differences in changes of TBC between B and 6 or 12 m. No SS differences between groups. | NR |
TG | NR | NR | NR | NR | NR | NR | B: 4.6 ± 1.6 12 m:4.0 ± 1.6 | NR | ||
Jepsen 2016 [52] | CG | B: 21.0 ± 28.7 12 m:10.3 ± 20.0 | NR | NR | B: 25.9 ± 33.1 12 m: 1.3 ± 4.6 * | NR | NR | (m) B-12 m: −0.96 ± 1.35 (d) B-12 m: −0.84 ± 1.14 | NR | NR |
TG | B: 25.8 ± 36.8 12 m:24.8 ± 36.3 | NR | NR | B: 27.8 ± 34.0 12 m:1.0 ± 4.2 * | NR | NR | (m) B-12 m: −3.58 ± 2.05 (d) B-12 m: −3.45 ± 2.16 | NR | NR | |
De Waal 2021 [6] | CG | B: 42.11 ± 30.89 3 m: 6.88 ± 14.72 | NR | B: 12.45 ± 2.36 3 m: 11.49 ± 2.01 | B: 8.33 ± 16.67 3 m: 0 | NR | NR | B: 3.03 ± 1.24 3 m:3.08 ± 1.32 | No SS differences between B and 3 m, except for T. denticola in TG. No SS differences at 3 m. | Between groups no SS differences. In TG adverse events (headache, dizziness, diarrhea and nausea). |
TG | B: 42.35 ± 28.02 3 m: 8.20 ± 13.28 | NR | B: 12.35 ± 1.68 3 m: 11.39 ± 1.62 | B: 8.33 ± 16.67 3 m: 0 | NR | NR | B: 2.65 ± 1.61 3 m: 2.70 ± 1.65 | |||
Heitz-Mayfield 2012 [53] | TG | NR | NR | NR | Highly significant reduction in suppuration at 3 m maintained until 12 m. | NR | NR | 3 implants in 3 patients gained bone, the rest had stable crestal bone levels. | NR | Six patients reported mild adverse effects: gastrointestinal (5) or vaginal thrush (1). |
Leonhardt 2003 [22] | TG | B: 100 12 m: 8% | NR | NR | NR | NR | NR | B: 0 12 m: 12% | B: 73% 12 m: 36% | NR |
Carcuac 2016 [24] | CG | NR | NR | NR | B: 33 ± 67.3 6 m: 9 ± 19.6 | NR | NR | B-12 m: −0.69 ± 1.32 * | SS decline during the 12 m period for both groups. No differences between groups. | NR |
TG | NR | NR | NR | B: 34 ± 72.2 6 m: 5 ± 10.6 | NR | NR | B-12 m: 0.18 ± 1.15 * | NR | ||
Alqahtani 2021 [54] | CG | Significantly higher at B compared with 3 and 6 m. | NR | NR | NR | NR | NR | No SS difference in m and d CBL in all groups up to 6 m. | NR | NR |
TG | NR | NR | NR | NR | NR | NR | NR | |||
Gomi 2015 [55] | CG | NR | The GI improved in both groups, being more pronounced in the TG. | NR | NR | NR | NR | NR | In the CG, the TCB did not change over time. In TG, the TCB seemed to be clearly reduced compared with the CG. | NR |
TG | NR | NR | NR | NR | NR | NR | NR | |||
Mombelli 1992 [16] | TG | B: 0.56 12 m: 0.86 | NR | NR | NR | B: −1.11 12 m: −2.14 | NR | NR | The flora was drastically reduced after therapy. At 12 m the organisms re-emerged in several treated sites. | NR |
Almohareb 2020 [56] | CG | B: 38.6 ± 9.5 6 m: 21.8 ± 9.1 * | NR | NR | NR | NR | NR | NR | SS differences were observed in values for Pg, Td, and Tf at 6 m in comparison to B for both groups. | NR |
TG | B: 41.2 ± 11.7 6 m: 20.1 ± 7.7 * | NR | NR | NR | NR | NR | NR | NR | ||
Khoury 2001 [17] | CG | NR | NR | NR | NR | NR | NR | B: 7.3 ± 1.3 6 m: 6.9 ± 1.1 | NR | NR |
TG | NR | NR | NR | NR | NR | NR | B:7.4 ± 0.9 6 m: 7.0 ± 1.3 | NR | NR | |
Heitz-Mayfield 2016 [47] | TG | B: 16.8 ± 12.7 12 m: 11.1 ± 9.2 | NR | NR | B: 21 ± 58 12 m: 2 ± 5.6 * | B: −12 m: 1.0 ± 0.9 | NR | NR | NR | NR |
Irshad 2021 [57] | CG | B: 36 3 m: 38 | NR | B: 12.0 ± 1.8 3 m:10.4 ± 1.6 * | B: 27 3 m:8 * | B: 4.5 ± 2.0 3 m: 6.3 ± 1.6 * | NR | NR | Differences between the TCB of the two groups at B were not significant. | NR |
TG | B: 30 3 m: 10 * | NR | B: 11.0 ± 1.7 3 m: 10.6 ± 1.7 | B: 19 3 m: 8 | B: 3.8 ± 1.4 3 m: 4.5 ± 2.3 * a | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledano-Osorio, M.; Vallecillo, C.; Toledano, R.; Aguilera, F.S.; Osorio, M.T.; Muñoz-Soto, E.; García-Godoy, F.; Vallecillo-Rivas, M. A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis. Int. J. Environ. Res. Public Health 2022, 19, 6502. https://doi.org/10.3390/ijerph19116502
Toledano-Osorio M, Vallecillo C, Toledano R, Aguilera FS, Osorio MT, Muñoz-Soto E, García-Godoy F, Vallecillo-Rivas M. A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis. International Journal of Environmental Research and Public Health. 2022; 19(11):6502. https://doi.org/10.3390/ijerph19116502
Chicago/Turabian StyleToledano-Osorio, Manuel, Cristina Vallecillo, Raquel Toledano, Fátima S. Aguilera, María T. Osorio, Esther Muñoz-Soto, Franklin García-Godoy, and Marta Vallecillo-Rivas. 2022. "A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis" International Journal of Environmental Research and Public Health 19, no. 11: 6502. https://doi.org/10.3390/ijerph19116502
APA StyleToledano-Osorio, M., Vallecillo, C., Toledano, R., Aguilera, F. S., Osorio, M. T., Muñoz-Soto, E., García-Godoy, F., & Vallecillo-Rivas, M. (2022). A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis. International Journal of Environmental Research and Public Health, 19(11), 6502. https://doi.org/10.3390/ijerph19116502