Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean
Abstract
:1. Introduction
- To analyze the main characteristics of the scientific production on OFMSW.
- To identify the main approaches of studies on the management of OFMSW and their relationship with SCPMs.
- To evaluate the regulatory framework, policies, and/or strategies on MSW management and SCPMs.
2. Materials and Methods
2.1. Analysis of the Main Characteristics of Scientific Production
2.1.1. Source of Data and Search Strategy
2.1.2. Data Analysis
2.2. Identification of the Main Research Approaches—Systematic Review
Analysis of SCPMs Approaches
2.3. Assessment of the Regulatory Framework, Policies, and/or Strategies on Waste Management and SCPMs
2.3.1. Identification of Data Sources and Available Information
2.3.2. Revision, Classification, and Analysis of Documents
3. Results and Discussion
3.1. Main Characteristics of Scientific Production
3.1.1. Evolution of Scientific Production
3.1.2. Publications by Country
3.1.3. Most Cited Articles
3.1.4. Main Journals
3.2. Keyword Analysis
3.3. Main Research Approaches—Systematic Review
3.3.1. Analysis of Publications According to the Classification Category
3.3.2. Identification and Characterization of OFMSW
3.3.3. Food Losses Quantification
3.3.4. Strategic and Interdisciplinary Management of OFMSW
3.3.5. Techniques and/or Processes for Treatment and/or Valorization of OFMSW
- (i).
- Composting
- (ii).
- Waste to Energy
- (iii).
- Anaerobic digestion and co-digestion
- (iv).
- Vermiculture
3.4. Scientific Publications with SCPMs Approach
3.5. Regulatory Framework, Policies, and/or Strategies on Waste Management and SCPMs
3.5.1. Regulatory Framework for Waste Management
3.5.2. Circular Economy
3.5.3. Bioeconomy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Savino, A.; Solórzano, G.; Quispe, C.; Correal, M.C. Waste Management Outlook for Latin America and the Caribbean Waste Management Outlook for Latin America and the Caribbean; Savino, A., Ed.; United Nations Environment Programme, Latin America and the Caribbean Office: Panama City, Panama, 2018; ISBN 978-92-807-3714-1. [Google Scholar]
- Hettiarachchi, H.; Ryu, S.; Caucci, S.; Silva, R. Municipal solid waste management in Latin America and the Caribbean: Issues and potential solutions from the governance perspective. Recycling 2018, 3, 19. [Google Scholar] [CrossRef][Green Version]
- Merchán, V.M. Waste-to-Energy in Mexico. Technical Potential for Biogas Production and Greenhouse Gas Mitigation from the Anaerobic Digestion of Municipal Solid Waste. Master’s Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2018. [Google Scholar]
- Babs-Shomoye, F.; Kabir, R. Health effects of solid waste disposal at a dumpsite on the surrounding human settlements. J. Public Health Dev. Ctries. 2016, 2, 268–275. [Google Scholar]
- WHO. Waste and Human Health: Evidence and Needs; WHO: Bonn, Germany, 2015. [Google Scholar]
- WHO. Population Health and Waste Management: Scientifc Data and Policy Options; WHO: Copenhagen, Denmak, 2007. [Google Scholar]
- Vinti, G.; Bauza, V.; Clasen, T.; Medlicott, K.; Tudor, T.; Zurbrügg, C.; Vaccari, M. Municipal solid waste management and adverse health outcomes: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 4331. [Google Scholar] [CrossRef] [PubMed]
- Mahler, C.F.; De Oliveira, S.B.; Taquette, S.R. Doenças respiratórias de população infantil residente próxima a um lixão. Biosci. J. 2016, 32, 1403–1411. [Google Scholar] [CrossRef]
- Njoku, P.O.; Edokpayi, J.N.; Odiyo, J.O. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2125. [Google Scholar] [CrossRef][Green Version]
- Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef]
- Gouveia, N.; Prado, R.R. do Health risks in areas close to urban solid waste landfill sites. Rev. Saude Publica 2010, 44, 859–866. [Google Scholar] [CrossRef][Green Version]
- Mataloni, F.; Badaloni, C.; Golini, M.N.; Bolignano, A.; Bucci, S.; Sozzi, R.; Forastiere, F.; Davoli, M.; Ancona, C. Morbidity and mortality of people who live close to municipal waste landfills: A multisite cohort study. Int. J. Epidemiol. 2016, 45, 806. [Google Scholar] [CrossRef][Green Version]
- Vaccari, M.; Vinti, G.; Tudor, T. An Analysis of the Risk Posed by Leachate from Dumpsites in Developing Countries. Environments 2018, 5, 99. [Google Scholar] [CrossRef][Green Version]
- Gobierno de México. Proyectos de Aprovechamiento Energético a partir de Residuos Urbanos en México; GIZ Mexico: Mexico city, Mexico, 2018. [Google Scholar]
- Wang, D.; He, J.; Tang, Y.-T.; Higgitt, D.; Robinson, D. Life cycle assessment of municipal solid waste management in Nottingham, England: Past and future perspectives. J. Clean. Prod. 2020, 251, 119636. [Google Scholar] [CrossRef]
- Hogland, M.; Āriņa, D.; Kriipsalu, M.; Jani, Y.; Kaczala, F.; de Sá Salomão, A.L.; Orupõld, K.; Pehme, K.-M.; Rudoviča, V.; Denafas, G.; et al. Remarks on four novel landfill mining case studies in Estonia and Sweden. J. Mater. Cycles Waste Manag. 2018, 20, 1355–1363. [Google Scholar] [CrossRef]
- Krook, J.; Svensson, N.; Eklund, M. Landfill mining: A critical review of two decades of research. Waste Manag. 2012, 32, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Basinas, P.; Rusín, J.; Chamrádová, K. Dry anaerobic digestion of the fine particle fraction of mechanically-sorted organic fraction of municipal solid waste in laboratory and pilot reactor. Waste Manag. 2021, 136, 83–92. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1; UN Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Forbes, H.; Quested, T.; O’Connor, C. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021; ISBN 978-92-807-3851-3. [Google Scholar]
- de Miguel, C.; Martínez, K.; Pereira, M.; Kohout, M. Economía Circular en América Latina y el Caribe. Oportunidad para una recuperación transformadora; ECLAC: Santiago, Chile, 2021. [Google Scholar]
- Schröder, P.; Albaladejo, M.; Ribas, P.A.; MacEwen, M.; Tilkanen, J. The Circular Economy in Latin America and the Caribbean Opportunities for Building Resilience. Energy, Environment and Resources Programme; Chatham House: London, UK, 2020; 65p. [Google Scholar]
- International Advisory Council on Global Bioeconomy. Global Bioeconomy Policy Report (IV): A Decade of Bioeconomy Policy Development around the World. A Report from the International Advisory Council on Global Bioeconomy; IACGB: Berlin, Germany, 2020. [Google Scholar]
- European Environmental Agency. The Circular Economy and the Bioeconomy—Partners in Sustainability; European Environment Agency, Ed.; Office of the European Union: Luxembourg, 2018; ISBN 978-92-9213-974-2. [Google Scholar]
- Pavolová, H.; Lacko, R.; Hajduová, Z.; Šimková, Z.; Rovňák, M. The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia. Int. J. Environ. Res. Public Health 2020, 17, 1839. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ellen MacArthur Foundation. Towards the Circular Economy: Accelerating the Scale-Up across Global Supply Chains; Ellen MacArthur Foundation: Isle of Wight, UK, 2014. [Google Scholar]
- Rodríguez, A.G.; Rodrigues, M.; Sotomayor, O. Towards a Sustainable Bioeconomy in Latin America and the Caribbean: Elements for a Regional Vision; ECLAC: Santiago, Chile, 2019. [Google Scholar]
- Brenes-Peralta, L.; Jiménez-Morales, M.F.M.F.; Campos-Rodríguez, R.; De Menna, F.; Vittuari, M. Decision-Making Process in the Circular Economy: A Case Study on University Food Waste-to-Energy Actions in Latin America. Energies 2020, 13, 2291. [Google Scholar] [CrossRef]
- Betancourt Morales, C.M.; Zartha Sossa, J.W. Circular economy in Latin America: A systematic literature review. Bus. Strategy Environ. 2020, 29, 2479–2497. [Google Scholar] [CrossRef]
- Sasson, A.; Malpica, C. Bioeconomy in Latin America. New Biotechnol. 2018, 40, 40–45. [Google Scholar] [CrossRef]
- Elsevier about Scopus—Abstract and Citation Database. Available online: https://www.elsevier.com/solutions/scopus (accessed on 8 April 2022).
- Yactayo-Alburquerque, M.T.; Alen-Méndez, M.L.; Azañedo, D.; Comandé, D.; Hernández-Vásquez, A. Impact of oral diseases on oral health-related quality of life: A systematic review of studies conducted in Latin America and the Caribbean. PLoS ONE 2021, 16, e0252578. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Murillo, J.; Villegas, L.M.; Ulloa-Murillo, L.M.; Rodríguez, A.R. Recent trends on omics and bioinformatics approaches to study SARS-CoV-2: A bibliometric analysis and mini-review. Comput. Biol. Med. 2021, 128, 104162. [Google Scholar] [CrossRef]
- Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: A global analysis and future agenda. Ecol. Econ. 2021, 185, 107050. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Yakovleva, N.; Camacho-Ferre, F. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management. Int. J. Environ. Res. Public Health 2020, 17, 9549. [Google Scholar] [CrossRef] [PubMed]
- López Torres, M.; Espinosa Lloréns, M.d.C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag. 2008, 28, 2229–2234. [Google Scholar] [CrossRef]
- Garcia-Peña, E.I.; Parameswaran, P.; Kang, D.W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011, 102, 9447–9455. [Google Scholar] [CrossRef]
- Diener, S.; Studt Solano, N.M.; Roa Gutiérrez, F.; Zurbrügg, C.; Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization 2011, 2, 357–363. [Google Scholar] [CrossRef][Green Version]
- Schneider, F. The evolution of food donation with respect to waste prevention. Waste Manag. 2013, 33, 755–763. [Google Scholar] [CrossRef]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef]
- Barreira, L.P.; Philippi Junior, A.; Rodrigues, M.S. Usinas de compostagem do Estado de São Paulo: Qualidade dos compostos e processos de produção. Eng. Sanit. Ambient. 2006, 11, 385–393. [Google Scholar] [CrossRef][Green Version]
- Silva, H.; Barbieri, A.F.; Monte-Mór, R.L. Demografia do consumo urbano: Um estudo sobre a geração de resíduos sólidos domiciliares no município de belo horizonte. Rev. Bras. Estud. Popul. 2012, 29, 421–449. [Google Scholar] [CrossRef][Green Version]
- Gutiérrez, E.E.L.; Medina, G.B.; Roman, M.O.; Flórez, O.A.; Martínez, O.L. Obtención y cualtificación de fibra dietaria a partir de resíduos de algunas frutas comúnes en Colombia. Vitae 2002, 9, 5–14. [Google Scholar]
- Strasburg, V.J.; Jahno, V.D. Paradigmas das práticas de gestão ambiental no segmento de produção de refeições no Brasil—Paradigms of environmental management practices in the meal production sector in Brazil. Eng. Sanit. Ambient. 2017, 22, 3–12. [Google Scholar] [CrossRef][Green Version]
- Mersoni, C.; Reichert, G.A. Comparação de cenários de tratamento de resíduos sólidos urbanos por meio da técnica da Avaliação do Ciclo de Vida: O caso do município de Garibaldi, RS TT—Comparison of municipal solid waste treatment scenarios through the technique of Life Cycle Asse. Eng. Sanit. Ambient. 2017, 22, 863–875. [Google Scholar] [CrossRef][Green Version]
- Menezes, R.O.; Castro, S.R.; Silva, J.B.G.; Teixeira, G.P.; Silva, M.A.M. Statistical analysis of the gravimetric characterization of household solid waste: A case study from the city of juiz de fora, Minas Gerais, Brazil. Eng. Sanit. Ambient. 2019, 24, 271–282. [Google Scholar] [CrossRef][Green Version]
- de Oliveira Silva, C.; Konrad, O.; Callado, N.H.; Feitosa, A.K.; de Araujo, L.G.S. Differentiation of estimates in per capita generation and gravimetric analysis of urban solid wastes. Rev. Agronegocio Meio Ambient. 2021, 14, e8128. [Google Scholar] [CrossRef]
- Juffo, E.E.L.D.; de Moraes, I.M.A.; Allegretti, G.; Pelegrine, D.d.C.P.; de Moraes, J.F.D.; Schmidt, V. Avaliação quantitativa e do grau de segregação dos resíduos sólidos orgânicos gerados em serviços de alimentação de um shopping center em Porto Alegre RS TT—Quantitative evaluation and segregation of organic solid waste generated in food services of. Hig. Aliment. 2016, 30, 53–58. [Google Scholar]
- Fierro Ochoa, A.; Armijo de Vega, C.; Buenrostro Delgado, O.; Valdez Salas, B. Analysis of solid waste generation in supermarkets in the city of Mexicali, Mexico. Rev. Int. Contam. Ambient. 2010, 26, 291–297. [Google Scholar]
- Ruiz Morales, M. Caracterización de residuos sólidos en la universidad iberoamericana, ciudad de México. Rev. Int. Contam. Ambient. 2011, 28, 93–97. [Google Scholar]
- Angulo, J.; Mahecha, L.; Yepes, S.A.; Yepes, A.M.; Bustamante, G.; Jaramillo, H.; Valencia, E.; Villamil, T.; Gallo, J. Quantitative and nutritional characterization of fruit and vegetable waste from marketplace: A potential use as bovine feedstuff? J. Environ. Manag. 2012, 95, S203–S209. [Google Scholar] [CrossRef]
- Robles-Ramírez, M.d.C.; Monterrubio-López, R.; Mora-Escobedo, R.; Beltrán-Orozco, M.d.C. Evaluation of extracts from potato and tomato wastes as natural antioxidant additives. Arch. Latinoam. Nutr. 2016, 66, 66–73. [Google Scholar]
- Dal’ Magro, G.P.; Talamini, E. Estimating the magnitude of the food loss and waste generated in Brazil. Waste Manag. Res. 2019, 37, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Tenser, C.M.R.; Ginani, V.C.; Araújo, W.M.C. Ações contra o desperdício em restaurantes e similares. Hig. Aliment. 2007, 21, 22–25. [Google Scholar]
- Henz, G.P.; Porpino, G. Perdas e desperdício de alimentos: Como o Brasil tem enfrentado este desafio global? Hortic. Bras. 2017, 35, 472–482. [Google Scholar] [CrossRef][Green Version]
- Aranha, F.Q.; Gustavo, A.F.S. e Avaliação do desperdício de alimentos em uma unidade de alimentação e nutrição na cidade de Botucatu, SP. Hig. Aliment. 2018, 32, 28–32. [Google Scholar]
- de Mello, A.G.; Back, F.d.S.; Baratta, R.; Pires, L.A.; Colares, L.G.T. Avaliação do desperdício de alimentos em unidade de alimentação e nutrição localizada em um clube da cidade do Rio de Janeiro—Evaluation of food waste in food and nutrition unit located in a club in the city of Rio de Janeiro. Hig. Aliment. 2011, 25, 33–39. [Google Scholar]
- Mota Viana, R.; Ferreira, L. Avaliação do desperdício de alimentos em unidade de alimentação e nutrição cidade de Januária, MG. Hig. Aliment. 2017, 31, 22–26. [Google Scholar]
- Fehr, M.; Calçado, M.D.R.; Romão, D.C. The basis of a policy for minimizing and recycling food waste. Environ. Sci. Policy 2002, 5, 247–253. [Google Scholar] [CrossRef]
- Oliveira dos Santos Menezes, R.; Oliveira dos Anjos, R. Otimização do manejo de resíduos em restaurante universitário de Salvador, BA. Hig. Aliment. 2017, 31, 36–39. [Google Scholar]
- Kinasz, T.R. A produção de resíduos sólidos em serviços de alimentação e nutrição e a educação ambiental: Uma abordagem sobre a percepção, atuação e formação do nutricionista—The production of solid wastes in food services and nutrition and environmental educati. Hig. Aliment. 2009, 23, 44–53. [Google Scholar]
- Basso, N.; Brkic, M.; Moreno, C.; Poullier, P.; Romero, A. Valoremos los alimentos, evitemos pérdidas y desperdicios. Diaeta 2016, 34, 25–32. [Google Scholar]
- Gonçalves, A.T.T.; Moraes, F.T.F.; Marques, G.L.; Lima, J.P.; Lima, R.S. Urban solid waste challenges in the BRICS countries: A systematic literature review. Rev. Ambient. Agua 2018, 13, 2. [Google Scholar] [CrossRef][Green Version]
- Ibáñez-Forés, V.; Bovea, M.D.; Coutinho-Nóbrega, C.; de Medeiros-García, H.R.; Barreto-Lins, R. Temporal evolution of the environmental performance of implementing selective collection in municipal waste management systems in developing countries: A Brazilian case study. Waste Manag. 2018, 72, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla Barrantes, N.P.; Sagot Carvajal, P.M.; Villalobos Villalobos, G.V. Educación nutricional y ambiental en el manejo de grasas residuales. Rev. Costarric. Salud Pública 2016, 25, 20–27. [Google Scholar]
- Estrada-Martínez, R.; Carrillo-Sancen, G.; Cerón-Montes, G.I.; Garrido-Hernández, A.; Martínez-Valdez, F.J. Mathematical modeling for monitoring and controlling aerobic degradation conditions of the organic fraction of urban solid waste. Rev. Mex. Ing. Quim. 2021, 20, IA2479. [Google Scholar] [CrossRef]
- Castán, E.; Satti, P.; González-Polo, M.; Iglesias, M.C.; Mazzarino, M.J. Managing the value of composts as organic amendments and fertilizers in sandy soils. Agric. Ecosyst. Environ. 2016, 224, 29–38. [Google Scholar] [CrossRef]
- Arrigoni, J.P.; Paladino, G.; Garibaldi, L.A.; Laos, F. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins. Waste Manag. 2018, 76, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Gómez, A.; Calderón, A.; Medina, C.; Sanchez-Torres, V.; Oviedo-Ocaña, E.R.R. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. Environ. Sci. Pollut. Res. 2021, 28, 24321–24327. [Google Scholar] [CrossRef]
- Tognetti, C.; Mazzarino, M.J.; Laos, F. Comprehensive quality assessment of municipal organic waste composts produced by different preparation methods. Waste Manag. 2011, 31, 1146–1152. [Google Scholar] [CrossRef]
- Lima, J.Z.; Raimondi, I.M.; Schalch, V.; Rodrigues, V.G.S. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. J. Environ. Manag. 2018, 226, 386–399. [Google Scholar] [CrossRef]
- Olguin, E.J.; Sanchez, G.; Gonzalez, R. Accelerated food waste composting. World J. Microbiol. Biotechnol. 1993, 9, 625–629. [Google Scholar] [CrossRef]
- De Souza, S.N.M.; Horttanainen, M.; Antonelli, J.; Klaus, O.; Lindino, C.A.; Nogueira, C.E.C. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: Landfill gas, biogas and thermal treatment. Waste Manag. Res. 2014, 32, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Reza, O.; Altamirano-Corona, M.F.; Castelán-Rodríguez, G.; García-González, S.A.; Durán-Moreno, A. Techno-Economic and Environmental Assessment for Biomethane Production and Cogeneration Scenarios from OFMSW in Mexico. Waste Biomass Valorization 2021, 13, 1059–1075. [Google Scholar] [CrossRef]
- Santos, L.; Valença, R.; Silva, L.; Holanda, S.; Silva, A.; Jucá, J.; Santos, A. Methane generation potential through anaerobic digestion of fruit waste. J. Clean. Prod. 2020, 256, 120389. [Google Scholar] [CrossRef]
- Kuczman, O.; Gueri, M.V.D.; De Souza, S.N.M.; Schirmer, W.N.; Alves, H.J.; Secco, D.; Buratto, W.G.; Ribeiro, C.B.; Hernandes, F.B. Food waste anaerobic digestion of a popular restaurant in Southern Brazil. J. Clean. Prod. 2018, 196, 382–389. [Google Scholar] [CrossRef]
- Campuzano, R.; González-Martínez, S. Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresour. Technol. 2015, 178, 247–253. [Google Scholar] [CrossRef]
- Pin, B.V.R.; Barros, R.M.; Silva Lora, E.E.; dos Santos, I.F.S. Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strategy Rev. 2018, 19, 31–43. [Google Scholar] [CrossRef]
- Gomes, S.; Weirich Neto, P.H.; da Silva, D.A.; Antunes, S.R.M.; Rocha, C.H.; da Silva, D.A.; Antunes, S.R.M.; Rocha, C.H. Potencial energético de resíduos sólidos domiciliares do município de Ponta Grossa, Paraná, Brasil. Eng. Sanit. Ambient. 2017, 22, 1197–1202. [Google Scholar] [CrossRef][Green Version]
- Morero, B.; Montagna, A.F.; Campanella, E.A.; Cafaro, D.C. Optimal process design for integrated municipal waste management with energy recovery in Argentina. Renew. Energy 2020, 146, 2626–2636. [Google Scholar] [CrossRef]
- Chan Gutiérrez, E.; Wall, D.M.; O’Shea, R.; Novelo, R.M.; Gómez, M.M.; Murphy, J.D. An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J. Clean. Prod. 2018, 196, 852–862. [Google Scholar] [CrossRef]
- Garcia-Peña, E.I.; Canul-Chan, M.; Chairez, I.; Salgado-Manjarez, E.; Aranda-Barradas, J. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks. Appl. Biochem. Biotechnol. 2013, 171, 279–293. [Google Scholar] [CrossRef]
- Morero, B.; Vicentin, R.; Campanella, E.A. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag. 2017, 61, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Proença, C.; Machado, G. Biodigestores como tecnologia social para promoção da saúde: Estudo de caso para saneamento residencial em áreas periféricas—Biodigesters as social technology for health promotion: Case study for residential sanitation in peripheral áreas. Saúde Redes 2018, 4, 87–99. [Google Scholar]
- Torri, S.I.; Puelles, M.M. Use of vermiculture technology for waste management and environmental remediation in Argentina. Int. J. Glob. Environ. Issues 2010, 10, 239–254. [Google Scholar] [CrossRef]
- Russo, R.O. Organic foliar fertilizer prepared from fermented fruits on growth of Vochysia guatemalensis in the Costa Rican humid tropics. J. Sustain. Agric. 2001, 18, 161–166. [Google Scholar] [CrossRef]
- de Oliveira, J.A.R.; da Conceição, A.C.; da Silva Martins, L.H.; Moreira, D.K.T.; Passos, M.F.; Komesu, A. Evaluation of the technological potential of four wastes from Amazon fruit industry in glucose and ethanol production. J. Food Process Eng. 2021, 44, e13610. [Google Scholar] [CrossRef]
- de Sousa, M.H.; da Silva, A.S.F.; Correia, R.C.; Leite, N.P.; Bueno, C.E.G.; dos Santos Pinheiro, R.L.; de Santana, J.S.; da Silva, J.L.; Sales, A.T.; de Souza, C.C.; et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: An integrated biorefinery approach. Biomass Convers. Biorefinery 2021, 12, 827–841. [Google Scholar] [CrossRef]
- de Brito Nogueira, T.B.; da Silva, T.P.M.; de Araújo Luiz, D.; de Andrade, C.J.; de Andrade, L.M.; Ferreira, M.S.L.; Fai, A.E.C. Fruits and vegetable-processing waste: A case study in two markets at Rio de Janeiro, RJ, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 18530–18540. [Google Scholar] [CrossRef]
- Weber, C.T.; Trierweiler, L.F.; Trierweiler, J.O. Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato. J. Clean. Prod. 2020, 268, 121788. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. Plano Decenal de Expansão de Energia 2029; MME: Brasilia, Brazil, 2020. [Google Scholar]
- MSA. Estrategia Nacional para la Gestión Integral de los Residuos Sólidos Urbanos 2005–2025; MSA: Buenos Aires, Argentina, 2005. [Google Scholar]
- República de Argentina. Ley 25916 Gestión de Residuos domiciliarios; República de Argentina: Buenos Aires, Argentina, 2004. [Google Scholar]
- República de Argentina. Ley 1.854 “Basura Cero”; República de Argentina: Buenos Aires, Argentina, 2006. [Google Scholar]
- Anlló, G.; Añon, M.C.; Bassó, S.; Bellinzoni, R.; Bisang, R.; Cardillo, S.; Carricarte, V.; Cassullo, E.; Ciccia, G. Biotecnología argentina al año 2030, Llave estratégica para un modelo de desarrollo tecno-productivo; UBATEC S.A. y Cámara Argentina de Biotecnología (CAB), Ed.; Ministerio de Ciencia, Tecnología e Innovación Productiva, MINCY: Buenos Aires, Argentina, 2016; ISBN 978-987-1632-67-1. [Google Scholar]
- Romano, L. Bioeconomía como Estrategia para el Desarrollo Argentino; Ano: Buenos Aires, Argentina, 2019. [Google Scholar]
- Trigo, E.; Morales, E.V.; Grassi, L.; Losada, J.; Dellisanti, J.P.; Molinari, M.E.; Murmis, M.R.; Almada, M.; Molina, S. Bioeconomía Argentina. Visión desde Agroindustria; Ministerio de Agroindustria: Buenos Aires, Argentina, 2016. [Google Scholar]
- República Federativa do Brasil. Lei de no 12.305: Política Nacional de Resíduos Sólidos (PNRS); República Federativa do Brasil: Brasilia, Brazil, 2010. [Google Scholar]
- Institui a Política de Desenvolvimento da Biotecnologia. Política de Biotenologia. Proteção e desenvolvimento; Federal Government of Brazil: Brasilia, Brazil, 2007. [Google Scholar]
- Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC). Plano de Ação em Ciência, Tecnologia e Inovação em Bioeconomia; Federal Government of Brazil: Brasilia, Brasil, 2018. [Google Scholar]
- Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC). National Strategy on Science, Technology and Innovation 2016–2022. Executive Summary; Centro de Gestão e Estudos Estratégicos (CGEE): Brasilia, Brasil, 2018. [Google Scholar]
- República de Costa Rica. Ley No. 8839 para la Gestión Integral de Residuos; Government of Costa Rica: San Jose, Costa Rica, 2010. [Google Scholar]
- República de Costa Rica. Estrategia Nacional de Separación, Recuperación y Valorización de Residuos (ENSRVR) 2016–2021; Government of Costa Rica: San Jose, Costa Rica, 2016. [Google Scholar]
- República de Costa Rica. Política Nacional de Producción y consumo Sostenible 2018–2030; Government of Costa Rica: San Jose, Costa Rica, 2018. [Google Scholar]
- República de Costa Rica. Plan Nacional de Descarbonización 2018–2050; Government of Costa Rica: San Jose, Costa Rica, 2018. [Google Scholar]
- Government of Costa Rica. National Bioeconomy Strategy Costa Rica 2020–2030; Government of Costa Rica: San Jose, Costa Rica, 2020. [Google Scholar]
- República de Colombia. Ley 1990 Por Medio de la Cual se Crea la PolíTica Para Prevenir la Pérdida y el Desperdicio de Alimentos y se Dictan Otras Disposiciones; Republic of Colombia: Bogota, Colombia, 2019. [Google Scholar]
- MADS. Resolución No. 1407 Por la Cual se Reglamenta la Gestión Ambiental de los Residuos de Envases y Empaques de Papel, Cartón, Plástico, Vidrio, Metal y se Toman Otras Determinaciones; Republic of Colombia: Bogota, Colombia, 2018. [Google Scholar]
- Departamento Nacional de Planeacion. CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos Colombia; Departamento Nacional de Planeacion: Bogota, Colombia, 2016. [Google Scholar]
- República de Colombia. Estrategia Nacional de Economía Circular 2018–2022; Republic of Colombia: Bogota, Colombia, 2019. [Google Scholar]
- Ministerio de Ciencia, Tecnologia e Innovacion. Bioeconomía para una Colombia Potencia viva y diversa: Hacia una sociedad impulsada por el Conocimiento; Ministerio de Ciencia, Tecnologia e Innovacion: Bogota, Colombia, 2020. [Google Scholar]
- Consejo Nacional de Política Económica y Social. CONPES 3934: Política de Crecimiento Verde; Republic of Colombia: Bogota, Colombia, 2018. [Google Scholar]
- Comité Técnico Nacional de Biodiversidad y Competitividad. Programa Nacional de Biocomercio Sostenible (2014–2024); Republic of Colombia: Bogota, Colombia, 2014. [Google Scholar]
- Consejo Nacional de Política Económica y Social. Documento CONPES 3697. Política para el Desarrollo Comercial de la Biotecnología a Partir del Uso Sostenible de la Biodiversidad; Republic of Colombia: Bogota, Colombia, 2011. [Google Scholar]
- República de Cuba. Política para el incremento del Reciclaje de Materias Primas; Republic of Cuba: Habana, Cuba, 2012. [Google Scholar]
- Procuraduria Federal de Proteccion al Ambiente. Ley General para la Prevención y Gestión Integral de los Residuos; GDM: Mexico City, Mexico, 2003. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales—MRN. Visión Basura Cero; GDM: Mexico City, Mexico, 2019. [Google Scholar]
- Gobierno de Ciudad de México. Plan de Acción de Economía Circular; GDM: Mexico City, Mexico, 2019. [Google Scholar]
- Secretaría de Energía. Acuerdo por el que la Secretaría de Energía aprueba y publica la actualización de la Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles más Limpios, en términos de la Ley de Transición Energética; GDM: Mexico City, Mexico, 2020. [Google Scholar]
- Margallo, M.; Ziegler-Rodriguez, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, Á.; Kahhat, R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef]
- Departamento Nacional de Planeacion. Plan Nacional de Desarrollo 2018–2022. Pacto por Colombia, Pacto por la Equidad; Departamento Nacional de Planeacion: Bogota, Colombia, 2019. [Google Scholar]
Data Base | Search Equation | Date | Languages | Document Type |
---|---|---|---|---|
Scopus | TITLE-ABS-KEY (“food wast*” OR “household* biowast*” OR “biowast*” OR “biorresidu*” OR (municipal W/5 organic* AND residu*) OR (municipal W/5 organic* AND waste*) OR “organic fraction” OR “OFMSW” OR (kitchen* W/5 waste*) OR (“school canteen*”) OR (“restaurant* waste*”) OR “supermarket* food waste*“ OR (“universit* dining hall*”) OR (fruit* W/5 wast*) OR (vegetable* W/5 wast*)) AND TITLE-ABS-KEY (brazil OR mexico OR colombia OR argentina OR peru OR venezuela OR chile OR ecuador OR guatemala OR cuba OR haiti OR bolivia OR “Dominican Republic” OR honduras OR paraguay OR nicaragua OR “El Salvador” OR “Costa Rica” OR panama OR paraguay OR “Latin America” OR “LAC”) AND (EXCLUDE (LANGUAGE, “Chinese”) OR EXCLUDE (LANGUAGE, “French”) OR EXCLUDE (LANGUAGE, “German”) OR EXCLUDE (LANGUAGE, “Undefined”) OR EXCLUDE (LANGUAGE, “Dutch”)) AND (LIMIT-TO(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)). | ** 10th January 2022 *** All years to 31st December 2021 | English Spanish Portuguese | Articles |
LILACS | (((food wast*) OR (household* biowast*) OR (biowast*) OR (biorresidu*) OR (municipal organic* residu*) OR (municipal organic* waste*) OR (organic fraction) OR (ofmsw) OR (kitchen* waste*) OR (school canteen*) OR (restaurant* waste*) OR (supermarket* food waste*) OR (universit* dining hall*) OR (fruit* wast*) OR (vegetable* wast*)) AND ((brazil) OR (mexico) OR (colombia) OR (argentina) OR (peru) OR (venezuela) OR (chile) OR (ecuador) OR (guatemala) OR (cuba) OR (haiti) OR (bolivia) OR (Dominican Republic) OR (Honduras) OR (paraguay) OR (nicaragua) OR (El Salvador) OR (Costa Rica) OR (panama) OR (paraguay) OR (Latin America) OR (LAC))). |
Title | Data Base | Year | Journal | Citation * | Authors | Reference | |
---|---|---|---|---|---|---|---|
Scopus | LILACS | ||||||
Effect of alkaline pre-treatment on anaerobic digestion of solid wastes | X | 2008 | Waste Management | 175 | 2 | [38] | |
Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology | X | 2011 | Bioresource Technology | 170 | 5 | [39] | |
Biological treatment of municipal organic waste using black soldier fly larvae | X | 2011 | Waste and Biomass Valorization | 149 | 5 | [40] | |
The evolution of food donation with respect to waste prevention | X | 2013 | Waste Management | 83 | 1 | [41] | |
Opportunity for high value-added chemicals from food supply chain wastes | X | 2016 | Bioresource Technology | 67 | 3 | [42] | |
Composting plants of São Paulo State: compost quality and production processes | X | 2006 | Engenharia Sanitária e Ambiental | 73 | 3 | [43] | |
Demography of urban consumption: a study on the generation of solid waste in the city of Belo Horizonte | X | 2012 | Revista Brasileira de Estudos de População | 28 | 3 | [44] | |
Obtention and quantification of fiber dietary some common fruit waste in Colombia | X | 2002 | Vitae | 28 | 5 | [45] | |
Paradigms of environmental management practices in the meal production sector in Brazil | X | 2017 | Engenharia Sanitária e Ambiental | 23 | 2 | [46] | |
Comparison of municipal solid waste treatment scenarios through the technique of Life Cycle Assessment: the case of the city of Garibaldi, RS, Brazil | X | 2017 | Engenharia Sanitária e Ambiental | 16 | 2 | [47] |
Journal | NA | SJR | H Index | Country | Subject Categories |
---|---|---|---|---|---|
Waste Management | 15 | Q1 | 161 | United Kingdom | Waste Management and Disposal |
Hygiene Alimentar ** | 11 | NR | NR | Brazil | Health sciences, nutritional sciences |
Revista Internacional de Contaminación Ambiental | 8 | Q4 | 19 | Mexico | Pollution Waste Management and Disposal |
Journal of Cleaner Production | 9 | Q1 | 200 | Netherlands | Strategy and Management Renewable Energy, Sustainability and the Environment Industrial and Manufacturing Engineering Environmental Science |
Engenharia Sanitária e Ambiental ** | 7 | Q3 | 17 | Brazil | Waste Management and Disposal |
Sustainability | 7 | Q1 | 85 | Switzerland | Geography, Planning and Development |
Journal of Environmental Management | 5 | Q1 | 161 | United States | Environmental Engineering Management, Monitoring, Policy, and Law Waste Management and Disposal Medicine (miscellaneous) |
Title | Year | Journal | Citation * | # Authors | Country FA | Reference |
---|---|---|---|---|---|---|
Opportunity for high value-added chemicals from food supply chain wastes | 2016 | Bioresource Technology | 90 | 3 | United Kingdom | [42] |
Fruits and vegetable-processing waste: a case study in two markets at Rio de Janeiro, RJ, Brazil | 2020 | Environmental Science andPollution Research | 6 | 7 | Brazil | [91] |
Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato | 2020 | Journal of Cleaner Production | 15 | 3 | Brazil | [92] |
Decision-making process in the circular economy: A case study on university food waste-to-energy actions in Latin America | 2020 | Energies | 9 | 5 | Italy | [28] |
Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach | 2021 | Biomass Conversion andBiorefinery | 3 | 18 | Brazil | [90] |
Country | Approach | Instrument Name/Year | Objectives/Strategic Lines and/or Specific Measures | R | ||
---|---|---|---|---|---|---|
MW | CE | BE/CB | ||||
Argentina | X | 1. National Strategy for the Integrated Management of Urban Solid Waste 2005–2025. 2. National Law No. 25.916 on household waste management. 3. Provincial Strategic Plan (PEP). 4. Zero Waste Law. | 1. The strategy is based on the criteria of integrality, processing and final disposal centers (FDCs). 2. Minimum environmental protection requirements for household waste management. 3. Guidelines for “Provincial Strategic Plans for Waste Management towards a Circular Economy”. 4. Prohibits the incineration of municipal waste and provides guidance on recovery and recycling systems. | [94,95,96] | ||
X | 1. The Bioeconomy as a Strategy for Argentina’s Development (2019). 2. Argentina’s Bioeconomy-Vision from Agroindustry (2017). 3. Argentine Biotechnology in the year 2030: Strategic key for a techno-productive development model (2016). 4. Buenos Aires Provincial Bioeconomy Plan (2016). | 1. Prioritizes the sustainable use of resources and capacities to diversify and develop new value chains. 2. Articulation between the public and private sectors for an integral development of the bioeconomy. 3. Working agenda to promote sustainable economic and social development. 4. Sustainable agro-industrial development-maximum productive potential based on joint work with all stakeholders. | [97,98,99] | |||
Brazil | X | 1. Law N° 12305-National Solid Waste Policy. | Avoidance of landfill disposal. A systemic approach to solid waste management through comprehensive plans. | [100] | ||
X | 1. Ten Year Energy Expansion Plan 2020–2029 (2020). 2. Action Plan on Science, Technology, and Innovation in Bioeconomy (2018). 3. National Strategy on Science, Technology, and Innovation 2016–2022 (2018) 4. Biotechnology Strategy (2007) | 1. Integrated vision for the use of diverse energy sources. 2. Promote scientific, technological and innovation development, focusing on sustainable development and social, economic, and environmental benefits production. 3. Collaborative innovation paradigm (universities, companies) oriented towards sustainable development. 4. Development of biotechnology and strengthening of production systems and the national bioindustry. | [93,101,102,103] | |||
Costa Rica | X | 1. National Integrated Solid Waste Plan 2010–2021. 2. National Strategy for Waste Separation and Recovery 2016–2021. 3. Law for the Integral Management of Waste No. 8839. | 1. Strategies for waste management in public institutions, private sector and social organizations. 2. Inclusive model for integrated solid waste management (public and private sectors). 3. Municipalities’ competencies for the management of generated waste-waste management plans. | [104,105] | ||
X | 1. National Decarbonization Plan 2018–2050. 2. National Policy on Sustainable Production and Consumption 2018–2030. | 1. Transition to a low-carbon economy. 2. Mitigation strategies for all sectors of the economy (waste management, modernization of the industrial sector). | [106,107] | |||
X | 1. National Bioeconomy Strategy–Costa Rica 2020–2030 (2020). | 1. Sustainable production with high added value-sustainable use of resources-circular use of biomass—biotechnological progress. | [108] | |||
Colombia | X | 1. National Policy for Integrated Solid Waste Management 2016–2030 (2016). 2. Law 1990/2019. 3. Resolution No. 1407/2018. | 1. Integrated solid waste management-promotion of CE, sustainable development, climate change adaptation and mitigation. 2. Prevention of food loss and waste. 3. Post-consumption of packaging. Responsibility of producers in the management of this waste. | [109,110,111] | ||
X | 1. National Circular Economy Strategy 2018–2022. | 1. New economic development model. Maximizing the value of resources-closing material cycles—Development of new business models-Industrial symbiosis. | [112] | |||
X | 1. Bioeconomy for a living and diverse Colombia: Towards a knowledge-driven society (2020). 2. Colombia Green Growth Roadmap (2018). 3. National Program for Sustainable Biotrade (PNBS) 2014–2024 (2014). 4. Policy for the Commercial Development of Biotechnology from the Sustainable Use of Biodiversity (2011). | 1. National strategy dedicated to the development of the bioeconomy in Colombia. 2. New sources of sustainable growth-Supply of natural capital to produce environmental goods and services. 3. Development of value chains based on the shared management of natural resources. 4. Development of economic, technical, institutional, and legal conditions to attract public and private resources and create enterprises and products based on the sustainable use of biodiversity. | [113,114,115,116] | |||
Cuba | X | 1. Ministry of Industries Policy on Increased Recycling of Raw Materials (2012). Updated in 2014. | 1. Promotes recycling through a new management approach based on economic incentives, instruments, and new management models. | [117] | ||
México | X | 1. National Zero Waste Vision (2019). 2. General Law for the Prevention and Comprehensive Management of Wastes (2003). | 1. Transform the traditional waste management model into a CE model. 2. Guarantee the right to a healthy environment and promote sustainable development by adequately managing hazardous waste and MSW. | [118,119] | ||
X | 1. Circular Economy Action Plan. | 1. Zero waste through a series of strategies such as reducing the amount of packaging, regulation for the reduction of single-use products, and proper waste management, among others. | [120] | |||
X | 2. Agreement approving and publishing the update of the Transition Strategy to Promote the Use of Cleaner Technologies and Fuels (2020). | 2. To regulate the sustainable use of energy, obligations in terms of clean energy, and the reduction of polluting emissions. | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa-Murillo, L.M.; Villegas, L.M.; Rodríguez-Ortiz, A.R.; Duque-Acevedo, M.; Cortés-García, F.J. Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. Int. J. Environ. Res. Public Health 2022, 19, 6041. https://doi.org/10.3390/ijerph19106041
Ulloa-Murillo LM, Villegas LM, Rodríguez-Ortiz AR, Duque-Acevedo M, Cortés-García FJ. Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. International Journal of Environmental Research and Public Health. 2022; 19(10):6041. https://doi.org/10.3390/ijerph19106041
Chicago/Turabian StyleUlloa-Murillo, Leidy Marcela, Lina María Villegas, Alejandra Rocío Rodríguez-Ortiz, Mónica Duque-Acevedo, and Francisco Joaquín Cortés-García. 2022. "Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean" International Journal of Environmental Research and Public Health 19, no. 10: 6041. https://doi.org/10.3390/ijerph19106041