Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Procedure
2.4. Outcome Measures
2.4.1. 10 m Walking Test
2.4.2. TUG Test
2.4.3. BBS
2.5. Intervention
2.5.1. Robot-Assisted Gait Training
2.5.2. Regular Gait Training
2.5.3. Neuro-Development Treatment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, D.; Liu, Y.; Wang, J.; Xiao, Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. J. Adv. Nurs. 2021, 77, 3255–3273. [Google Scholar] [CrossRef] [PubMed]
- Srinayanti, Y.; Widianti, W.; Andriani, D.; Firdaus, F.A.; Setiawan, H. Range of Motion Exercise to Improve Muscle Strength among Stroke Patients: A Literature Review. Int. J. Nurs. Health Serv. 2021, 4, 332–343. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.; Kim, B. Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study. J. Int. Acad. Phys. Ther. Res. 2021, 12, 2272–2278. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. Neurophysiol. 2015, 45, 335–355. [Google Scholar] [CrossRef]
- Drużbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Magoń, A.; Kołodziej, K.; Wolan-Nieroda, A.; Majewska, J.; Kwolek, A. The Efficacy of Gait Training Using a Body Weight Support Treadmill and Visual Biofeedback in Patients with Subacute Stroke: A Randomized Controlled Trial. BioMed Res. Int. 2018, 2018, 3812602. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Elsner, B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst. Rev. 2014, 2014, CD002840. [Google Scholar] [CrossRef]
- Mikołajewska, E. Normalized gait parameters in NDT-Bobath post-stroke gait rehabilitation. Open Med. 2012, 7, 176–182. [Google Scholar] [CrossRef][Green Version]
- Mikołajewska, E. Bobath and traditional approaches in post-stroke gait rehabilitation in adults. Biomed. Hum. Kinet. 2017, 9, 27–33. [Google Scholar] [CrossRef]
- Cao, J.; Xie, S.Q.; Das, R.; Zhu, G.L. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med. Eng. Phys. 2014, 36, 1555–1566. [Google Scholar] [CrossRef]
- Høyer, E.; Jahnsen, R.; Stanghelle, J.K.; Strand, L.I. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: A randomized controlled trial. Disabil. Rehabil. 2012, 34, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Harvey, L.A.; Thomas, S.; Elsner, B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 2017, 55, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Labas, M.P.; Triche, E.W.; Lo, A.C. Combination of Robot-Assisted and Conventional Body-Weight–Supported Treadmill Training Improves Gait in Persons with Multiple Sclerosis: A Pilot Study. J. Neurol. Phys. Ther. 2013, 37, 187–193. [Google Scholar] [CrossRef] [PubMed][Green Version]
- MacKay-Lyons, M.; McDonald, A.; Matheson, J.; Eskes, G.; Klus, M.-A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: A randomized controlled trial. Neurorehabilit. Neural Repair 2013, 27, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kao, P.-C.; Kim, S.H.; Stegall, P.; Zanotto, D.; Higginson, J.S.; Agrawal, S.K.; Scholz, J.P. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.; Lucas, L.; Thrasher, T.A. Robot-Assisted Gait Training for Patients with Hemiparesis Due to Stroke. Top. Stroke Rehabil. 2011, 18, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; You, J.S.H. A Review of Robot-Assisted Gait Training in Stroke Patients. Brain Neurorehabilit. 2017, 10. [Google Scholar] [CrossRef]
- Seo, J.S.; Yang, H.S.; Jung, S.; Kang, C.S.; Jang, S.; Kim, D.H. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: A randomized controlled pilot trial. Medicine 2018, 97, e11792. [Google Scholar] [CrossRef]
- Low, K. Robot-assisted gait rehabilitation: From exoskeletons to gait systems. In Proceedings of the 2011 Defense Science Research Conference and Expo (DSR), Singapore, 3–5 August 2011; pp. 1–10. [Google Scholar]
- Federici, S.; Meloni, F.; Bracalenti, M.; De Filippis, M.L. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation 2015, 37, 321–340. [Google Scholar] [CrossRef]
- Cho, D.Y.; Park, S.-W.; Lee, M.J.; Park, D.S.; Kim, E.J. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: Focus on dependent ambulators. J. Phys. Ther. Sci. 2015, 27, 3053–3057. [Google Scholar] [CrossRef]
- Chung, B.P.H. Effectiveness of robotic-assisted gait training in stroke rehabilitation: A retrospective matched control study. Hong Kong Physiother. J. 2017, 36, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.K.; Nelson, M.; Brooks, D.; Salbach, N.M. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top. Stroke Rehabil. 2020, 27, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Bang, D.-H.; Shin, W.-S.; Noh, H.-J.; Song, M.-S. Effect of Unstable Surface Training on Walking Ability in Stroke Patients. J. Phys. Ther. Sci. 2014, 26, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Molad, R.; Alouche, S.R.; Demers, M.; Levin, M.F. Development of a Comprehensive Outcome Measure for Motor Coordination, Step 2: Reliability and Construct Validity in Chronic Stroke Patients. Neurorehabilit. Neural Repair 2021, 35, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Al-Eisa, E.S.; Anwer, S.; Sarkar, B. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018, 18, 141. [Google Scholar] [CrossRef]
- Lee, D.-K.; Jeong, H.-J.; Lee, J.-S. Effect of respiratory exercise on pulmonary function, balance, and gait in patients with chronic stroke. J. Phys. Ther. Sci. 2018, 30, 984–987. [Google Scholar] [CrossRef]
- Cha, P.H.-G.; Shin, M.P.Y.-J.; Kim, P.M.-K. Effects of the Bad Ragaz Ring Method on muscle activation of the lower limbs and balance ability in chronic stroke: A randomised controlled trial. Hong Kong Physiother. J. 2017, 37, 39–45. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Jang, H.-Y.; Lee, J.-H.; Lee, S.-M. The Analysis on the Reliability and Validity of Korean-Version Balance Assessment Tools. Korean Soc. Phys. Med. 2017, 12, 139–146. [Google Scholar] [CrossRef]
- Gjelsvik, B.E.B.; Syre, L. The Bobath Concept in Adult Neurology; Thieme: Stuttgart, Germany, 2008. [Google Scholar]
- Peurala, S.H.; Tarkka, I.M.; Pitkänen, K.; Sivenius, J. The Effectiveness of Body Weight-Supported Gait Training and Floor Walking in Patients with Chronic Stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.; Sajin, A.; Fisher, I.; Neeb, M.; Shochina, M.; Katz-Leurer, M.; Meiner, Z. The Effectiveness of Locomotor Therapy Using Robotic-Assisted Gait Training in Subacute Stroke Patients: A Randomized Controlled Trial. PM&R 2009, 1, 516–523. [Google Scholar] [CrossRef]
- Sincheol, H. Effects of Robot-Assisted Gait Training with Visual Feedback on Gait, Balance and Balance Confidence in Chronic Stroke Patients; Gachon University Graduate School: Incheon, Korea, 2015. [Google Scholar]
- Barela, A.M.F.; De Freitas, P.B.; Celestino, M.; Camargo, M.R.; Barela, J.A. Ground reaction forces during level ground walking with body weight unloading. Braz. J. Phys. Ther. 2014, 18, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, H.; Visintin, M. Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003, 84, 1458–1465. [Google Scholar] [CrossRef]
- Bonnyaud, C.; Pradon, D.; Bensmail, D.; Roche, N. Dynamic Stability and Risk of Tripping during the Timed Up and Go Test in Hemiparetic and Healthy Subjects. PLoS ONE 2015, 10, e0140317. [Google Scholar] [CrossRef]
- Dias, D.; Laíns, J.; Pereira, A.I.; Nunes, R.; Caldas, J.; Amaral, C.; Pires, S.; Costa, A.; Alves, P.; Moreira, M.; et al. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys. 2007, 43, 499–504. [Google Scholar]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Ismail, S.I.; Nunome, H.; Marzuki, F.F.; Su’Aidi, I. The Influence of Additional Surface on Force Platform’s Ground Reaction Force Data During Walking and Running. Am. J. Sports Sci. 2018, 6, 78. [Google Scholar] [CrossRef]
- Boehm, W.L. Lower-Limb Neuromuscular Coordination Post-Stroke: Evidence of Force Misdirection and Development of an Associated Therapeutic Device; The University of Wisconsin-Madison: Madison, WI, USA, 2017. [Google Scholar]
Robot A (n = 6) | Robot B (n = 6) | Robot C (n = 6) | Non-Robot (n = 6) | p | |
---|---|---|---|---|---|
Age (years) | 52.7 ± 15.4 | 54.7 ± 12.3 | 59.5 ± 15.3 | 61.4 ± 9.7 | 0.463 |
Sex, Females, n (%) * | 2 (33.3) | 4 (66.7) | 3 (50.0) | 3 (50.0) | 0.760 |
Height (cm) | 163.2 3 ± 7.6 | 168.8 ± 9.4 | 163.7 ± 3.8 | 165.7 ± 7.9 | 0.555 |
Weight (kg) | 57.5 ± 11.7 | 65.8 ± 4.1 | 61.7 ± 6.7 | 68.8 ± 10.3 | 0.153 |
Affected side, left, n (%) * | 3 (50.0) | 3 (50.0) | 3 (50.0) | 3 (50.0) | 0.999 |
Onset (months) | 20.2 ± 10.5 | 16.3 ± 9.5 | 16.8 ± 8.6 | 16.8 ± 6.9 | 0.834 |
K-MMSE (scores) | 25.8 ± 1.2 | 26.5 ± 1.4 | 25.3 ± 1.2 | 25.8 ± 0.8 | 0.397 |
Robot A (n = 6) | Robot B (n = 6) | Robot C (n = 6) | Non-Robot (n = 6) | F(p) | ||
---|---|---|---|---|---|---|
10MWT | Pre-test | 24.7 ± 4.7 | 33.8 ± 6.6 | 32.5 ±7.1 | 22.3 ± 3.8 | 21.93 (0.000) (A > B > C > N) |
Post-test | 15.5 ± 3.6 | 27.1 ± 7.6 | 28.6 ± 8.5 | 21.6 ± 4.4 | ||
△ pre-post | 9.2 ± 1.9 ** | 6.7 ± 2.0 ** | 3.9 ± 1.9 * | 0.7 ± 1.9 | ||
TUG | Pre-test | 25.4 ± 3.6 | 33.4 ± 7.4 | 35.6 ± 7.8 | 25.8 ± 4.9 | 30.62 (0.000) (A > B, C, N) |
Post-test | 17.4 ± 2.9 | 31.4 ± 8.5 | 34.8 ± 8.8 | 24.8 ± 4.8 | ||
△ pre-post | 8.0 ± 1.8 ** | 1.9 ± 1.8 * | 0.8 ±1.6 | 0.4 ± 1.0 | ||
BBS | Pre-test | 33.3 ± 3.1 | 36.7 ± 3.3 | 34.0 ± 4.3 | 34.3 ± 2.7 | 17.32 (0.000) (A > B, C, N) |
Post-test | 37.2 ± 2.8 | 36.8 ± 3.8 | 33.7 ± 4.2 | 34.5 ± 3.3 | ||
△ pre-post | 3.8 ± 1.3 ** | 0.2 ± 1.2 | 0.3 ± 1.2 | 0.2 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. Int. J. Environ. Res. Public Health 2022, 19, 5814. https://doi.org/10.3390/ijerph19105814
Choi W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. International Journal of Environmental Research and Public Health. 2022; 19(10):5814. https://doi.org/10.3390/ijerph19105814
Chicago/Turabian StyleChoi, Wonho. 2022. "Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients" International Journal of Environmental Research and Public Health 19, no. 10: 5814. https://doi.org/10.3390/ijerph19105814
APA StyleChoi, W. (2022). Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. International Journal of Environmental Research and Public Health, 19(10), 5814. https://doi.org/10.3390/ijerph19105814