Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Procedure
2.3. Instruments
2.3.1. Visual Search Task
2.3.2. Auditory Search Task
2.3.3. AIM Trainer Measurement
2.3.4. Go/No-Go VRT Measurement
2.3.5. Visual and Auditory Working Memory Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
5.1. Limitations and Future Research
5.2. Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Groups | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
Experimental Group | ||||
Habitual Video-gamers | 323.39 (43.88) | 321.86 (46.91) | 312.98 (46.91) | 317.88 (44.72) |
Occasional Video-gamers | 381.89 (52.98) | 361.43 (48.55) | 348.55 (38.11) | 375.06 (53.74) |
Control Group | ||||
Habitual Video-gamers | 323.07 (48.93) | 322.85 (58.85) | 323.74 (54.80) | 324.54 (55.54) |
Occasional Video-gamers | 390.21 (78.27) | 389.45 (74.68) | 387.85 (72.50) | 388.63 (65.57) |
Groups | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
Experimental Group | ||||
Habitual Video-gamers | 627.94 (185.03) | 607.78 (185.28) | 609.17 (173.85) | 598.61 (151.61) |
Occasional Video-gamers | 765.87 (157.90) | 739.04 (148.55) | 728.52 (160.18) | 747.71 (189.59) |
Control Group | ||||
Habitual Video-gamers | 682.82 (209.91) | 677.17 (211.50) | 671.55 (213.18) | 671.73 (213.33) |
Occasional Video-gamers | 774.17 (260.96) | 771.22 (210.65) | 773.00 (217.07) | 772.50 (217.26) |
Groups | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
Experimental Group | ||||
Habitual Video-gamers | 292.63 (46.44) | 290.24 (41.63) | 288.83 (36.93) | 288.12 (48.20) |
Occasional Video-gamers | 340.88 (52.70) | 337.62 (54.46) | 333.61 (48.64) | 338.65 (58.59) |
Control Group | ||||
Habitual Video-gamers | 295.63 (23.26) | 294.85 (23.19) | 294.92 (22.41) | 295.30 (24.30) |
Occasional Video-gamers | 363.72 (127.93) | 364.97 (114.63) | 363.90 (104.82) | 365.46 (98.87) |
Groups | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
Experimental Group | ||||
Habitual Video-gamers | 426.97 (56.43) | 403.91 (48.98 | 396.50 (40.85) | 411.36 (58.07) |
Occasional Video-gamers | 454.58 (69.95) | 431.68 (69.59) | 429.06 (79.04) | 443.10 (71.79) |
Control Group | ||||
Habitual Video-gamers | 421.04 (56.96) | 420.95 (58.82) | 422.08 (60.11) | 421.53 (59.48) |
Occasional Video-gamers | 473.78 (88.84) | 474.68 (59.49) | 470.55 (48.50) | 469.60 (44.12) |
Groups | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
Experimental Group | ||||
Occasional Video-gamers | 997.57 (225.07) | 878.61 (222.97) | 835.49 (185.06) | 805.45 (189.49) |
1028.59 (266.07) | 848.61 (187.30) | 817.32 (145.31) | 801.28 (221.52) | |
Control Group | ||||
Habitual Video-gamers | 1030.73 (151.34) | 1018.82 (140.57) | 958.62 (169.86) | 977.51 (224.80) |
Occasional Video-gamers | 1003.88 (163.78) | 960.94 (170.96) | 928.72 (167.87) | 913.18 (193.77) |
References
- Powers, K.L.; Brooks, P.J.; Aldrich, N.J.; Palladino, M.A.; Alfieri, L. Effects of video-game play on information processing: A meta-analytic investigation. Psychon. Bull. Rev. 2013, 20, 1055–1079. [Google Scholar] [CrossRef] [Green Version]
- Tokac, U.; Novak, E.; Thompson, C. Effects of game-based learning on preK-12 students’ mathematics achievement: A meta-analysis. J. Comput. Assist. Learn. 2019, 35, 407–420. [Google Scholar] [CrossRef]
- Bediou, B.; Adams, D.M.; Mayer, R.E.; Tipton, E.; Green, C.S.; Bavelier, D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 2018, 144, 77–110. [Google Scholar] [CrossRef] [PubMed]
- Sala, G.; Tatlidil, K.S.; Gobet, F. Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychol. Bull. 2018, 144, 111–139. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action video game training for cognitive enhancement. Curr. Opin. Behav. Sci. 2015, 4, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Vedechkina, M.; Borgonovi, F. A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children. Front. Psychol. 2021, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Hisam, A.; Mashhadi, S.F.; Faheem, M.; Sohail, M.; Ikhlaq, B.; Iqbal, I. Does playing video games effect cognitive abilities in Pakistani children? Pak. J. Med. Sci. 2018, 34, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Yanguas, M.; Martin-Moratinos, M.; Menendez-Garcia, A.; Gonzalez-Tardon, C.; Sanchez-Sanchez, F.; Royuela, A.; Blasco-Fontecilla, H. A Virtual Reality Serious Videogame Versus Online Chess Augmentation in Patients with Attention Deficit Hyperactivity Disorder: A Randomized Clinical Trial. Games Health J. 2021, 10, 283–292. [Google Scholar]
- Shuai, L.; He, S.; Zheng, H.; Wang, Z.; Qiu, M.; Xia, W.; Cao, X.; Lu, L.; Zhang, J. Influences of digital media use on children and adolescents with ADHD during COVID-19 pandemic. Glob. Health 2021, 17, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.; Isumi, A.; Fujiwara, T. Association between Adverse Childhood Experiences and Time Spent Playing Video Games in Adolescents: Results from A-CHILD Study. Int. J. Environ. Res. Public Health 2021, 18, 10377. [Google Scholar] [CrossRef] [PubMed]
- Larrea-Araujo, C.; Ayala-Granja, J.; Vinueza-Cabezas, A.; Acosta-Vargas, P. Ergonomic Risk Factors of Teleworking in Ecuador during the COVID-19 Pandemic: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 5063. [Google Scholar] [CrossRef]
- Bhuanantanondh, P.; Buchholz, B.; Arphorn, S.; Kongtip, P.; Woskie, S. The Prevalence of and Risk Factors Associated with Musculoskeletal Disorders in Thai Oil Palm Harvesting Workers: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 5474. [Google Scholar] [CrossRef]
- Ahn, J.; Ryu, S.-J.; Song, J.; Kim, H.-R. Shift Work and Dry Eye Disease in the Korean Working Population: A Population-Based Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 5492. [Google Scholar] [CrossRef]
- Choi, E.; Shin, S.; Ryu, J.; Jung, K.; Kim, S.; Park, M. Commercial video games and cognitive functions: Video game genres and modulating factors of cognitive enhancement. Behav. Brain Funct. 2020, 23, 341–349. [Google Scholar] [CrossRef]
- Dye, M.W.G.; Green, C.S.; Bavelier, D. The development of attention skills in action video game players. Neuropsychology 2009, 47, 1780–1789. [Google Scholar] [CrossRef] [Green Version]
- Bavalier, D. Learning, Attentional Control and Action Video Games; N.Y. National Institute of Health: New York, NY, USA, 2012. [Google Scholar]
- Dye, M.W.G.; Bavelier, D. Differential development of visual attention skills in school-age children. Vis. Res. 2010, 50, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubana, R. Influences of Puzzle Videogames on Logical Reasoning. In Advanced Technologies, Systems, and Applications; Ademović, N., Mujčić, E., Akšamija, Z., Kevrić, J., Avdaković, S., Volić, I., Eds.; VI. IAT 2021; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Chopin, A.; Shibata, K.; Lu, Z.L.; Jaeggi, S.M.; Buschkuehl, M.; Green, C.S.; Bavelier, D. Action video game play facilitates “learning to learn”. Commun. Biol. 2021, 14, 1154, Erratum in Commun. Biol. 2021, 4, 1388. [Google Scholar] [CrossRef]
- Kozhevnikov, M.; Li, Y.; Wong, S.; Obana, T.; Amihai, I. Do enhanced states exist? Boosting cognitive capacities through an action videogame. Cognition 2018, 3, 24–34. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York City, NY, USA, 1990. [Google Scholar]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety: Experiencing Flow in Work and Play; Jossey-Bass Publishers: San Francisco, CA, USA, 1975. [Google Scholar]
- Maslow, A.H. Toward a Psychology of Being; Van Nostrand Reinhold: Princeton, NJ, USA, 1962. [Google Scholar]
- Snowball, A.; Tachtsidis, I.; Popescu, T.; Thompson, J.; Delazer, M.; Zamarian, L.; Zhu, T.; Cohen Kadosh, R. Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation. Curr. Biol. 2013, 23, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Looi, C.; Duta, M.; Brem, A.K.; Looi, C.Y.; Brem, A.K.; Huber, S.; Nuerk, H.C.; Kadosh, R.C. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Sci. Rep. 2016, 6, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, K.; Mayer, R.E. Shining the light of research on Lumosity. J. Cogn. Enhanc. 2018, 2, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Bansal, R.; Kumar, A.; Singh, K. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int. J. Appl. Basic Med. Res. 2015, 23, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, L.H.; Freedman, E.G.; Crosse, M.J.; Nicholas, E.; Chen, A.M.; Braiman, M.S.; Molholm, S.; Foxe, J.J. Operating in a multisensory context: Assessing the interplay between multisensory reaction time facilitation and inter-sensory task-switching effects. Neuroscience 2020, 436, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.; Ratcliff, R.; Perea, M. A model of the go/no-go task. J. Exp. Psychol. Gen. 2007, 136, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, H.; Garfield, L.; Millikan, J.A. Homographic entries in the internal lexicon. J. Verbal Learn. Verbal Behav. 1970, 9, 487–494. [Google Scholar] [CrossRef]
- Hockey, A.; Geffen, G. The concurrent validity and test retest reliability of a visuo-spatial working memory task. Intelligence 2004, 32, 591–605. [Google Scholar] [CrossRef]
- Soveri, A.; Antfolk, J.; Karlsson, L.; Salo, B.; Laine, M. Working memorytraining revisited: A multi-level metaanalysis of n-back training studies. Psychon. Bull. Rev. 2017, 24, 1077–1096. [Google Scholar] [CrossRef] [Green Version]
- Fabio, R.A.; Suriano, R. The Influence of Media Exposure on Anxiety and Working Memory during Lockdown Period in Italy. Int. J. Environ. Res. Public Health 2021, 18, 9279. [Google Scholar] [CrossRef]
- Au, J.; Sheehan, E.; Tsai, N.; Duncan, G.J.; Buschkuehl, M.; Jaeggi, S.M. Improving fluid intelligence with training on working memory: A meta-analysis. Psychon. Bull. Rev. 2015, 22, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Luciano, M.; Wright, M.J.; Geffen, G.M.; Geffen, L.B.; Smith, G.A.; Martin, N.G. Multivariate genetic analysis of cognitive abilities in an adolescent twin sample. Aust. J. Psychol. 2004, 56, 79–88. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. The experience of the action video game alters spatial reproduction, vision of a solution. Psychol. Sci. 2007, 18, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Powers, E. My news feed is filtered? Digit. Journal. 2017, 5, 1315–1335. [Google Scholar] [CrossRef]
- Nakamura, J.; Csikszentmihalyi, M. The concept of flow. In Handbook of Positive Psychology; Snyder, C.R., Lopez, S.J., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 89–105. [Google Scholar]
- Capri, T.; Santoddi, E.; Fabio, R.A. Multi-source interference task paradigm to enhance automatic and controlled processes in ADHD. Res. Dev. Disabil. 2020, 97, 103542. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A. The study of automatic and controlled processes in ADHD: A reread and a new proposal. Mediterr. J. Clin. Psychol. 2017, 5, 1–34. [Google Scholar] [CrossRef]
- Sweller, J.; Ayres, P.; Kalyuga, S. Cognitive Load Theory in Perspective; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Towey, G.E.; Fabio, R.A.; Caprì, T. Measurement of attention. In Attention Today; Nova Publisher: New York, NY, USA, 2019; pp. 41–83. [Google Scholar]
- Fabio, R.A.; Caprì, T. Automatic and controlled attentional capture by threatening stimuli. Heliyon 2019, 5, e01752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharkow, M.; Festl, R.; Vogelgesang, J.; Quandt, T. Beyond the “core-gamer”: Genre preferences and gratifications in computer games. Comput. Hum. Behav. 2015, 44, 293–298. [Google Scholar] [CrossRef]
- Homer, B.D.; Hayward, E.O.; Frye, J.; Plass, J.L. Gender and player characteristics in video game play of preadolescents. Comput. Hum. Behav. 2012, 28, 1782–1789. [Google Scholar] [CrossRef]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colder-Carras, M.; Van Rooij, A.J.; Spruijit-Metz, D.; Kvedar, J.; Griffiths, M.D.; Carabas, Y.; Labrique, A. Commercial video games as therapy: A new research agenda to unlock the potential of a global pastime. Front. Psychiatry 2018, 8, 300. [Google Scholar] [CrossRef]
- Greenberg, B.S.; Sherry, J.; Lachlan, K.; Lucas, K.; Holmstrom, A. Orientations to video games among gender and age groups. Simul. Gaming 2010, 41, 238–259. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.D.; Davies, M.N.; Chappell, D. Demographic factors and playing variables in online computer gaming. CyberPsychol. Behav. 2004, 7, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Von der Heiden, J.M.; Braun, B.; Müller, K.W.; Egloff, B. The association between video gaming and psychological functioning. Front. Psychol. 2019, 10, 1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilgard, J.; Engelhardt, C.R.; Bartholow, B.D. Individual differences in motives, preferences, and pathology in video games: The gaming attitudes, motives, and experiences scales (GAMES). Front. Psychol. 2013, 4, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabio, R.A.; Ingrassia, M.; Massa, M. Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 78. https://doi.org/10.3390/ijerph19010078
Fabio RA, Ingrassia M, Massa M. Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(1):78. https://doi.org/10.3390/ijerph19010078
Chicago/Turabian StyleFabio, Rosa Angela, Massimo Ingrassia, and Marco Massa. 2022. "Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 1: 78. https://doi.org/10.3390/ijerph19010078
APA StyleFabio, R. A., Ingrassia, M., & Massa, M. (2022). Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(1), 78. https://doi.org/10.3390/ijerph19010078