Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries
Abstract
:1. Introduction: An Overview of Climate Change Trends and Their Impacts on Estuaries
2. Research Methods: Approach and Estuaries Descriptions
2.1. Approach
2.2. Estuaries Description and Research Methods
3. Literature Review of Climate Threats and Impacts on Estuary Ecosystems
- Hydrodynamic (and mixing) processes [49]
- Tides cause the regular periodic movement of waters.
- Gravitational forces can affect estuarine water circulation due to the gravity acting on the density differences in the estuary [49]. Gravitational circulation driven by river discharge and density gradients dominates in many estuaries, or there is a competition between the tidal forcing and the river discharge [50].
- Coriolis forces caused by the rotation of the Earth about its axis may affect large estuaries, because inward and outward currents displace their flow directions to the right/leftward (in the Northern/Southern hemispheres).
- Waves affect shores, marginal shoals and shallow estuaries.
- Wind forces can significantly modify circulations and turbulent mixing in wider environments. Strong winds may cause storm surges in surface waters that induce large flow volumes. Wind also impacts the levels of stratification and mixing within the estuary. Wind energy influences large, open, and shallow estuaries than deep, narrow ones.
- Water quality processes [49]
- The temperature influences the rate of plant photosynthesis and aquatic organisms’ metabolic rates.
- The salinity controls the type of species that can live in an estuary and influences physical and chemical processes such as flocculation and the amount of dissolved oxygen (DO) in the water column.
- The suspended material (SPM) level influences the turbidity in the water column.
- DO is the oxygen level available to support estuarine ecology.
- Nutrients: In particular, nitrogen and phosphorus are key water quality parameters, as they have significant direct or indirect impacts on plant growth, oxygen concentrations (including hypoxia), and water clarity and sedimentation rates, ecosystem metabolism [50] and eutrophication.
- Acidity and alkalinity are essential to ecosystem health, because most aquatic plants and animals are adapted to a specific pH range and alkalinity. Therefore, sharp variations outside of this range can be detrimental.
4. Results
4.1. Meghna Estuary
4.2. Mondego Estuary
- NAO: MS-L (–0.7); MJ-L (–0.4); MS (–0.5);
- Precipitation: runoff (0.9), salinity (–0.8); FW, CA-L and ER-L (0.8); OV (0.6); MS (−0.4);
- Runoff: ER-L (0.8); CA, CA-L and MS (–0.5);
- Salinity: FW, CA-L and ER-L (–0.8); CA and OV (–0.6); MJ-L (–0.6); ER (–0.4).
4.3. RdlP Estuary
5. Discussion
5.1. Climate-Induced Changes in FW Flow into Estuaries
5.2. Cross-Comparison and Lessons Learned
5.3. Building the Climate Resilience of Estuarine Environments through Adaptation Actions
- (a)
- Adaptive fisheries management, ecosystem-based approach and fishery co-management to reduce the pressure on fish stocks;
- (b)
- Dam management to prevent overflows;
- (c)
- In estuaries, participatory scenario planning defines adaptation actions under uncontrollable factors and extreme events (e.g., extratropical cyclones and severe droughts);
- (d)
- Adjustments in coastal management plans to cater to the estuaries’ increased fragility (e.g., limiting new construction sites or steering economic activities to minimise their impacts on estuary ecosystems).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. IPCC Climate Change 2014: Impacts, Adaptation and Vulnerability. Part. B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Johnson, C.N.; Balmford, A.; Brook, B.W.; Buettel, J.C.; Galetti, M.; Guangchun, L.; Wilmshurst, J.M. Biodiversity Losses and Conservation Responses in the Anthropocene. Science 2017, 356, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, F.T.; Wohlrab, S.; Butzin, M.; Pörtner, H.-O. Thermal Bottlenecks in the Life Cycle Define Climate Vulnerability of Fish. Science 2020, 369, 65–70. [Google Scholar] [CrossRef]
- Pilotto, F.; Kühn, I.; Adrian, R.; Alber, R.; Alignier, A.; Andrews, C.; Bäck, J.; Barbaro, L.; Beaumont, D.; Beenaerts, N.; et al. Meta-Analysis of Multidecadal Biodiversity Trends in Europe. Nat. Commun. 2020, 11, 3486. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Tank, A.M.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Scanes, E.; Scanes, P.R.; Ross, P.M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 2020, 11, 1803. Available online: www.nature.com/naturecommunications (accessed on 10 November 2021). [CrossRef] [Green Version]
- Kelman, I. No change from climate change: Vulnerability and small island developing states. Geogr. J. 2014, 180, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Gillanders, B.; Elsdon, T.; Halliday, I.; Jenkins, J.; Robins, J.; Valesini, F. Potential effects of climate change on Australian estuaries and fish utilising estuaries: A review. Mar. Freshw. Res. 2011, 62, 1115–1131. [Google Scholar] [CrossRef] [Green Version]
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-852508-0.1-y. [Google Scholar]
- Perillo, G.M.E. (Ed.) Definition and geomorphological classification of estuaries. In Geomorphology and Sedimentology of Estuaries; Elsevier Science BV: Amsterdam, The Netherlands, 1995; pp. 17–47. [Google Scholar]
- Pritchard, D.W. What is an estuary: Physical viewpoint. In Estuaries; Lauf, G.H., Ed.; AAAS Publ. 83: Washington, DC, USA, 1969; pp. 3–5. [Google Scholar]
- Dronkers, J. Seawater Intrusion and Mixing in Estuaries. 2016. Available online: http://www.coastalwiki.org/wiki/Seawater_intrusion_and_mixing_in_estuaries (accessed on 10 November 2021).
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Fujii, T. Climate Change, Sea-Level Rise and Implications for Coastal and Estuarine Shoreline Management with Particular Reference to the Ecology of Intertidal Benthic Macrofauna in NW Europe. Biology 2012, 1, 597–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, E.; Joos, F.; Eakin, C.; Gattuso, J. An updated synthesis of the observed and projected impacts of climate change on the chemical, physical and biological processes in the oceans. Front. Mar. Sci. 2015, 2, 36. [Google Scholar] [CrossRef]
- Needelman, B.A.; Crooks, S.; Shumway, C.A.; Titus, J.G.; Takacs RHawkes, J.E. Restore-Adapt-Mitigate: Responding to Climate Change Through Coastal Habitat Restoration; Needelman, B.A., Benoit, J., Bosak, S., Lyons, C., Eds.; Restore America’s Estuaries: Washington, DC, USA, 2012; pp. 1–63. [Google Scholar]
- Weatherdon, L.; Magnan, A.; Rogers, A.; Sumaila, U.; Cheung, W. Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Front. Mar. Sci. 2016, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. Estuarine and Coastal Ecosystems as Defense Against Flood Damages: An Economic Perspective. Front. Clim. 2020, 2, 28. [Google Scholar] [CrossRef]
- EPA. Climate Adaptation and Estuaries. United States Environmental Protection Agency. Climate Change Adaptation Resource Center (ARC-X). 2021. Available online: https://www.epa.gov/arc-x/climate-adaptation-and-estuaries (accessed on 10 November 2021).
- Chevillot, X.; Tecchio, S.; Chaalali, A.; Lassalle, G.; Selleslagh, J.; Castelnaud, G.; David, V.; Bachelet, G.; Niquil, N.; Sautour, B.; et al. Global Changes Jeopardise the Trophic Carrying Capacity and Functioning of Estuarine Ecosystems. Ecosystems 2019, 22, 473–495. [Google Scholar] [CrossRef]
- Chevillot, X.; Pierre, M.; Rigaud, A.; Drouineau, H.; Chaalali, A.; Sautour, B.; Lobry, J. Abrupt shifts in the Gironde fish community: An indicator of ecological changes in an estuarine ecosystem. Mar. Ecol. Prog. Ser. 2016, 549, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical 12 Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental 13 Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Robins, P.E.; Skov, M.W.; Lewis, M.J.; Giménez, L.; Davies, A.G.; Malham, S.K.; Neill, S.P.; McDonald, J.E.; Whitton, T.A.; Jackson, S.E.; et al. Impact of climate change on UK estuaries: A review of past trends and potential projections. Est. Coast. Shelf Sci. 2016, 169, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Ward, N. Hydro-Meteorological Variability in the Greater Ganges-Brahmaputra-Meghna Basins. Int. J. Climatol. A J. R. Meteorol. Soc. 2004, 24, 1495–1508. [Google Scholar] [CrossRef]
- Haque, A.; Sumaiya, S.; Rahman, M. Flow Distribution and Sediment Transport Mechanism in the Estuarine Systems of Ganges-Brahmaputra-Meghna Delta. Int. J. Environ. Sci. Dev. 2016, 7, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.; Alam, J.; Khan, Z.; Hasan, G.J.; Rahman, T. Two Dimensional Hydrodynamic Modelling of Northern Bay of Bengal Coastal Waters. Comput. Water Energy Environ. Eng. 2014, 3, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Brammer, H. Bangladesh’s dynamic coastal regions and sea level rise. Clim. Risk Manag. 2014, 1, 51–62. [Google Scholar] [CrossRef] [Green Version]
- GOB. Nationwide Climate Vulnerability Assessment in Bangladesh. Ministry of Environment, Forest and Climate Change; Government of the People’s Republic of Bangladesh and GIZ German Cooperation: Dhaka, Bangladesh, 2018.
- GOB. National Adaptation Programme of Action (NAPA), Final Report: November 2005; Ministry of Environment and Forest, Government of the People’s Republic of Bangladesh (GOB): Dhaka, Bangladesh, 2005; 48p.
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef] [PubMed]
- Martinho, F.; Leitão, R.; Viegas, I.; Dolbeth, M.; Neto, J.M.; Cabral, H.N.; Pardal, M.A. The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Est. Coast. Shelf Sci. 2007, 75, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Primo, A.L.; Azeiteiro, U.M.; Marques, S.C.; Pardal, M.A. Impact of climate variability on ichthyoplankton communities: An example of a small temperate estuary. Est. Coast. Shelf Sci. 2011, 91, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, J.; Castro, P.; Alves, F.; Figueiredo, A. Plano Intermunicipal de Adaptação às Alterações Climáticas da CIM-RC. 2017. Available online: https://www.cim-regiaodecoimbra.pt/wp-content/uploads/2018/10/PIAAC-CIM-RC-vers%C3%A3o-web.pdf (accessed on 10 March 2018).
- Nagy, G.J.; Gómez-Erache, M.; López, C.H.; Perdomo, A.C. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata river estuary system. Hydrobiología 2002, 475–476, 125–139. [Google Scholar] [CrossRef]
- Nagy, G.J.; Severov, D.N.; Pshennikov, V.A.; De los Santos, M.; Lagomarsino, J.J.; Sans, K.; Morozov, E.G. Rio de la Plata estuarine system: Relationship between river flow and frontal variability. Adv. Space Res. 2008, 41, 1876–1881. [Google Scholar] [CrossRef]
- Nagy, G.J.; Gutiérrez, O.; Brugnoli, E.; Verocai, J.E.; Gómez-Erache, M.; Villamizar, A.; Olivares, I.; Azeiteiro, U.M.; Leal Filho, W.; Amaro, N. Climate vulnerability, impacts and adaptation in Central and South America coastal areas. Review with a Commentary. Reg. Stud. Mar. Sci. 2019, 29, 100683. [Google Scholar] [CrossRef]
- Verocai, J.E.; Gómez-Erache, M.; Nagy, G.J.; Bidegain, M. Addressing climate extremes in coastal management: The case of the Uruguayan coast of the Rio de la Plata system. J. Integ. Coast. Zone Manag. 2015, 15, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, D.A.; Kabir, A.N.; Rahman, M.M.; Mahabub, S.; Yesmin, R.; Faruque, M.H.; Naser, M.N. Plankton composition, abundance and diversity in Hilsa (Tenualosailisha) migratory rivers of Bangladesh during spawning season. Dhaka Univ. J. Biol. Sci. 2012, 21, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.Y.; Hossain, M.M.; Schneider, P.; Mozumder, M.M.H.; Mitu, S.J.; Shamsuzzaman, M.M. Assessment of Ecosystem Services and Their Drivers of Change under Human-Dominated Pressure—The Meghna River Estuary of Bangladesh. Sustainability 2021, 13, 4458. [Google Scholar] [CrossRef]
- Shah, M.M.R.; Hossain, M.Y.; Begum, M.; Ahmed, Z.F.; Ohtomi, J.; Rahman, M.M.; Alam, M.J.; Islam, M.A.; Fulanda, B. Seasonal Variations of Phytoplanktonic Community Structure and Production in Relation to Environmental Factors of the Southwest Coastal Waters of Bangladesh. J. Fish. Aqua. Sci. 2008, 3, 102–113. [Google Scholar]
- Sarker, M.J.; Rashid, F.B.; Tanmay, M.H. Assessment of Coastal Water Habitat with Reference to the Variability of Plankton during Spawning Season of Indian River Shad in Greater Noakhali-Bangladesh. J. Ecosyst. Ecograph. 2016, 6, 197. [Google Scholar] [CrossRef] [Green Version]
- Martinho, F.; Nyitrai, D.; Crespo, D.; Pardal, M.A. Efficacy of single and multi-metric fish-based indices in tracking anthropogenic pressures in estuaries: An 8-year case study. Mar. Pollut. Bull. 2015, 101, 153–162. [Google Scholar] [CrossRef]
- Gómez, N.; Hualde, P.R.; Licursi, M.; Bauer, D.E. Spring phytoplankton of Rio de la Plata: A temperate estuary of South America. Est. Coast. Shelf Sci. 2004, 6, 301–309. [Google Scholar] [CrossRef]
- Acha, E.M.; Mianzán, H.; Guerrero, R.; Carreto, J.; Giberto, D.; Montoya, N.; Carignan, M. An overview of physical and ecological processes in the Río de la Plata estuary. Cont. Shelf Res. 2008, 28, 1579–1588. [Google Scholar]
- Brugnoli, E.; Verocai, J.; Muniz, P.; García-Rodríguez, F. Weather, Hydrological and Oceanographic Conditions of the Northern Coast of the Río de la Plata Estuary during ENSO 2009–2010. In Estuary; InTech Open. 2008. Available online: http://www.intechopen.com/books/estuary.INTECH (accessed on 23 October 2018). [CrossRef] [Green Version]
- Glamore, W.; Rayner, D.; Miller, B.; Rahman, P.; Dieber, M. Estuaries in a Changing Climate; Water Research Laboratory, School of Civil and Environmental Engineering, University of New South Wales: Sydney, NSW, Australia, 2016; Available online: https://www.coastalconference.com/2016/papers2016/Will%20Glamore.pdf (accessed on 23 October 2018).
- Valle-Levinson, A. Classification of Estuarine Circulation. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 1, pp. 75–86. [Google Scholar]
- Duarte, C.M.; Hendriks, I.E.; Moore, T.S.; Olsen, Y.S.; Steckbauer, A.; Ramajo, L.; Carstensen, J.; Trotter, J.A.; McCulloch, M. Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries Coasts 2013, 36, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Attrill, M.J.; Power, M. Climatic influence on a marine fish assemblage. Nature 2002, 417, 275–278. [Google Scholar] [CrossRef]
- Cloern, J.E.; Jassby, A.D.; Schraga, T.J.; Nejad, E.; Martin, C. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 2017, 62, S272–S291. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deitcha, M.J.; Grunwald, S.; Screaton, E.J.; Olabarrieta, M. Effect of Mississippi River discharge and local hydrological variables on salinity of nearby estuaries using a machine learning algorithm. Estuar. Coast. Shelf Sci. 2021, 263, 107628. [Google Scholar] [CrossRef]
- Bárcena, J.F.; García-Alba, J.; García, A.; Álvarez, C. Analysis of stratification patterns in river-influenced mesotidal and macrotidal estuaries using 3D hydrodynamic modelling and K-means clustering. Estuar. Coast. Shelf Sci. 2016, 181, 1–13. [Google Scholar] [CrossRef]
- Cloern, J.E.; Abreu, P.C.; Carstensen, J.; Chauvaud, L.; Elmgren, R.; Grall, J.; Greening, H.; Johansson, J.O.R.; Kahru, M.; Sherwood, E.T.; et al. Human activities and climate variability drive fast paced change across the world’s estuarine–coastal ecosystems. Glob. Change Biol. 2016, 22, 465–964. [Google Scholar] [CrossRef]
- Scavia, D.; Field, J.C.; Boesch, D.F.; Buddemeier, R.W.; Burkett, V.; Cayan, D.R.; Fogarty, M.; Harwell, M.A.; Howarth, R.W.; Mason, C.; et al. Climate Change impacts on US coastal and Marine Ecosystems. Estuaries 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Van Dam, B.; Wang, H. Decadal-Scale Acidification Trends in Adjacent North Carolina Estuaries: Competing Role of Anthropogenic CO2 and Riverine Alkalinity Loads. Front. Mar. Sci. 2019, 6, 136. [Google Scholar] [CrossRef]
- Wetz, M.S.; Hutchinson, E.A.; Lunetta, R.S.; Paerl, H.W.; Taylor, C.J. Severe Droughts Reduce Estuarine Primary Productivity with Cascading Effects on Higher Trophic Levels. Limnol. Oceanogr. 2011, 56, 627–638. [Google Scholar] [CrossRef]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Farrell, A.P. Ecology. Physiology and Climate Change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef]
- Amaral, V.; Cabral, H.N.; Bishop, M.J. Effects of estuarine acidification on predatory-prey interactions. Mar. Ecol. Prog. Ser. 2012, 445, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Pollack, J.B.; McCutcheon, M.R.; Montagna, P.A.; Ouyang, Z. Long-term alkalinity decrease and acidification of estuaries in northwestern Gulf of Mexico. Environ. Sci. Technol. 2015, 49, 3401–3409. [Google Scholar] [CrossRef]
- Marques, S.C.; Pardal, M.A.; Primo, A.L.; Martinho, F.; Falcão, J.; Azeiteiro, U.; Molinero, J.C. Evidence for Changes in Estuarine Zooplankton Fostered by Increased Climate Variance. Ecosystems 2017, 21, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Arvedlund, M.; Takemura, A. The importance of chemical environmental cues for juvenile Lethrinus nebulosus Forsskål (Lethrinidae, Teleostei) when settling into their first benthic habitat. J. Exp. Mar. Biol. Ecol. 2006, 338, 112–122. [Google Scholar] [CrossRef]
- Elliott, M.; Whitfield, A.K.; Potter, I.C.; Blaber, S.J.M.; Cyrus, D.P.; Nordlie, F.G.; Harrison, T.D. The guild approach to categorising estuarine fish assemblages: A global review. Fish Fish. 2007, 8, 241–268. [Google Scholar] [CrossRef]
- Bento, E.G.; Grilo, T.F.; Nyitrai, D.; Dolbeth, M.; Pardal, M.A.; Martinho, F. Climate influence on juvenile European sea bass (Dicentrarchus labrax, L.) populations in an estuarine nursery: A decadal overview. Mar. Environ. Res. 2016, 122, 93–104. [Google Scholar] [CrossRef]
- Gamito, R.; Vinagre, C.; Teixeira, C.M.; Costa, M.J.; Cabral, H.N. Are Portuguese coastal fisheries affected by river drainage? Aquat. Living Resour. 2016, 29, 102. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.; Azeiteiro, U.M.; Martinho, F.; Pardal, M.A.; Primo, A.L. Long-term changes of ichthyoplankton communities in an Iberian estuary are driven by varying hydrodynamic conditions. J. Plankton Res. 2019, 43, 33–45. [Google Scholar] [CrossRef]
- Rijnsdorp, A.D.; Peck, M.A.; Engelhard, G.H.; Moellmann, C.; Pinnegar, J.K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 2009, 66, 1570–1583. [Google Scholar] [CrossRef]
- Leal Filho, W.; Modesto, F.; Nagy, G.J.; Saroar, M.; Nsani, Y.; Ha’apio, M.O. Fostering coastal resilience to climate change vulnerability in Bangladesh, Brazil, Cameroon, and Uruguay: A cross-country comparison. J. Mitig. Adapt. Strateg. Glob. Change 2017, 9, 3401–3409. [Google Scholar] [CrossRef]
- Palutikof, J.P.; Rissik, D.; Webb, S.; Tonmoy, F.; Boulter, S.L.; Leitch, A.M.; Vidaurre, A.C.P.; Campbell, M.J. CoastAdapt: An adaptation decision support framework for Australia’s coastal managers. Clim. Change 2018, 153, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Mynett, A.E.; Azam, M.H. Sediment Dynamics in the Meghna Estuary, Bangladesh: A Model Study. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 255. [Google Scholar] [CrossRef]
- Doue, C.M.; Carrascal, O.N.; Restrepo, D.; Krien, N.; Rommel, D.; Lemee, C.; Coquet, M.; Mercier, D.; Fleury-Bahi, G. The social representations of climate change: Comparison of two territories exposed to the coastal flooding risk. Int. J. Clim. Change Strateg. Manag. 2020, 12, 389–406. [Google Scholar] [CrossRef]
Meghna | Mondego | RdlP |
---|---|---|
Large (1500 km2) micro- to macro-tidal (tidal amplitude: <2 m to >4 m) vertically mixed system. During monsoon/post-monsoon (May–July/August–October) and dry period (January–March), the average rainfall is 300 mm/month and 75 mm/month, respectively. Freshwater inflows (QF) reach over 100,000 m3/s (40,000–80,000 m3/s throughout the monsoon/post-monsoon periods and 3000–10,000 m3/s during the dry months [27,28]. Due to its low elevation and high subsidence, the estuary is vulnerable to the monsoon/post-monsoon QF, the water-level increase [29] and the sea-level rise (SLR; >1 mm yr−1, +>1 cm in 10 years [30]; 0.32–0.88 m by 2050–2100 [31,32]), and likely increases in water flow due to precipitation extremes [33]. | Small (3.4 km2) meso-tidal (1–3 m tidal amplitude) and lightly stratified system characterised by dry, warm summers and mild, rainy winters. The QF was over 180,000 dam3, with the average driest years being 67,000 dam3 (May 2004, September 2008 and December 2001). A low QF is observed during warm summer months [34,35,36]. Since the 1930s, interventions to regulate river flow have changed hydrodynamics. The expected SLR by 2050–2100 is 0.30–0.45 m [2]. | Huge (38,000 km2) micro-tidal (tidal amplitude: <0.5 m) partially stratified system. The total QF (≈25,000 m3/s) varies from <20,000 m3 s−1 to >30,000 m3 s−1 during dry/wet years associated with La Niña/El Niño events, respectively [37,38]. The stratification/mixing cycle and the estuarine front (EFS) location are controlled by the wind, QF and ENSO forcings on daily, seasonal and interannual time scales [37]. The expected SLR by 2050 is 0.3 m [39,40]. |
Estuarine Hydrology | Related Climate Forcings | Direct Impacts (Physical and Chemical) | Indirect Impact (Ecosystem, Species and Communities) | References |
---|---|---|---|---|
QF | Rainfall and river discharge (QF) Heavy rains and floods Poor rains and droughts | Horizontal salinity differences affect estuarine circulation and the salt-front location following the increase/decrease of QF, respectively. ↑↑↑downward/upward displacement of the salt front; ↑↑ horizontal salinity gradient; ∆ in physical mixing characteristics: ↑/↓stratification; ↑-↑↑ /↓- ↓↓salinity, saltwater area and volume (A-V) ∆ Turbidity ∆ Nutrients and trophic status ∆ DO2 and hypoxia ∆ Primary productivity and higher trophic levels | Salinity controls the species living in an estuary and influences dissolved oxygen (DO2), hypoxia, the phytoplankton growth rate and primary productivity (CO2 sink). Nutrients (N and P) directly or indirectly impact plant growth, (DO), pH, clarity, primary productivity, eutrophication and ultimately CO2 emissions. | [7,34,46,49,50,51,52,53,54,55,56,57,58,59] |
Tide | Sea-level rise | Altered hydrodynamics Periodic inward/outward movement of waters Regulate vertical mixing, stratification and water level. ↑ Salinity and saltwater A-V; ↑ Inundation and erosion; ↑saltwater further upstream; ↑tidal volume flow ∆ Circulation and sediment transport. | ↑ ∆ Habitat and species distribution Estuarine habitats migrate landwards. ∆ Nutrient dynamics | [49,50,54,60] |
Tempe- rature | Global warming | ↑ Rate of plant photosynthesis, respiration (R) and the metabolic rates of organisms. ↓ DO2; ↓ stratification; ↓ pH | ↑ Ecosystem Metabolism (↑R) and ∆ trophic status | [51,58,61] |
Winds | Wind increase/ decrease | ∆ Circulation, mixing, stratification and salt-front displacement, especially in large, wide and shallow estuaries Strong winds induce large flow volumes and may cause storm surges. | Controling clarity and primary productivity | [49,50,53] |
Increased atmospheric CO2 | ↑water (CO2) ↑↓ Primary productivity/respiration | ↓pH | Affecting aquatic organisms adapted to a specific pH range. ↓Shellfish production | [51,58,62,63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal Filho, W.; Nagy, G.J.; Martinho, F.; Saroar, M.; Erache, M.G.; Primo, A.L.; Pardal, M.A.; Li, C. Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 585. https://doi.org/10.3390/ijerph19010585
Leal Filho W, Nagy GJ, Martinho F, Saroar M, Erache MG, Primo AL, Pardal MA, Li C. Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. International Journal of Environmental Research and Public Health. 2022; 19(1):585. https://doi.org/10.3390/ijerph19010585
Chicago/Turabian StyleLeal Filho, Walter, Gustavo J. Nagy, Filipe Martinho, Mustafa Saroar, Mónica Gómez Erache, Ana Lígia Primo, Miguel A. Pardal, and Chunlan Li. 2022. "Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries" International Journal of Environmental Research and Public Health 19, no. 1: 585. https://doi.org/10.3390/ijerph19010585
APA StyleLeal Filho, W., Nagy, G. J., Martinho, F., Saroar, M., Erache, M. G., Primo, A. L., Pardal, M. A., & Li, C. (2022). Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. International Journal of Environmental Research and Public Health, 19(1), 585. https://doi.org/10.3390/ijerph19010585