Impact of Gender and Age on Claim Rates of Dread Disease and Cancer Insurance Policies in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Sample
3.2. Regression Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.C.; Chen, Y.H. Cancer incidence characteristic evolution based on the National Cancer Registry in Taiwan. J. Oncol. 2020, 2020, 1408793. [Google Scholar] [CrossRef]
- Health Promotion Administration. 2018 Health Promotion Administration Annual Report; Ministry of Health and Welfare: Taiwan, 2019. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1070&pid=11671 (accessed on 15 November 2021).
- Chen, Y.Y.; You, S.L.; Chen, C.A.; Shih, L.Y.; Koong, S.L.; Chao, K.Y.; Hsiao, M.L.; Hsieh, C.Y.; Chen, C.J. Effectiveness of national cervical cancer screening programme in Taiwan: 12-year experiences. Br. J. Cancer 2009, 101, 174–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, H.M.; Chen, S.L.S.; Yen, A.M.F.; Chiu, S.Y.H.; Fann, J.C.Y.; Lee, Y.C.; Pan, S.L.; Wu, M.S.; Liao, C.S.; Chen, H.H.; et al. Effectiveness of fecal immunochemical testing in reducing colorectal cancer mortality from the One Million Taiwanese Screening Program. Cancer 2015, 121, 3221–3229. [Google Scholar] [CrossRef] [Green Version]
- Black, W.C.; Nease, R.F., Jr.; Tosteson, A.N. Perceptions of breast cancer risk and screening effectiveness in women younger than 50 years of age. J. Natl. Cancer Inst. 1995, 87, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Cullati, S.; Charvet-Bérard, A.I.; Perneger, T.V. Cancer screening in a middle-aged general population: Factors associated with practices and attitudes. BMC Public Health 2009, 9, 118. [Google Scholar] [CrossRef]
- Goldman, R.E.; Risica, P.M. Perceptions of breast and cervical cancer risk and screening among Dominicans and Puerto Ricans in Rhode Island. Ethn. Dis. 2004, 14, 32–42. [Google Scholar]
- Peto, J.; Gilham, C.; Fletcher, O.; Matthews, F.E. The cervical cancer epidemic that screening has prevented in the UK. Lancet 2004, 364, 249–256. [Google Scholar] [CrossRef]
- Bray, F.; Carstensen, B.; Moller, H.; Zappa, M.; Zakelj, M.P.; Lawrence, G.; Hakama, M.; Weiderpass, E. Incidence trends of adenocarcinoma of the cervix in 13 European countries. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics. 2020 Causes of Death Statistics; Ministry of Health and Welfare: Taiwan, 2021. Available online: https://www.mohw.gov.tw/cp-5256-63399-2.html (accessed on 15 November 2021).
- Li, C.S.; Hung, C.J.; Peng, S.C.; Ho, Y.L. Claim patterns of dread disease insurance policies for non-life insurers in Taiwan. Acad. Econ. Pap. 2021; in press. [Google Scholar]
- Yang, X.J. Cancer insurance gets cheaper. China Times. 8 March 2012. Available online: https://tw.news.yahoo.com/%E7%99%8C%E7%97%87%E9%9A%AA-%E8%AE%8A%E4%BE%BF%E5%AE%9C-213000287.html (accessed on 15 November 2021).
- Huang, S.Y.; Chen, H.M.; Liao, K.H.; Ko, B.S. Economic burden of cancers in Taiwan: A direct and indirect cost estimate for 2007–2017. BMJ Open 2020, 10, e036341. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Tsai, Y.; Novick, D.; Hsiao, F.C.; Cheng, R.; Chen, J.S. Economic burden of advanced gastric cancer in Taiwan. BMC Health Serv. Res. 2017, 17, 663. [Google Scholar] [CrossRef] [Green Version]
- Taiwan Insurance Institute. Statistics for Health Insurance, ROC. Available online: https://www.tii.org.tw/tii/english/actuarial/ins1/index.html?category=10 (accessed on 15 November 2021).
- Fang, K.; Ma, C.; Jiang, Y.; Ye, L.; Shia, B.; Ma, S. Illness, medical expenditure and household consumption: Observations from Taiwan. BMC Public Health 2013, 13, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, K.; Shia, B.C.; Ma, S. Health insurance coverage, medical expenditure and coping strategy: Evidence from Taiwan. BMC Health Serv. Res. 2012, 12, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, G.; Peng, Z.; Shi, Y.; Coyte, P.C. What are the determinants of the decision to purchase private health insurance in China? Int. J. Environ. Res. Public Health 2020, 17, 5348. [Google Scholar] [CrossRef]
- Liu, T.C.; Chen, C.S. An analysis of private health insurance purchasing decisions with national health insurance in Taiwan. Soc. Sci. Med. 2002, 55, 755–774. [Google Scholar] [CrossRef]
- Appelros, P.; Stegmayr, B.; Terent, A. Sex differences in stroke epidemiology—A systematic review. Stroke 2009, 40, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, C.D.; Hurn, P.; Colton, C.; Miller, V.M.M.; del Zoppo, G.; Elkind, M.S.; Stern, B.; Herrington, D.; Ford-Lynch, G.; Gorelick, P.; et al. Advancing the study of stroke in women: Summary and recommendations for future research from an NINDS-Sponsored Multidisciplinary Working Group. Stroke 2006, 37, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Reeves, M.J.; Fonarow, G.C.; Zhao, X.; Smith, E.E.; Schwamm, L.H.; Get with the Guidelines-Stroke Steering Committee & Investigators. Quality of care in women with ischemic stroke in the GWTG program. Stroke 2009, 40, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargano, J.W.; Wehner, S.; Reeves, M. Sex differences in acute stroke care in a statewide stroke registry. Stroke 2008, 39, 24–29. [Google Scholar] [CrossRef]
- Chen, C.Y.; Huang, Y.B.; Lee, C.T.C. Epidemiology and disease burden of ischemic stroke in Taiwan. Int. J. Neurosci. 2013, 123, 724–731. [Google Scholar] [CrossRef]
- Lee, C.H.; Fang, C.C.; Tsai, L.M.; Gan, S.T.; Lin, S.H.; Li, Y.H. Patterns of acute myocardial infarction in Taiwan from 2009 to 2015. Am. J. Cardiol. 2018, 122, 1996–2004. [Google Scholar] [CrossRef]
- Chan, W.S.H. Taiwan’s healthcare report 2010. EPMA J 2010, 1, 563–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katapodi, M.C.; Lee, K.A.; Facione, N.C.; Dodd, M.J. Predictors of perceived breast cancer risk and the relation between perceived risk and breast cancer screening: A meta-analytic review. Prev. Med. 2004, 38, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.B.; Noh, J.W.; Kwon, Y.D.; Cho, K.H.; Choi, Y.; Kim, J.H. Having private cancer insurance in Korea: Gender differences. Asian Pac. J. Cancer Prev. 2015, 16, 7981–7986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Park, E.C.; Yoo, K.B. Impact of perceived cancer risk on the cancer screening rate in the general Korean population: Results from the Korean health panel survey data. Asian Pac. J. Cancer Prev. 2014, 15, 10525–10529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eppert, T. Critical illness-fit for the elderly? Risk Insights 2014, 18, 1–5. [Google Scholar]
(1) Dread Disease Insurance (ND = 90,901) | (2) Cancer Insurance (NC = 235,747) | (3) p-Value (1) vs. (2) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Claim rate (%) | 0.002 | 0.040 | 0.003 | 0.054 | <0.001 ***b |
Average claim costs (NT$) | 626.553 | 20,775.294 | 1967.167 | 45,489.194 | <0.001 ***a |
Male | 0.494 | 0.500 | 0.520 | 0.500 | <0.001 ***a |
Age (mean) | 25.834 | 17.393 | 40.633 | 15.952 | |
Age | <0.001 ***b | ||||
<20 | 0.436 | 0.496 | 0.129 | 0.336 | |
20–29 | 0.126 | 0.332 | 0.093 | 0.291 | |
30–39 | 0.189 | 0.391 | 0.200 | 0.400 | |
40–49 | 0.147 | 0.354 | 0.257 | 0.437 | |
50–59 | 0.077 | 0.266 | 0.202 | 0.401 | |
≥60 | 0.026 | 0.160 | 0.118 | 0.323 | |
Main contract | 0.740 | 0.438 | 0.980 | 0.139 | <0.001 ***b |
Big three insurers | 0.663 | 0.473 | 0.821 | 0.383 | <0.001 ***b |
Distribution channel | <0.001 ***b | ||||
Direct writer system | 0.349 | 0.477 | 0.307 | 0.461 | |
Agent system | 0.348 | 0.476 | 0.490 | 0.500 | |
Broker system | 0.302 | 0.459 | 0.203 | 0.402 | |
Direct response system | 0.001 | 0.028 | 0.000 | 0.014 | |
Premium | 1847.217 | 3785.144 | 5609.457 | 8392.151 | <0.001 ***a |
Insured amount (NT$) | 610,974.027 | 378,175.740 | 1,148,999.186 | 759,483.732 | <0.001 ***a |
Waiting period | <0.001 ***a | ||||
30 days | 0.892 | 0.311 | 0.131 | 0.338 | |
60 days | 0.089 | 0.285 | 0.016 | 0.127 | |
90 days | 0.019 | 0.137 | 0.852 | 0.355 | |
Year | <0.001 ***a | ||||
2012 | 0.261 | 0.439 | 0.181 | 0.385 | |
2013 | 0.260 | 0.439 | 0.222 | 0.416 | |
2014 | 0.249 | 0.432 | 0.277 | 0.447 | |
2015 | 0.230 | 0.421 | 0.320 | 0.467 |
(1) Claim Policy | (2) Non-Claim Policy | (3) p-Value | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | (1) vs. (2) | |
Panel A: Dread disease insurance (N = 90,901) | |||||
Average claim costs (NT$) | 382,243.470 | 343,854.274 | |||
Male | 0.510 | 0.502 | 0.494 | 0.500 | 0.695 b |
Age (mean) | 47.738 | 12.927 | 25.798 | 17.377 | <0.001 ***,b |
Age | <0.001 ***,b | ||||
<20 | 0.047 | 0.212 | 0.436 | 0.496 | |
20–29 | 0.040 | 0.197 | 0.126 | 0.332 | |
30–39 | 0.087 | 0.283 | 0.189 | 0.391 | |
40–49 | 0.356 | 0.480 | 0.146 | 0.353 | |
50–59 | 0.315 | 0.466 | 0.076 | 0.266 | |
≥60 | 0.154 | 0.363 | 0.026 | 0.159 | |
Illness type c | |||||
Cancer | 0.711 | 0.455 | |||
Circulatory system | 0.107 | 0.311 | |||
Others | 0.181 | 0.386 | |||
Distribution channel | 0.017 **,b | ||||
Direct writer system | 0.342 | 0.476 | 0.349 | 0.477 | |
Agent system | 0.409 | 0.493 | 0.348 | 0.476 | |
Broker system | 0.242 | 0.430 | 0.302 | 0.459 | |
Direct response system | 0.007 | 0.082 | 0.001 | 0.028 | |
Premium | 4757.544 | 5490.674 | 1842.438 | 3779.913 | <0.001 ***,a |
Insured amount (NT$) | 565,771.812 | 39,4261.508 | 611,048.241 | 37,8146.589 | 0.163 a |
N | 149 | 90,752 | |||
Panel B: Cancer insurance (N = 235,747) | |||||
Average claim costs (NT$) | 675,041.920 | 506,057.174 | |||
Male | 0.493 | 0.500 | 0.520 | 0.500 | 0.167 b |
Age (mean) | 55.237 | 9.710 | 40.590 | 15.947 | <0.001 ***,a |
Age | <0.001 ***,b | ||||
<20 | 0.003 | 0.054 | 0.130 | 0.336 | |
20–29 | 0.006 | 0.076 | 0.093 | 0.291 | |
30–39 | 0.051 | 0.220 | 0.200 | 0.400 | |
40–49 | 0.188 | 0.391 | 0.258 | 0.437 | |
50–59 | 0.380 | 0.486 | 0.201 | 0.401 | |
≥60 | 0.373 | 0.484 | 0.117 | 0.322 | |
Distribution channel | |||||
Direct writer system | 0.330 | 0.471 | 0.307 | 0.461 | <0.001 ***,b |
Agent system | 0.595 | 0.491 | 0.489 | 0.500 | |
Broker system | 0.074 | 0.262 | 0.203 | 0.402 | |
Direct response system | 0.000 | 0.000 | 0.000 | 0.014 | |
Premium | 10,598.603 | 11,377.412 | 5594.876 | 8377.547 | <0.001 ***,a |
Insured amount (NT$) | 846,746.143 | 713,117.862 | 1,149,242.518 | 759,434.562 | <0.001 ***,a |
N | 687 | 235,060 |
Total (NDT = 90,901) | Male (NDM = 44,861) | Female (NDF = 45,992) | ||||
---|---|---|---|---|---|---|
Adjusted OR | 95% CI | Adjusted OR | 95% CI | Adjusted OR | 95% CI | |
Panel A: Dependent variable = Claim occurrence | ||||||
Male | 1.089 | [0.788, 1.505] | ||||
Age (Ref = 30–39) | ||||||
<20 | 0.188 | [0.074, 0.476] | 1.414 | [0.156, 12.801] | 0.086 *** | [0.024, 0.308] |
20–29 | 0.639 | [0.242, 1.686] | 3.058 | [0.277, 33.812] | 0.424 | [0.136, 1.324] |
40–49 | 5.445 *** | [2.959, 10.017] | 38.628 *** | [5.255, 283.917] | 2.637 *** | [1.308, 5.316] |
50–59 | 9.633 *** | [5.157, 17.995] | 71.509 *** | [9.648, 529.999] | 4.336 *** | [2.085, 9.019] |
≥60 | 13.729 *** | [6.726, 28.024] | 92.720 *** | [11.867, 724.414] | 7.577 *** | [3.125, 18.372] |
Pseudo R2 | 0.1209 | 0.1671 | 0.1080 | |||
LR chi2 | 267.15 | 187.45 | 117.43 | |||
P > chi2 | 0.0000 | 0.0000 | 0.0000 | |||
Log likelihood | −970.929 | −467.136 | −484.766 | |||
Panel B: Dependent variable = Cancer claim occurrence | ||||||
Male | 0.823 | [0.56,1.211] | ||||
Age (Ref = 30–39) | ||||||
<20 | 0.142 *** | [0.045,0.453] | 0.938 | [0.084,10.496] | 0.070 ** | [0.015,0.325] |
20–29 | 0.372 | [0.103,1.339] | 2.994 | [0.270,33.167] | 0.130 * | [0.017,1.024] |
40–49 | 4.456 *** | [2.265,8.770] | 19.012 *** | [2.494,144.919] | 2.943 *** | [1.389,6.235] |
50–59 | 7.334 *** | [3.634,14.802] | 43.969 *** | [5.765,335.344] | 3.522 *** | [1.537,8.069] |
≥60 | 12.103 *** | [5.550,26.394] | 60.033 *** | [7.484,481.562] | 7.844 *** | [3.032,20.293] |
Pseudo R2 | 0.1273 | 0.1867 | 0.1209 | |||
LR chi2 | 209.33 | 137.94 | 109.25 | |||
P > chi2 | 0.0000 | 0.0000 | 0.0000 | |||
Log likelihood | −717.207 | −300.481 | −397.197 | |||
Panel C: Dependent variable = Non-cancer claim occurrence | ||||||
Male | 2.212 ** | [1.165, 4.199] | ||||
Age (Ref = 30–39) | ||||||
<20 | 0.436 | [0.072, 2.658] | 0.296 | [0.041, 2.155] | 0.160 | [0.014, 1.802] |
20–29 | 2.174 | [0.361, 13.08] | 1.743 | [0.287, 10.594] | ||
40–49 | 10.534 *** | [2.415, 45.949] | 10.26 *** | [2.342, 44.938] | 0.751 | [0.067, 8.42] |
50–59 | 23.18 *** | [5.271, 101.947] | 15.651 *** | [3.390, 72.261] | 8.89 *** | [1.724, 45.843] |
≥60 | 20.198 *** | [3.287, 124.116] | 5.420 | [0.440, 66.841] | ||
Pseudo R2 | 0.1436 | 0.1591 | 0.1310 | |||
LR chi2 | 106.89 | 75.83 | 33.29 | |||
P > chi2 | 0.0000 | 0.0000 | 0.0026 | |||
Log likelihood | −318.734 | −200.369 | −110.424 |
Total (NCT = 235,699) | Male (NCM = 122,465) | Female (NCF = 98,304) | ||||
---|---|---|---|---|---|---|
Adjusted OR | 95% CI | Adjusted OR | 95% CI | Adjusted OR | 95% CI | |
Male | 0.716 *** | [0.615, 0.833] | ||||
Age (Ref = 30–39) | ||||||
<20 | 0.160 *** | [0.049, 0.522] | 0.705 | [0.18,2.755] | ||
20–29 | 0.251 *** | [0.089, 0.705] | 0.924 | [0.239,3.579] | 0.079 ** | [0.011,0.579] |
40–49 | 2.927 *** | [2.013, 4.256] | 4.838 *** | [2.183,10.724] | 2.505 *** | [1.63,3.849] |
50–59 | 7.547 *** | [5.293, 10.762] | 14.586 *** | [6.775,31.4] | 5.805 *** | [3.868,8.712] |
≥60 | 12.936 *** | [9.031, 18.53] | 34.229 *** | [15.926,73.569] | 7.596 *** | [4.98,11.587] |
Pseudo R2 | 0.079 | 0.0931 | 0.0538 | |||
LR chi2 | 742.47 | 395.12 | 270.12 | |||
P > chi2 | 0.0000 | 0.0000 | 0.0000 | |||
Log likelihood | −4325.4522 | −1923.6253 | −2377.5382 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-S.; Hung, C.-J.; Peng, S.-C.; Ho, Y.-L. Impact of Gender and Age on Claim Rates of Dread Disease and Cancer Insurance Policies in Taiwan. Int. J. Environ. Res. Public Health 2022, 19, 216. https://doi.org/10.3390/ijerph19010216
Li C-S, Hung C-J, Peng S-C, Ho Y-L. Impact of Gender and Age on Claim Rates of Dread Disease and Cancer Insurance Policies in Taiwan. International Journal of Environmental Research and Public Health. 2022; 19(1):216. https://doi.org/10.3390/ijerph19010216
Chicago/Turabian StyleLi, Chu-Shiu, Chih-Jen Hung, Sheng-Chang Peng, and Ya-Lee Ho. 2022. "Impact of Gender and Age on Claim Rates of Dread Disease and Cancer Insurance Policies in Taiwan" International Journal of Environmental Research and Public Health 19, no. 1: 216. https://doi.org/10.3390/ijerph19010216