# Spread of Epidemic Disease on Edge-Weighted Graphs from a Database: A Case Study of COVID-19

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Definitions

#### 2.1. Graph

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

**Remark**

**1.**

**Definition**

**5.**

**Definition**

**6.**

#### 2.2. Graph Classes and Basic Network Models

#### 2.3. SIR Model

## 3. Model Description

#### 3.1. Graph from a Database

**Definition**

**7.**

**Definition**

**8.**

#### 3.2. Weighting Variables

**Definition**

**9.**

**Lemma**

**1.**

**Proof.**

**Definition**

**10.**

#### 3.3. Weighted Link

**Definition**

**11.**

**Example**

**1.**

- 1
- $REL=\{{\mathcal{X}}_{1},{\mathcal{X}}_{2},{\mathcal{X}}_{3},{\mathcal{X}}_{4}\}$ and
- 2
- $CHAR=\{{\mathcal{X}}_{5},{\mathcal{X}}_{6},{\mathcal{X}}_{7},{\mathcal{X}}_{8},{\mathcal{X}}_{9}\}$.

#### 3.4. Graph-Based SIR Model

- 1
- The probability (${P}_{I}\left({v}_{i}\right)$) that a susceptible vertex ${v}_{i}$ is infected by one of its neighbors is given by$${P}_{I}\left({v}_{i}\right)=\sum _{{v}_{j}\in {N}_{I}\left({v}_{i}\right)}\rho \mathsf{\Delta}t\xb7{\tilde{w}}_{ij},$$
- 2
- The probability (${P}_{R}\left({v}_{i}\right)$) that a infected vertex ${v}_{i}$ at time t will recover is given by$${P}_{R}\left({v}_{i}\right)=\delta \mathsf{\Delta}t,$$

## 4. Simulation of Disease Spread

#### 4.1. Order of the Graph

#### 4.2. Representative Factor of the Disease ($\rho $)

#### 4.3. The Mean Degree of Vertices

#### 4.4. Amount of Relation Variables

#### 4.5. The Amount of Classes

## 5. Deterministic Approximation

## 6. Modeling

## 7. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Hays, J.N. Epidemics and Pandemics: Their Impacts on Human History; ABC-Clio: Santa Barbara, CA, USA, 2005; 513p. [Google Scholar]
- Anderson, R.M.; May, R. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992; 757p. [Google Scholar]
- Brauer, F. Compartmental Models in Epidemiology. In Notes in Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2008; 414p. [Google Scholar]
- Pitlik, S. D COVID-19 Compared to Other Pandemic Diseases. Rambam Maimonides Med. J.
**2020**, 11, e0027. [Google Scholar] [CrossRef] [PubMed] - Bhapkar, H.R.; Mahalle, P.N.; Dhotre, P.S. Virus Graph and COVID-19 Pandemic: A Graph Theory Approach. In Big Data Analytics and Artificial Intelligence against COVID-19: Innovation Vision and Approach; Hassanien, A.E., Dey, N., Elghamrawy, S., Eds.; Studies in Big Data; Springer: Berlin/Heidelberg, Germany, 2020; pp. 15–34. [Google Scholar] [CrossRef]
- Croccolo, F.; Roman, E. Spreading of infections on random graphs: A percolation-type model for COVID-19. Chaos Solitons Fractals
**2020**, 139, 110077. [Google Scholar] [CrossRef] - Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr.
**2020**, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg.
**2020**. [Google Scholar] [CrossRef] [PubMed] - Kermack, W.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A
**1927**, 115, 700–721. [Google Scholar] [CrossRef] [Green Version] - Guerrero-Nancuante, C.; Manríquez P, R. An epidemiological forecast of COVID-19 in Chile based on the generalized SEIR model and the concept of recovered. Medwave
**2020**, 20. [Google Scholar] [CrossRef] - Montagnon, P.A. A Stochastic SIR model on a graph with epidemiological and population dynamics occurring over the same time scale. J. Math. Biol.
**2019**, 79, 31–62. [Google Scholar] [CrossRef] [Green Version] - Enright, J.; Kao, T.R. Epidemics on dynamic networks. Epidemics
**2018**, 24, 88–97. [Google Scholar] [CrossRef] - Cardinal-Fernández, P.; Nin, N.; Ruíz-Cabello, J.; Lorente, J. Medicina de sistemas: Una nueva visión de la práctica clínica. Arch. De Bronconeumol.
**2014**, 50, 444–451. [Google Scholar] [CrossRef] - Rizzo, A.; Pedalino, B.; Porfiri, M. A network model for Ebola spreading. J. Theor. Biol.
**2016**, 394, 212–222. [Google Scholar] [CrossRef] - Shafer, L.; Adegboye, O.; Elfaki, F. Network Analysis of MERS Coronavirus within Households, Communities, and Hospitals to Identify Most Centralized and Super-Spreading in the Arabian Peninsula, 2012 to 2016. Can. J. Infect. Dis. Med Microbiol.
**2018**, 2018, 6725284. [Google Scholar] [CrossRef] [Green Version] - Wijayanto, A.W.; Murata, T. Effective and scalable methods for graph protection strategies against epidemics on dynamic networks. Appl. Netw. Sci.
**2019**, 4, 1–31. [Google Scholar] [CrossRef] [Green Version] - Bi, K.; Chen, Y.; Zhao, S.; Ben-Arieh, D.; Wu, C.H.J. Modeling learning and forgetting processes with the corresponding impacts on human behaviors in infectious disease epidemics. Comput. Ind. Eng.
**2019**, 129, 563–577. [Google Scholar] [CrossRef] - Margevicius, K.J.; Generous, N.; Taylor-McCabe, K.J.; Brown, M.; Daniel, W.B.; Castro, L.; Deshpande, A. Advancing a Framework to Enable Characterization and Evaluation of Data Streams Useful for Biosurveillance. PLoS ONE
**2014**, 9, e83730. [Google Scholar] [CrossRef] [Green Version] - Chartrand, G.; Lesniak, L. Graphs and Digraphs, 1st ed.; CRC Press: London, UK, 1996. [Google Scholar]
- West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Erdös, P.; Rényi, A. On Random Graphs. Publ. Math.
**1959**, 6, 290–297. [Google Scholar] - Barabási, A.; Albert, R. Emergence of Scaling in Random Networks. Science
**1999**, 286, 509–512. [Google Scholar] [CrossRef] [Green Version] - Anderson, R. Discussion: The Kermack-McKendrick epidemic threshold theorem. Bull. Math. Biol.
**1991**, 53, 1–32. [Google Scholar] [CrossRef] - Weiss, H.H. The SIR Model and the Foundations of Public Health. In Materials matematics; Universidad Autónoma de Barcelona: Bellaterra, Spain, 2013; ISSN 0001–17. [Google Scholar]
- Kari, J. Theory of cellular automata: A survey. Theor. Comput. Sci.
**2005**, 334, 3–33. [Google Scholar] [CrossRef] [Green Version] - Zhang, Z.; Wang, H.; Wang, C.; Fang, H. Modeling Epidemics Spreading on Social Contact Networks. IEEE Trans. Emerg. Top. Comput.
**2015**, 3, 410–419. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys.
**2015**, 87, 925. [Google Scholar] [CrossRef] [Green Version] - Pastor-Satorras, R.; Vespignani, A. Epidemic Spreading in Scale-Free Networks. Phys. Rev. Lett.
**2001**, 86, 3200–3203. [Google Scholar] [CrossRef] [Green Version] - Keeling, M.J.; Eames, K.T. Networks and epidemic models. J. R. Soc. Interface
**2005**, 2, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med.
**2005**, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Soucie, J.M. Public health surveillance and data collection: General principles and impact on hemophilia care. Hematology
**2012**, 17, s144–s146. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis.
**2020**, 20, 533–534. [Google Scholar] [CrossRef] - Stern, A.M.; Markel, H. International efforts to control infectious diseases, 1851 to the present. JAMA
**2004**, 292, 1474–1479. [Google Scholar] [CrossRef] [PubMed]

**Figure 6.**Fraction of infected for different values of $\rho $ (

**a**); end of the disease for different values of $\rho $ (

**b**).

**Figure 24.**Graph obtained from database of Olmué city, Chili, with 3866 vertices and 6,841,470 edges.

**Figure 25.**Simulations on graph obtained in Figure 24.

Person | City | Workplace | E. C. Activity | Address | Sm. | Dri. | Gen. | M. S | Age |
---|---|---|---|---|---|---|---|---|---|

1 | A | Workplace 1 | Theater | y | Y | Y | F | IC | 35 |

2 | A | Workplace 3 | Cinema | y | Y | Y | M | IC | 35 |

3 | B | School B | Football | z | N | N | F | S | 10 |

4 | B | Workplace 1 | Photography | x | N | N | F | M | 48 |

5 | A | Workplace 5 | Does not have | u | Y | N | F | W | 65 |

6 | A | Workplace 4 | Does not have | v | Y | Y | M | IC | 27 |

7 | B | Workplace 2 | Does not have | x | Y | N | M | M | 46 |

8 | A | University 1 | Photography | v | N | N | M | IC | 29 |

9 | A | University 2 | Does not have | w | Y | Y | M | IC | 19 |

10 | B | School B | Karate | x | N | N | M | S | 10 |

11 | A | Workplace 4 | Ping-pong | r | Y | Y | F | M | 54 |

12 | A | School A | Football | s | N | N | M | S | 8 |

13 | A | Workplace 5 | Dance | r | Y | Y | F | M | 57 |

14 | B | School A | Handball | q | N | N | M | S | 11 |

15 | A | University 1 | Does not have | t | N | N | F | S | 25 |

16 | A | Workplace 7 | Singing | p | Y | Y | F | S | 60 |

17 | A | Workplace 8 | Music | k | N | Y | F | S | 28 |

18 | A | Workplace 3 | Does not have | d | N | N | M | S | 47 |

19 | B | School A | Music | g | N | N | F | S | 8 |

20 | A | Workplace 6 | Does not have | h | Y | Y | M | S | 30 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Manríquez, R.; Guerrero-Nancuante, C.; Martínez, F.; Taramasco, C.
Spread of Epidemic Disease on Edge-Weighted Graphs from a Database: A Case Study of COVID-19. *Int. J. Environ. Res. Public Health* **2021**, *18*, 4432.
https://doi.org/10.3390/ijerph18094432

**AMA Style**

Manríquez R, Guerrero-Nancuante C, Martínez F, Taramasco C.
Spread of Epidemic Disease on Edge-Weighted Graphs from a Database: A Case Study of COVID-19. *International Journal of Environmental Research and Public Health*. 2021; 18(9):4432.
https://doi.org/10.3390/ijerph18094432

**Chicago/Turabian Style**

Manríquez, Ronald, Camilo Guerrero-Nancuante, Felipe Martínez, and Carla Taramasco.
2021. "Spread of Epidemic Disease on Edge-Weighted Graphs from a Database: A Case Study of COVID-19" *International Journal of Environmental Research and Public Health* 18, no. 9: 4432.
https://doi.org/10.3390/ijerph18094432