Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P.; et al. High-Intensity Training versus Traditional Exercise Interventions for Promoting Health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Weston, K.S.; Wisloff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardi-ometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity in terval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms controlling mito-chondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R1303–R1310. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Schubert, M.M. Individual Responses to Completion of Short-Term and Chronic Interval Training: A Retrospective Study. PLoS ONE 2014, 9, e97638. [Google Scholar] [CrossRef]
- Gurd, B.J.; Giles, M.D.; Bonafiglia, J.T.; Raleigh, J.P.; Boyd, J.C.; Ma, J.K.; Zelt, J.G.; Scribbans, T.D. Incidence of non-response and in-dividual patterns of response following sprint interval training. Appl. Physiol. Nutr. Metab. 2016, 41, 229–234. [Google Scholar] [CrossRef]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Érusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO2max response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef]
- Mann, T.N.; Lamberts, R.P.; Lambert, M.I. High responders and low responders: Factors associated with individu-al variation in response to standardized training. Sports Med. 2014, 44, 1113–1124. [Google Scholar] [CrossRef]
- Slentz, C.A.; Duscha, B.D.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; Houmard, J.A.; Bales, C.W.; Kraus, W.E. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE—A randomized controlled study. Arch. Intern. Med. 2004, 164, 31–39. [Google Scholar] [CrossRef]
- Gill, J.M.; Celis-Morales, C.A.; Ghouri, N. Physical activity, ethnicity and cardio-metabolic health: Does one size fit all? Atheroscler. 2014, 232, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion. 2020. Available online: https://www.cdc.gov/nccdphp/dnpao/index.html (accessed on 13 April 2021).
- Rosenkilde, M.; Reichkendler, M.H.; Auerbach, P.; Bonne, T.C.; Sjodin, A.; Ploug, T.; Stallknecht, B.M. Changes in peak fat oxi-dation in response to different doses of endurance training. Scand. J. Med. Sci. Sports 2015, 25, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Schubert, M.M.; Palumbo, E.; Stirling, D.; McMillan, D.W. Effect of two doses of interval training on maximal fat oxidation in sedentary women. Med. Sci. Sports Exerc. 2013, 45, 1878–1886. [Google Scholar] [CrossRef]
- Talanian, J.L.; Galloway, S.D.R.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007, 102, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.G.R.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008, 33, 1112–1123. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuck, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Zurlo, F.; Lillioja, S.; Esposito-Del Puente, A.; Nyomba, B.L.; Raz, I.; Saad, M.F.; Swinburn, B.A.; Knowler, W.C.; Bogardus, C.; Ravussin, E. Low ratio of fat to carbohy-drate oxidation as predictor of weight gain: Study of 24-h RQ. Am. J. Physiol. 1990, 259, 650–657. [Google Scholar]
- Robinson, S.L.; Hattersley, J.; Frost, G.S.; Chambers, E.S.; Wallis, G.A. Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J. Appl. Physiol. 2015, 118, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; Simoneau, J.A. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1994, 94, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Schubert, M.M. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Graefe Arch. Clin. Exp. Ophthalmol. 2018, 118, 51–63. [Google Scholar] [CrossRef]
- Croci, I.; Borrani, F.; Byrne, N.; Wood, R.; Hickman, I.; Chenevière, X.; Malatesta, D. Reproducibility of Fatmax and Fat Oxidation Rates during Exercise in Recreationally Trained Males. PLoS ONE 2014, 9, e97930. [Google Scholar] [CrossRef]
- Støa, E.M.; Nyhus, L.-K.; Børresen, S.C.; Nygaard, C.; Hovet, Å.M.; Bratland-Sanda, S.; Helgerud, J.; Støren, Ø. Day to day variability in fat oxidation and the effect after only 1 day of change in diet composition. Appl. Physiol. Nutr. Metab. 2016, 41, 397–404. [Google Scholar] [CrossRef]
- Chrzanowski-Smith, O.J.; Edinburgh, R.M.; Thomas, M.P.; Haralabidis, N.; Williams, S.; Betts, J.A.; Gonzalez, J.T. The day-to-day relia-bility of peak fat oxidation and FATmax. Eur. J. Appl. Physiol. 2020, 120, 1745–1759. [Google Scholar] [CrossRef]
- Cortright, R.N.; Sandhoff, K.M.; Basilio, J.L.; Berggren, J.R.; Hickner, R.C.; Hulver, M.W.; Dohm, G.L.; Houmard, J.A. Skeletal Muscle Fat Oxidation Is Increased in African-American and White Women after 10 days of Endurance Exercise Training*. Obesity 2006, 14, 1201–1210. [Google Scholar] [CrossRef]
- Hickner, R.C.; Privette, J.; McIver, K.; Barakat, H. Fatty acid oxidation in African-American and Caucasian women during physical activity. J. Appl. Physiol. 2001, 90, 2319–2324. [Google Scholar] [CrossRef]
- Hecksteden, A.; Pitsch, W.; Rosenberger, F.; Meyer, T. Repeated testing for the assessment of individual response to exercise training. J. Appl. Physiol. 2018, 124, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- De Revere, J.L.; Clausen, R.D.; Astorino, T.A. Changes in VO2max and cardiac output in response to short-term high-intensity interval training in Caucasian and Hispanic young women: A pilot study. PLoS ONE 2021, 16, e0244850. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake (VO2max): VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; Carroll, S. Emergence of the verification phase procedure for confirming ‘true’ VO2max. Scandina-vian. J. Med. Sci. Sports 2009, 19, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef]
- Beckerman, H.; Vogelaar, T.W.; Lankhorst, G.J.; Verbeek, A.L. A criterion for stability of the motor function of the lower extremity in stroke patients using the Fugl-Meyer Assessment Scale. Scand. J. Rehabil. Med. 1996, 28, 3–7. [Google Scholar] [PubMed]
- Haffner, S.M.; D’Agostino, R.; Saad, M.F.; Rewers, M.; Mykkanen, L.; Selby, J.; Howard, G.; Savage, P.J.; Hamman, R.F.; Wagenknecht, L.E.; et al. Increased insulin resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared with non-Hispanic whites. The Insulin Resistance Atherosclerosis Study. Diabetes 1996, 45, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, E.K.; Golden, S.H. Race/Ethnic difference in diabetes and diabetic complications. Curr. Diabetes Rep. 2013, 13, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, S.; Codecasa, F.; Cornacchia, M.; Maestrini, S.; Capodaglio, P.; Brunani, A.; Fanari, P.; Salvadori, A.; Malatesta, D. Short-term HIIT and Fatmax training increase aerobic and metabolic fitness in men with class II and III obesity. Obesity 2015, 23, 1987–1994. [Google Scholar] [CrossRef]
- Alkahtani, S.A.; King, N.A.; Hills, A.P.; Byrne, N.M. Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. Springerplus 2013, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Clamp, L.D.; Mendham, A.E.; Kroff, J.; Goedecke, J.H. Higher baseline fat oxidation promotes gynoid fat mobili-zation in response to a 12-week exercise intervention in sedentary, obese black South African women. Appl. Physiol. Nutr. Metab. 2020, 45, 327–335. [Google Scholar] [CrossRef]
- Hurley, B.F.; Nemeth, P.M.; Martin, W.H., III; Hagberg, J.M.; Dalsky, G.P.; Holloszy, J.O. Muscle triglyceride utilization during exercise: Effect of training. J. Appl. Physiol. 1986, 60, 562–567. [Google Scholar] [CrossRef]
- Silveira, R.D.S.; Carlsohn, A.; Langen, G.; Mayer, F.; Scharhag-Rosenberger, F. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry. J. Int. Soc. Sports Nutr. 2016, 13, 4. [Google Scholar] [CrossRef]
- Fletcher, G.; Eves, F.F.; Glover, E.I.; Robinson, S.L.; Vernooij, C.A.; Thompson, J.L.; Wallis, G.A. Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am. J. Clin. Nutr. 2017, 105, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, F.J.; Acosta, F.M.; Migueles, J.H.; Ponce-González, J.G.; Ruiz, J.R. Association of sedentary and physical activity time with maximal fat oxidation during exercise in sedentary adults. Scand. J. Med. Sci. Sports 2020, 30, 1605–1614. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Gibson, A.S.C.; Grobler, L.; Collins, M.; Noakes, T.D.; Lambert, E.V. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am. J. Physiol. Metab. 2000, 279, E1325–E1334. [Google Scholar] [CrossRef]
- Archer, E.; Hand, A.; Blair, S.N. Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef] [PubMed]
- Randell, R.K.; Rollo, I.; Roberts, T.J.; Dalrymple, K.J.; Jeukendrup, A.E.; Carter, J.M. Maximal Fat Oxidation Rates in a Athletic Population. Med. Sci. Sports Exerc. 2017, 49, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kodamo, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. J. Am. Med. Assoc. 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [PubMed]
- Coutinho, M.; Gerstein, H.C.; Wang, Y.; Yusuf, S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999, 22, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Foulds, H.J.A.; Bredin, S.S.D.; Warburton, D.E.R. Ethnic differences in the cardiac responses to aerobic exercise. Ethn. Health 2017, 24, 168–181. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Ara, I.; Ruiz, J.R. Cardiorespiratory fitness may influence metabolic in-flexibility during exercise in obese persons. J. Clin. Endocrinol. Metab. 2019, 104, 5780–5790. [Google Scholar] [CrossRef] [PubMed]
- Montain, S.J.; Hopper, M.K.; Coggan, A.R.; Coyle, E.F. Exercise metabolism at different time intervals after a meal. J. Appl. Physiol. 1991, 70, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, J.; Pistoljevic, N.; Quesada, J.P.; Amaro-Gahete, F.J.; Ritz, C.; Larsen, S.; Dela, F.; Helge, J.W. Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. J. Appl. Physiol. 2020, 128, 681–687. [Google Scholar] [CrossRef] [PubMed]
Parameter | Caucasian (n = 12) | Hispanic (n = 10) | t | p | d |
---|---|---|---|---|---|
Age (yr) | 26.33 ± 5.65 | 22.60 ± 2.46 | 1.68 | 0.07 | 0.64 |
Height (cm) | 164.79 ± 6.78 | 157.35 ± 5.61 | 3.50 | 0.01 * | 1.28 |
Mass (kg) | 60.49 ± 7.40 | 60.56 ± 8.00 | 0.53 | 0.98 | 0.14 |
BMI (kg/m2) | 22.2 ± 2.0 | 24.2 ± 2.3 | 1.32 | 0.20 | 1.00 |
VO2max (mL/kg/min) | 31.07 ± 3.74 | 28.37 ± 3.83 | 1.70 | 0.11 | 0.71 |
Peak Power Output (W) | 175.67 ± 27.14 | 164.20 ± 27.95 | 0.97 | 0.34 | 0.43 |
Physical Activity (steps/2 days) | 209,34.91 ± 3703.25 | 18,562.67 ± 7491.68 | 0.92 | 0.37 | 0.43 |
Variable | Test 1 | Test 2 | p Value | ICC | SEM | LOA |
---|---|---|---|---|---|---|
MFO (g/min) | 0.19 ± 0.06 | 0.19 ± 0.06 | 0.61 | 0.81 | 0.03 | 0.07–0.31 |
FOx10% (g/min) | 0.18 ± 0.06 | 0.18 ± 0.06 | 0.98 | 0.79 | 0.03 | 0.06–0.30 |
FOx20% (g/min) | 0.14 ± 0.07 | 0.15 ± 0.08 | 0.73 | 0.72 | 0.04 | 0.01–0.28 |
FOx30% (g/min) | 0.13 ± 0.06 | 0.14 ± 0.08 | 0.76 | 0.76 | 0.03 | 0.00–0.27 |
FOx40% (g/min) | 0.10 ± 0.07 | 0.11 ± 0.07 | 0.32 | 0.84 | 0.03 | −0.03–0.24 |
FOx50% (g/min) | 0.08 ± 0.07 | 0.08 ± 0.06 | 0.85 | 0.72 | 0.03 | −0.04–0.20 |
CHOOx10% (g/min) | 0.36 ± 0.21 | 0.38 ± 0.24 | 0.69 | 0.79 | 0.10 | −0.06–0.80 |
CHOOx20% (g/min) | 0.59 ± 0.21 | 0.63 ± 0.24 | 0.52 | 0.81 | 0.10 | 0.18–1.03 |
CHOOx30% (g/min) | 0.80 ± 0.20 | 0.78 ± 0.27 | 0.70 | 0.85 | 0.09 | 0.34–1.24 |
CHOOx40% (g/min) | 1.11 ± 0.23 | 1.10 ± 0.24 | 0.67 | 0.85 | 0.09 | 0.75–1.55 |
CHOOx50% (g/min) | 1.42 ± 0.30 | 1.41 ± 0.33 | 0.77 | 0.88 | 0.11 | 0.80–2.02 |
EE (kcal) | 107.4 ± 14.8 | 108.5 ± 17.1 | 0.47 | 0.95 | 3.5 | 76.6–139.4 |
Workload | Pre | Post |
---|---|---|
10%PPO | 0.84 ± 0.04 | 0.80 ± 0.03 * |
20%PPO | 0.88 ± 0.05 | 0.85 ± 0.04 * |
30%PPO | 0.91 ± 0.04 | 0.89 ± 0.04 |
40%PPO | 0.95 ± 0.04 | 0.94 ± 0.05 |
50%PPO | 0.97 ± 0.04 | 0.97 ± 0.04 |
Variable | Baseline 1 | Baseline 2 | Mid | Post-Training |
---|---|---|---|---|
Steps | 21,346 ± 5154 | 18,950 ± 5905 | 20,964 ± 5615 | 17,235 ± 4963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astorino, T.A.; De Revere, J.L. Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 4314. https://doi.org/10.3390/ijerph18084314
Astorino TA, De Revere JL. Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(8):4314. https://doi.org/10.3390/ijerph18084314
Chicago/Turabian StyleAstorino, Todd A., and Jamie L. De Revere. 2021. "Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 8: 4314. https://doi.org/10.3390/ijerph18084314
APA StyleAstorino, T. A., & De Revere, J. L. (2021). Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study. International Journal of Environmental Research and Public Health, 18(8), 4314. https://doi.org/10.3390/ijerph18084314