A Predictive Model to Analyze the Factors Affecting the Presence of Traumatic Brain Injury in the Elderly Occupants of Motor Vehicle Crashes Based on Korean In-Depth Accident Study (KIDAS) Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Acquisition
2.2.1. Crash Data—Collision Deformation Classification Code (CDC Code)
2.2.2. Injury Data—Abbreviated Injury Scale (AIS)/Injury Severity Score (ISS)
2.2.3. Definition of the Controlled Indicators
2.2.4. Inclusion and Exclusion Criteria
2.3. Data Analysis
2.3.1. Logistic Regression Model
2.3.2. External Validation Analysis
2.3.3. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Factors Affecting TBI in the Elderly MVOs
3.3. Logistic Regression Model
3.4. External Validation of the Model
4. Discussion
4.1. Methodology
4.2. General Characteristics
4.3. Logistic Multiple Regression Analysis
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mori, Y.; Mizohata, M. Characteristics of older road users and their effect on road safety. Acid. Anal. Prev. 1995, 27, 391–404. [Google Scholar] [CrossRef]
- Kim, K.B. The characteristics of traffic accidents and reduction methods by elderly drivers to prepare for the aging society-focused on Jeju. J. Korea Contents Assoc. 2014, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- American Geriatrics Society; Promidor, A. Clinician’s Guide to Assessing and Counselling Older Drivers, 3rd ed.; National Highway Traffic Safety Administration: Washington, DC, USA, 2016. [Google Scholar]
- United Nations. 2015 World Population Ageing; United Nations: Washington, DC, USA, 2015. [Google Scholar]
- United Nations. Life Expectancy at Birth for Both Sexes Combined(years). Available online: http://data.un.org/Data.aspx?q=life+expectancy&d=PopDiv&f=variableID:68&c=1,4,5,6,7,8&s=_crEngNameOrderBy:asc&p=_timeEngNameOrderBy&v=1 (accessed on 6 February 2021).
- Fernandes, F.A.; Sousa, R.J.A.D. Head injury predictors in sports trauma–a state-of-the-art review. Proceedings of the Insti-tution of Mechanical Engineers. Part H J. Eng. Med. 2015, 229, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Peden, M.; Scurfield, R.; Sleet, D.; Hyder, A.A.; Mathers, C.; Jarawan, E.; Jarawan, E. World Report on Road Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Peschman, J.; Neideen, T.; Brasel, K. The Impact of Discharging Minimally Injured Trauma Patient: Does Age Play a Role in Trauma Admission? J. Trauma: Inj. Infect. Crit. Care 2011, 70, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Peeters, W.; Brande, R.V.D.; Polinder, S.; Brazinova, A.; Steyerberg, E.W.; Lingsma, H.F.; Maas, A.I.R. Epidemiology of traumatic brain injury in Europe. Acta Neurochir. 2015, 157, 1683–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, C.; Anghelescu, A.; Daia, C.; Onose, G. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury. J. Med. Life 2015, 8, 272–277. [Google Scholar] [PubMed]
- Feinstein, A.; Rapoport, M. Mild Traumatic Brain Injury: The Silent Epidemic. Can. J. Public Health 2000, 91, 325–326. [Google Scholar] [CrossRef] [Green Version]
- Roozenbeek, B.; Maas, A.I.R.; Menon, D.K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 2013, 9, 231–236. [Google Scholar] [CrossRef]
- Papadakaki, M.; Stamouli, M.-A.; Ferraro, O.E.; Orsi, C.; Otte, D.; Tzamalouka, G.; Von Der Geest, M.; Lajunen, T.; Özkan, T.; Morandi, A.; et al. Hospitalization costs and estimates of direct and indirect economic losses due to injury sustained in road traffic crashes: Results from a one-year cohort study in three European countries (The REHABILAID project). Trauma 2016, 19, 264–276. [Google Scholar] [CrossRef]
- Rubiano, A.M.; Carney, N.; Chesnut, R.M.; Puyana, J.C. Global neurotrauma research challenges and opportunities. Nat. Cell Biol. 2015, 527, S193–S197. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Traumatic Brain Injury in the United States: Fact Sheet. Updated April 27. 2017. Available online: http://www.cdc.gov/traumaticbraininjury/get_the_facts.html (accessed on 6 February 2021).
- Neyens, D.M.; Boyle, L.N. Crash risk factors related to individuals sustaining and drivers following traumatic brain injuries. Accid. Anal. Prev. 2012, 49, 266–273. [Google Scholar] [CrossRef]
- Papadakaki, M.; Ferraro, O.E.; Orsi, C.; Otte, D.; Tzamalouka, G.; Von-Der-Geest, M.; Lajunen, T.; Özkan, T.; Morandi, A.; Sarris, M.; et al. Psychological distress and physical disability in patients sustaining severe injuries in road traffic crashes: Results from a one-year cohort study from three European countries. Injury 2017, 48, 297–306. [Google Scholar] [CrossRef]
- Sasser, S.M.; Hunt, R.C.; Faul, M.; Sugerman, D.; Pearson, W.S.; Dulski, T.; Wald, M.M.; Jurkovich, G.J.; Newgard, C.D.; Lerner, E.B. Guidelines for field triage of injured patients: Recommendations of the National Expert Panel on Field Triage, 2011. MMWR. Recomm. Rep. 2012, 61, 1–20. [Google Scholar] [PubMed]
- Ashok, J.; Suganthi, V.; Vijayalakshmi, I. Comparison of brake reaction time in younger and older drivers. Int. J. Res. Med. Sci. 2016, 4, 649–652. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, K.H.; Kim, O.H.; Youk, H.; An, G.J.; Kong, J.S.; Kang, C.Y.; Choo, Y.I.; Kim, H.J.; Kim, S.C. The importance and utilization plan of database based on actual accident investigation system in Korea. J. Auto-Veh. Safety Assoc. 2019, 11, 43–47. [Google Scholar]
- Society of Automotive Engineers International. Collision Deformation Classification J224_201702; SAE International: London, UK, 2017. [Google Scholar]
- Gennarelli, T.A.; Wodzin, E. AIS 2005: A contemporary injury scale. Injury 2006, 37, 1083–1091. [Google Scholar] [CrossRef]
- Association for the Advancement of Automotive Medicine. The Abbreviated Injury Scale 2005 Revision; update 2008; Association for the Advancement of Automotive Medicine: Chicago, IL, USA, 2008. [Google Scholar]
- Carroll, C.P.; Cochran, J.A.; Price, J.P.; Guse, C.E.; Wang, M.C. The AIS-2005 revision in severe traumatic brain injury: Mission accomplished or problems for future research? Ann. Adv. Automot. Med. 2010, 54, 233–238. [Google Scholar]
- Baker, S.P.; O’neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma Acute Care Surg. 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Boyd, C.R.; Tolson, M.A.; Copes, W.S. Evaluating trauma care: The TRISS method. Trauma Score and the Injury Severity Score. J. Trauma 1987, 27, 370–378. [Google Scholar] [CrossRef]
- Indrayan, A.; Holt, M.P. Concise Encyclopedia of Biostatistics for Medical Professionals; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Campbell, K.L. Energy Basis for Collision Severity; SAE International: London, UK, 1974; pp. 2114–2126. [Google Scholar] [CrossRef]
- Park, S.D. Study on Deformation of Vehicle’s Frontal Crash for Traffic Accident Reconstruction. Ph.D. Dissertation, Han-yang University, Seoul, Korea, 2010. [Google Scholar]
- Mayrose, J.; Jehle, D.; Hayesf, M.; Tinnesz, D.; Piazza, G.; Wilding, G.E. Influence of the unbelted rear-seat passenger on driver mortality: “the backseat bullet”. Acad. Emerg. Med. 2005, 12, 130–134. [Google Scholar] [CrossRef]
- Evans, L. Restraint effectiveness, occupant ejection from cars, and fatality reductions. Accid. Anal. Prev. 1990, 22, 167–175. [Google Scholar] [CrossRef]
Variables | Total (n = 822) | TBI (n = 357) | Non-TBI (n = 465) | p Value |
---|---|---|---|---|
Sex, n (%) | 0.646 * | |||
Male | 505 (61.4) | 223 (62.5) | 282 (60.6) | |
Female | 317 (38.6) | 134 (37.5) | 183 (39.4) | |
Age (years), mean ± SD | 63.53 ± 7.25 | 63.44 ± 7.46 | 63.60 ± 7.10 | 0.764 |
Height (cm), mean ± SD | n = 575 | n = 237 | n = 338 | 0.113 |
163.19 ± 9.96 | 163.97 ± 7.97 | 162.64 ± 11.12 | ||
Weight (kg), mean ± SD | n = 576 | n = 238 | n = 338 | 0.838 |
64.04 ± 10.13 | 64.14 ± 9.98 | 63.97 ± 10.25 | ||
BMI (kg/m2), mean ± SD | n = 572 | n = 236 | n = 336 | 0.461 |
23.93 ± 3.02 | 23.82 ± 2.90 | 24.01 ± 3.10 | ||
Vehicle type, n (%) | 0.741 | |||
Sedan | 399 (48.5) | 179 (50.1) | 220 (47.3) | |
SUV | 161 (19.6) | 66 (19.6) | 95 (20.4) | |
Light truck | 174 (21.2) | 77 (21.2) | 97 (20.9) | |
Van | 88 (10.7) | 35 (10.7) | 53 (11.4) | |
Collision type, n (%) | 0.049 | |||
Frontal collision | 424 (51.6) | 165 (46.2) | 259 (55.7) | |
Lateral-nearside collision | 71 (8.6) | 36 (10.1) | 35 (7.5) | |
Lateral-farside collision | 60 (7.3) | 23 (6.4) | 37 (8.0) | |
Rear-end collision | 76 (9.2) | 37 (10.4) | 39 (8.4) | |
Rollover | 114 (13.9) | 54 (15.1) | 60 (12.9) | |
Multiple collisions | 77 (9.4) | 42 (11.8) | 35 (7.5) | |
Fastened seatbelt, n (%) | n = 796 | n = 349 | n = 447 | 0.008 |
547 (66.5) | 222 (63.6) | 325 (72.7) | ||
Deployed frontal airbag, n (%) | n = 610 | n = 279 | n = 331 | 0.356 |
154 (25.2) | 65 (23.3) | 89 (26.9) | ||
Seating position, n (%) | 0.201 | |||
Driver | 521 (63.4) | 225 (63.0) | 296 (63.7) | |
Passenger | 202 (24.6) | 94 (26.3) | 108 (23.2) | |
2nd-row left | 39 (4.7) | 19 (5.3) | 20 (4.3) | |
2nd-row right | 60 (7.3) | 19 (5.3) | 41 (8.8) | |
Seating row, n (%) | 0.331 * | |||
1st-row | 723 (88.0) | 319 (89.4) | 404 (86.9) | |
2nd-row | 99 (12.0) | 38 (10.6) | 61 (13.1) | |
Crush extent (CE), mean ± SD | 3.38 ± 1.79 | 3.43 ± 1.81 | 3.34 ± 1.79 | 0.586 |
Crush extent (CE) zone, n (%) | 0.570 | |||
Zone 1 (Extent 1–3) | 537 (65.3) | 233 (65.3) | 304 (65.4) | |
Zone 2 (Extent 4–6) | 220 (26.8) | 92 (25.8) | 128 (27.5) | |
Zone 3 (Extent 7–9) | 65 (7.9) | 32 (9.0) | 33 (7.1) | |
Alcohol, n (%) | n = 584 | n = 259 | n = 325 | 0.210 * |
No | 554 (94.9) | 248 (95.8) | 306 (94.2) | |
Yes | 30 (5.1) | 11 (4.2) | 19 (5.8) | |
Mental status, n (%) | n = 736 | n = 289 | n = 368 | 0.001 |
Alert | 657 (89.3) | 289 (85.8) | 368 (92.2) | |
Verbal response | 40 (5.4) | 24 (7.1) | 16 (4.0) | |
Pain response | 13 (1.8) | 12 (3.6) | 1 (0.3) | |
Unresponsive | 26 (3.5) | 12 (3.6) | 14 (3.5) | |
Result of emergency room, n (%) | n = 750 | n = 336 | n = 414 | 0.143 |
Discharge | 120 (16.0) | 61 (18.2) | 59 (14.3) | |
Transfer | 146 (19.5) | 63 (18.8) | 83 (20.0) | |
Ward admission | 357 (47.6) | 146 (43.5) | 211 (51.0) | |
ICU admission | 92 (12.3) | 47 (14.0) | 45 (10.9) | |
Expired | 35 (4.7) | 19 (5.7) | 16 (3.9) | |
Result of admission, n (%) | n = 314 | n = 151 | n = 163 | 0.115 |
Discharge | 259 (82.5) | 119 (78.8) | 140 (85.9) | |
Transfer | 47 (15.0) | 29 (19.2) | 18 (11.0) | |
Expired | 8 (2.5) | 3 (2.0) | 5 (3.1) | |
MAIS, median [IQR] | 2 [1–3] | 2 [2–3] | 2 [1–3] | <0.001 |
ISS, median [IQR] | 5 [2–13] | 6 [3–13] | 5 [2–12] | <0.001 |
Variables | Univariate | Multivariate |
---|---|---|
Sex, n (%) | ||
Male | Reference | Reference |
Female | 0.926 (0.697–1.230) | 0.927 (0.663–1.296) |
Age (year) | 0.997 (0.978–1.016) | |
Height (cm) | 1.016 (0.996–1.035) | |
Weight (kg), | 1.002 (0.985–1.018) | |
BMI (kg/m2) | 0.979 (0.927–1.035) | |
Vehicle type | ||
Sedan | Reference | Reference |
SUV | 0.854 (0.589–1.237) | 0.783 (0.528–1.161) |
Light truck | 0.976 (0.682–1.396) | 0.821 (0.547–1.231) |
Van | 0.812 (0.507–1.299) | 0.746 (0.452–1.232 |
Collision type | ||
Frontal collision | Reference | Reference |
Lateral-nearside collision | 1.615 (0.975–2.674) | 1.597 (0.938–2.718) |
Lateral-farside collision | 0.976 (0.560–1.701) | 1.125 (0.629–2.014) |
Rear-end collision | 1.489 (0.912–2.432) | 1.833 (1.077–3.119) |
Rollover | 1.413 (0.932–2.142) | 1.481 (0.959–2.288) |
Multiple collision | 1.884 (1.155–3.072) | 1.897 (1.136–3.167) |
Seatbelt | ||
Unfasten (vs. Fasten—Ref) | 1.524 (1.127–2.060) | 1.677 (1.215–2.315) |
Frontal airbag | ||
Non-deployment (vs. Deployment—Ref) | 1.211 (0.837–1.751) | |
Curtain airbag, n (%) | ||
Non-deployment (vs. Deployment—Ref) | 1.158 (0.449–2.982) | |
Seating position, n (%) | ||
Driver | Reference | Reference |
Passenger | 1.145 (0.826–1.587) | 1.134 (0.783–1.640) |
2nd-row left | 1.250 (0.652–2.397) | 0.884 (0.419–1.868) |
2nd-row right | 0.610 (0.344–1.079) | 0.465 (0.941–1.129) |
Seating row, n (%) | ||
1st-row | Reference | |
2nd-row | 0.789 (0.513–1.214) | |
Crush extent (CE) | 1.026 (0.950–1.107) | 1.031 (0.941–1.129) |
Crush extent (CE) zone, n (%) | ||
Zone 1 | Reference | |
Zone 2 | 0.938 (0.683–1.288) | |
Zone 3 | 1.265 (0.756–2.118) | |
Hosmer–Lemeshow: λ2 = 7.123, p = 0.523, Nagelkerke R2 = 0.050 |
Variables | β | SE | Wald | p Value | |
---|---|---|---|---|---|
Intercept | −0.561 | 0.222 | 6.389 | 0.011 | |
Sex | Female (vs. Male) | −0.076 | 0.171 | 0.197 | 0.657 |
Vehicle type | Sedan | Reference | 2.529 | 0.470 | |
SUV | −0.245 | 0.201 | 1.487 | 0.223 | |
Light truck | −0.198 | 0.207 | 0.912 | 0.339 | |
Van | −0.293 | 0.256 | 1.314 | 0.252 | |
Seating position | Driver | Reference | 0.070 | ||
Front Right Passenger | 0.125 | 0.189 | 0.442 | 0.506 | |
Second Left Passenger | −0.123 | 0.382 | 0.104 | 0.747 | |
Second Right Passenger | −0.765 | 0.333 | 5.271 | 0.022 | |
Seatbelt status | Unfastened (vs Fasten) | 0.517 | 0.164 | 9.902 | 0.002 |
Collision type | Frontal collision | Reference | 7.060 | 0.037 | |
Lateral-Nearside collision | 0.468 | 0.271 | 2.974 | 0.085 | |
Lateral-farside collision | 0.118 | 0.297 | 0.158 | 0.691 | |
Rear-end collision | 0.606 | 0.271 | 4.985 | 0.026 | |
Rollover | 0.393 | 0.222 | 3.134 | 0.077 | |
Multiple collisions | 0.640 | 0.262 | 5.991 | 0.014 | |
Crush extent (increased 1 unit) | 0.031 | 0.046 | 0.435 | 0.510 |
c-Statistics (95% CI) | Cut-Off Value | Sensitivity | Specificity |
---|---|---|---|
60.8% (57.4%, 64.2%) | 0.4832 | 0.417 | 0.768 |
TBI in the Elderly MVOs | Diagnosed Condition | ||
---|---|---|---|
TBI | non-TBI | ||
Predicted condition | TBI | 3 (TP: True Positive) | 10 (FP: False Positive) |
non-TBI | 3 (FN: False Negative) | 27 (TN: True Negative) | |
Sensitivity: 0.500 (TP/(TP + FN)), Specificity: 0.730 (TN/(FP + TN)), Accuracy: 0.698 ((TP + TN)/All) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.Y.; Youk, H.; Kim, O.H.; Kang, C.Y.; Kong, J.S.; Choo, Y.I.; Choi, D.R.; Lee, H.J.; Kang, D.K.; Lee, K.H. A Predictive Model to Analyze the Factors Affecting the Presence of Traumatic Brain Injury in the Elderly Occupants of Motor Vehicle Crashes Based on Korean In-Depth Accident Study (KIDAS) Database. Int. J. Environ. Res. Public Health 2021, 18, 3975. https://doi.org/10.3390/ijerph18083975
Lee HY, Youk H, Kim OH, Kang CY, Kong JS, Choo YI, Choi DR, Lee HJ, Kang DK, Lee KH. A Predictive Model to Analyze the Factors Affecting the Presence of Traumatic Brain Injury in the Elderly Occupants of Motor Vehicle Crashes Based on Korean In-Depth Accident Study (KIDAS) Database. International Journal of Environmental Research and Public Health. 2021; 18(8):3975. https://doi.org/10.3390/ijerph18083975
Chicago/Turabian StyleLee, Hee Young, Hyun Youk, Oh Hyun Kim, Chan Young Kang, Joon Seok Kong, Yeon Il Choo, Doo Ruh Choi, Hae Ju Lee, Dong Ku Kang, and Kang Hyun Lee. 2021. "A Predictive Model to Analyze the Factors Affecting the Presence of Traumatic Brain Injury in the Elderly Occupants of Motor Vehicle Crashes Based on Korean In-Depth Accident Study (KIDAS) Database" International Journal of Environmental Research and Public Health 18, no. 8: 3975. https://doi.org/10.3390/ijerph18083975