Understanding Online Voluntary Self-Exclusion in Gambling: An Empirical Study Using Account-Based Behavioral Tracking Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Gambling Website Description and Procedure
2.3. Data Analysis
3. Results
Differences in Gambling Expenditure by Days Leading to VSE Compared to the Addiction Group
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auer, M.; Griffiths, M.D. Behavioural tracking tools, regulation, and corporate social responsibility in online gambling. Gaming. Law Rev. Econ. 2013, 17, 579–583. [Google Scholar] [CrossRef][Green Version]
- Wardle, H.; Moody, A.; Griffiths, M.; Orford, J.; Volberg, R. Defining the online gambler and patterns of behaviour integration: Evidence from the British Gambling Prevalence Survey 2010. Int. Gambl. Stud. 2011, 11, 339–356. [Google Scholar] [CrossRef]
- Gambling Commission. Gambling participation in 2019: Behaviour, Awareness and Attitudes. Annu. Rep. 2020. updated publication. [Google Scholar]
- McCormack, A.; Griffiths, M.D. A scoping study of the structural and situational characteristics of internet gambling. Int. J. Cyber Behav. Psychol. Learn. 2013, 3, 29–49. [Google Scholar] [CrossRef][Green Version]
- Lovejoy, K.A. A busted flush: Regulation of online gambling in the European Union. Fordham Int. Law J. 2013, 37, 1525–1574. [Google Scholar]
- Devaney, M. Online gambling and international regulation: An outside bet. Inf. Commun. Technol. Law. 2009, 18, 273–283. [Google Scholar] [CrossRef]
- Gray, H.M.; LaPlante, D.A.; Shaffer, H.J. Behavioral characteristics of Internet gamblers who trigger corporate responsible gambling interventions. Psychol. Addict. Behav. 2012, 26, 527–535. [Google Scholar] [CrossRef]
- Griffiths, M.D. Internet gambling: Issues, concerns and recommendations. Cyberpsychology Behav. 2003, 6, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Gainsbury, S.M.; Russell, A.; Wood, R.; Hing, N.; Blaszczynski, A. How risky is Internet gambling? A comparison of subgroups of Internet gamblers based on problem gambling status. New Media Soc. 2015, 17, 861–879. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Wardle, J.; Orford, J.; Sproston, K.; Erens, B. Socio-demographic correlates of internet gambling: Findings from the 2007 British Gambling Prevalence Survey. Cyber Psychol. Behav. 2009, 12, 199–202. [Google Scholar] [CrossRef] [PubMed]
- LaBrie, R.A.; LaPlante, D.A.; Nelson, S.E.; Schumann, A.; Shaffer, H.J. Assessing the playing field: A prospective longitudinal study of internet sports gambling behavior. J. Gambl. Stud. 2007, 23, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Adami, N.; Benini, S.; Boschetti, A.; Canini, L.; Maione, F.; Temporin, M. Markers of unsustainable gambling for early detection of at-risk online gamblers. Int. Gambl. Stud. 2013, 13, 188–204. [Google Scholar] [CrossRef]
- Harris, A.; Griffiths, M.D. A critical review of the harm-minimisation tools available for electronic gambling. J. Gambl. Stud. 2017, 33, 187–221. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wood, R.T.; Griffiths, M.D. Understanding positive play: An exploration of playing experiences and responsible gambling practices. J. Gambl. Stud. 2015, 1715–1734. [Google Scholar] [CrossRef][Green Version]
- Philander, K.S.; MacKay, T.L. Online gambling participation and problem gambling severity: Is there a causal relationship? Int. Gambl. Stud. 2014, 14, 214–227. [Google Scholar] [CrossRef]
- Haefeli, J.; Lischer, S.; Schwarz, J. Early detection items and responsible gambling features for online gambling. Int. Gambl. Stud. 2011, 11, 273–288. [Google Scholar] [CrossRef][Green Version]
- Blaszczynski, A.; Ladouceur, R.; Shaffer, H.J. A science-based framework for responsible gambling: The Reno model. J. Gambl. Stud. 2004, 20, 301–317. [Google Scholar] [CrossRef]
- Shaffer, H.J.; Ladouceur, R.; Blaszczynski, A.; Whyte, K. Extending the RENO model: Clinical and ethical applications. Am. J. Orthopsychiat. 2016, 86, 297. [Google Scholar] [CrossRef]
- Jones, P.; Hillier, D.; Comfort, D. Corporate social responsibility in the UK gambling industry. Corp. Gov. Int. J. Bus. Soc. 2009, 9, 189–201. [Google Scholar] [CrossRef]
- Paddy Power Betfair Penalised over Gamblers’ Stolen Funds. Available online: https://gamblingcompliance.com/premium-content/insights_analysis/paddy-power-betfair-penalised-over-gamblers-stolen-funds (accessed on 13 November 2020).
- Langham, E.; Thorne, H.; Browne, M.; Donaldson, P.; Rose, J.; Rockloff, M. Understanding gambling related harm: A proposed definition, conceptual framework, and taxonomy of harms. BMC Public Health 2015, 16, 80. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Griffiths, M.D. Betting your life on it: Problem gambling has clear health related consequences. Br. Med. J. 2004, 329, 1055–1056. [Google Scholar] [CrossRef] [PubMed]
- Raisamo, S.U.; Makela, P.; Salonen, A.H.; Lintonen, T.P. The extent and distribution of gambling harm in Finland as assessed by the Problem Gambling Severity Index. Eur. J. Public Health 2015, 25, 4. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Griffiths, M.D.; Whitty, M.W. Online behavioural tracking in Internet gambling research: Ethical and methodological issues. Int. J. Internet Res. Ethics 2010, 3, 104–117. [Google Scholar]
- Dragicevic, S.; Tsogas, G.; Kudic, A. Analysis of casino online gambling data in relation to behavioural risk markers for high-risk gambling and player protection. Int. Gambl. Stud. 2011, 11, 377–391. [Google Scholar] [CrossRef]
- Haefeli, J.; Lischer, S.; Haeusler, J. Communications-based early detection of gambling-related problems in online gambling. Int. Gambl. Stud. 2015, 15, 23–38. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Barnes, A. Internet gambling: An online empirical study among student gamblers. Int. J. Ment. Health Ad. 2008, 6, 194–204. [Google Scholar] [CrossRef]
- Wood, R.T.A.; Shorter, G.; Griffiths, M.D. Rating the suitability of responsible gambling features for specific game types: A resource for optimizing responsible gambling strategy. Int J. Ment. Health Ad. 2014, 12, 94–112. [Google Scholar] [CrossRef]
- Dragicevic, S.; Percy, C.; Kudic, A.; Parke, J. A descriptive analysis of demographic and behavioural data from internet gamblers and those who self-exclude from online gambling platforms. J. Gambl. Stud. 2015, 31, 105–132. [Google Scholar] [CrossRef]
- Tremblay, N.; Boutin, C.; Ladouceur, R. Improved self-exclusion program: Preliminary results. J. Gambl. Stud. 2008, 24, 505–518. [Google Scholar] [CrossRef]
- Smeaton, M.; Griffiths, M. Internet gambling and social responsibility: An exploratory study. Cyber Psychol. Behav. 2004, 7, 49–57. [Google Scholar] [CrossRef]
- Bonello, M.; Griffiths, M.D. Analyzing consumer protection for gamblers across different online gambling operators: A descriptive study. Gaming Law Rev. Econ. 2017, 21, 278–285. [Google Scholar] [CrossRef][Green Version]
- Griffiths, M.D. Social responsibility in gambling: The implications of real-time behavioural tracking. Casino Gaming Int. 2009, 5, 99–104. [Google Scholar]
- Deng, X.; Lesch, T.; Clark, L. Applying data science to behavioral analysis of online gambling. Curr. Addict. Rep. 2019, 6, 159–164. [Google Scholar] [CrossRef]
- Auer, M.; Schneeberger, A.; Griffiths, M.D. Theoretical loss and gambling intensity: A simulation study. Gaming Law Rev. Econ. 2012, 16, 269–273. [Google Scholar] [CrossRef]
- Auer, M.; Griffiths, M.D. An empirical investigation of theoretical loss and gambling intensity. J. Gambl. Stud. 2014, 30, 879–887. [Google Scholar] [CrossRef][Green Version]
- Auer, M.; Griffiths, M.D. Voluntary limit setting and player choice in most intense online gamblers: An empirical study of gambling behaviour. J. Gambl. Stud. 2013, 29, 647–660. [Google Scholar] [CrossRef] [PubMed][Green Version]
- LaPlante, D.A.; Schumann, A.; LaBrie, R.A.; Shaffer, H.J. Population trends in Internet sports gambling. Comput. Hum. Behav. 2008, 24, 2399–2414. [Google Scholar] [CrossRef]
- Haeusler, J. Follow the money: Using payment behaviour as predictor for future self-exclusion. Int. Gambl. Stud. 2016, 16, 246–262. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Auer, M. Should voluntary self-exclusion by gamblers be used as a proxy measure for problem gambling? J. Addict. Med. Ther. 2016, 2, 00019. [Google Scholar] [CrossRef][Green Version]
- Xuan, Z.; Shaffer, H. How do gamblers end gambling: Longitudinal analysis of Internet gambling behaviors prior to account closure due to gambling related problems. J. Gambl. Stud. 2009, 25, 239–252. [Google Scholar] [CrossRef] [PubMed][Green Version]
- LaBrie, R.; Shaffer, H.J. Identifying behavioral markers of disordered Internet sports gambling. Addict. Res. Theory 2011, 19, 56–65. [Google Scholar] [CrossRef]
- Percy, C.; França, M.; Dragičević, S.; d’Avila Garcez, A. Predicting online gambling self-exclusion: An analysis of the performance of supervised machine learning models. Int. Gambl. Stud. 2016, 16, 193–210. [Google Scholar] [CrossRef]
- Braverman, J.; Shaffer, H.J. How do gamblers start gambling: Identifying behavioural markers for high-risk internet gambling. Eur. J. Public Health 2012, 22, 273–278. [Google Scholar] [CrossRef]
- Hayer, T.; Meyer, G. Internet self-exclusion: Characteristics of self-excluded gamblers and preliminary evidence for its effectiveness. Int. J. Ment. Health Ad. 2011, 9, 296–307. [Google Scholar] [CrossRef]
- Ladouceur, R.; Jacques, C.; Giroux, I.; Ferland, F.; Leblond, J. Brief communications analysis of a casino’s self-exclusion program. J. Gambl. Stud. 2000, 16, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Auer, M.; Griffiths, M.D. Self-reported losses versus actual losses in online gambling: An empirical study. J. Gambl. Stud. 2017, 33, 795–806. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gainsbury, S. Player account-based gambling: Potentials for behaviour-based research methodologies. Int. Gambl. Stud. 2011, 11, 153–171. [Google Scholar] [CrossRef]
Time Period of Activity Prior to VSE | Percentage of Customers |
---|---|
0 days | 19.15% |
1–7 days | 31.23% |
8–30 days | 17.85% |
31–90 days | 10.79% |
91+ days | 20.98% |
Group | N | Mean | Standard Deviation |
---|---|---|---|
VSE first day | 1481 | £200.5 | £546.15 |
VSE first week | 2271 | £305.6 | £1041.12 |
VSE first month | 1499 | £362.2 | £8060.10 |
VSE first three months | 1274 | £845.7 | £3307.52 |
VSE after the first three months | 1207 | £593.3 | £2048.55 |
Self-reported gambling addiction | 141 | £2584.4 | £9303.20 |
Group 1 | Group 2 | Mean Difference | p-Value | Effect Size |
---|---|---|---|---|
VSE first day | VSE first week | −£105.09 | 0.973 | |
VSE first month | −£161.73 | 0.890 | ||
VSE first three months | −£645.20 | <0.001 * | 0.27 | |
VSE after the first three months | −£392.78 | 0.131 | ||
Self-reported gambling addiction | −£2383.93 | <0.001 * | 0.36 | |
VSE first week | VSE first day | £105.09 | 0.973 | |
VSE first month | −£56.64 | 0.998 | ||
VSE first three months | −£540.11 | <0.002 * | 0.01 | |
VSE after the first three months | −£287.69 | 0.357 | ||
Self-reported gambling addiction | −£2278.84 | <0.001 * | 0.34 | |
VSE first month | VSE first day | £161.73 | 0.890 | |
VSE first week | £56.64 | 0.998 | ||
VSE first three months | £483.47 | 0.024 | ||
VSE after the first three months | −£231.05 | 0.689 | ||
Self-reported gambling addiction | −£2222.20 | <0.001 * | 0.26 | |
VSE first three months | VSE first day | £645.20 | <0.001 * | 0.27 |
VSE first week | £540.11 | <0.002 * | 0.22 | |
VSE first month | £483.47 | 0.024 | ||
VSE after the first three months | £252.43 | 0.640 | ||
Self-reported gambling addiction | −£1783.72 | <0.001 * | 0.25 | |
VSE after first three months | VSE first day | £392.78 | 0.131 | |
VSE first week | £287.69 | 0.357 | ||
VSE first month | £231.05 | 0.689 | ||
VSE first three months | −£252.43 | 0.640 | ||
Self-reported gambling addiction | −£1991.15 | <0.001 * | 0.30 | |
Self-reported gambling addiction | VSE first day | £2383.93 | <0.001 * | 0.36 |
VSE first week | £2278.84 | <0.001 * | 0.34 | |
VSE first month | £2222,20 | <0.001 * | 0.26 | |
VSE first three months | £1738.72 | <0.001 * | 0.25 | |
VSE after the first three months | £1991.15 | <0.001 * | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catania, M.; Griffiths, M.D. Understanding Online Voluntary Self-Exclusion in Gambling: An Empirical Study Using Account-Based Behavioral Tracking Data. Int. J. Environ. Res. Public Health 2021, 18, 2000. https://doi.org/10.3390/ijerph18042000
Catania M, Griffiths MD. Understanding Online Voluntary Self-Exclusion in Gambling: An Empirical Study Using Account-Based Behavioral Tracking Data. International Journal of Environmental Research and Public Health. 2021; 18(4):2000. https://doi.org/10.3390/ijerph18042000
Chicago/Turabian StyleCatania, Maris, and Mark D. Griffiths. 2021. "Understanding Online Voluntary Self-Exclusion in Gambling: An Empirical Study Using Account-Based Behavioral Tracking Data" International Journal of Environmental Research and Public Health 18, no. 4: 2000. https://doi.org/10.3390/ijerph18042000