In-Season Body Composition Effects in Professional Women Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Anthropometric and Body Composition Assessment
2.5. Training and Match Load Quantification
2.6. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.N.; Stewart, P.F. Strength and conditioning for soccer players. Strength Cond. J. 2014, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sutton, L.; Scott, M.; Wallace, J.; Reilly, T. Body composition of English Premier League soccer players: Influence of playing position, international status, and ethnicity. J. Sports Sci. 2009, 27, 1019–1026. [Google Scholar] [CrossRef]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Rienzi, E.; Drust, B.; Reilly, B.; Carter, J.E.L.; Martin, A. Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J. Sports Med. Phys. Fit. 2000, 40, 162. [Google Scholar]
- Silvestre, R.; West, C.; Maresh, C.M.; Kraemer, W.J. Body Composition And Physical Performance In Men’s Soccer: Astudy Of A National Collegiate Athletic Association Division Iteam. J. Strength Cond. Res. 2006, 20, 177–183. [Google Scholar] [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Silva, A.M.; Matias, C.N.; Santos, D.A.; Rocha, P.M.; Minderico, C.S.; Sardinha, L.B. Increases in intracellular water explain strength and power improvements over a season. Int. J. Sports Med. 2014, 35, 1101–1105. [Google Scholar] [CrossRef]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Body composition and power changes in elite judo athletes. Int. J. Sports Med. 2010, 31, 737–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. J. Strength Cond. Res. 2011, 25, 2488–2495. [Google Scholar] [CrossRef]
- Matković, B.R.; Mišigoj-Duraković, M.; Matković, B.; Janković, S.; Ružić, L.; Leko, G.; Miran, K. Morphological differences of elite Croatian soccer players according to the team position. Coll. Antropol. 2003, 27, 167–174. [Google Scholar] [PubMed]
- Cárdenas-Fernández, V.; Chinchilla-Minguet, J.L.; Castillo-Rodríguez, A. Somatotype and body composition in young soccer players according to the playing position and sport success. J. Strength Cond. Res. 2019, 33, 1904–1911. [Google Scholar] [CrossRef]
- da Silva, C.D.; Bloomfield, J.; Marins, J.C.B. A review of stature, body mass and maximal oxygen uptake profiles of U17, U20 and first division players in Brazilian soccer. J. Sports Sci. Med. 2008, 7, 309. [Google Scholar] [PubMed]
- Owen, A.L.; Lago-Peñas, C.; Dunlop, G.; Mehdi, R.; Chtara, M.; Dellal, A. Seasonal body composition variation amongst elite european professional soccer players: An approach of talent identification. J. Hum. Kinet. 2018, 62, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, E.; Bockin, A.; Bosch, T.; Oliver, J.; Bach, C.W.; Carbuhn, A.; Stanforth, P.R.; Dengel, D.R. Body Composition of National Collegiate Athletic Association (NCAA) Division I Female Soccer Athletes through Competitive Seasons. Int. J. Sports Med. 2020, 41, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Fanchini, M.; Ferraresi, I.; Petruolo, A.; Azzalin, A.; Ghielmetti, R.; Schena, F.; Impellizzeri, F.M. Is a retrospective RPE appropriate in soccer? Response shift and recall bias. Sci. Med. Footb. 2017, 1, 53–59. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Brito, J.P.; Loureiro, N.; Padinha, V.; Nobari, H.; Mendes, B. Will Next Match Location Influence External and Internal Training Load of a Top-Class Elite Professional European Soccer Team? Int. J. Environ. Res. Public Health 2021, 18, 5229. [Google Scholar] [CrossRef]
- Arazi, H.; Mirzaei, B.; Nobari, H. Anthropometric profile, body composition and somatotyping of national Iranian cross-country runners. Turk. J. Sport Exerc. 2015, 17, 35–41. [Google Scholar] [CrossRef]
- Nobari, H.; Polito, L.F.T.; Clemente, F.M.; Pérez-Gómez, J.; Ahmadi, M.; Garcia-Gordillo, M.Á.; Garcia-Gordillo, M.Á.; Silva, A.F.; Adsuar, J.C. Relationships between training workload parameters with variations in anaerobic power and change of direction status in elite youth soccer players. Int. J. Environ. Res. Public Health 2020, 17, 7934. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual, 1st ed.; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Yang, E.M.; Park, E.; Ahn, Y.H.; Choi, H.J.; Kang, H.G.; Cheong, H.I.; Ha, I.S. Measurement of fluid status using bioimpedance methods in Korean pediatric patients on hemodialysis. J. Korean Med. Sci. 2017, 32, 1828. [Google Scholar] [CrossRef] [Green Version]
- Buckinx, F.; Reginster, J.-Y.; Dardenne, N.; Croisiser, J.-L.; Kaux, J.-F.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.D.; Oliveira, R.; Brito, J.P.; Costa, T.; Ramalho, F.; Pimenta, N.; Santos-Rocha, R. Phase angle cutoff value as a marker of the health status and functional capacity in breast cancer survivors. Physiol. Behav. 2021, 235, 113400. [Google Scholar] [CrossRef]
- Rahmat, A.J.; Arsalan, D.; Bahman, M.; Hadi, N. Anthropometrical profile and bio-motor abilities of young elite wrestlers. Phys. Educ. Stud. 2016, 20, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Steward, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Borg, G. Perceived exertion as an indicator of somatic stress, Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- Burgess, D.; Drust, B.; Williams, M. Developing a physiology-based sports science support strategy in the professional game. Sci. Soccer Dev. Elite Perform. 2013, 13, 372–389. [Google Scholar]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Occup. Health Ind. Med. 1998, 4, 189. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Pamela, D.; Christopher, D. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Hopkins, W.G. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience 2006, 10, 46–50. [Google Scholar]
- Peart, A.N.; Nicks, C.R.; Mangum, M.; Tyo, B.M. Evaluation of seasonal changes in fitness, anthropometrics, and body composition in collegiate division II female soccer players. J. Strength Cond. Res. 2018, 32, 2010–2017. [Google Scholar] [CrossRef]
- Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season. J. Musculoskelet. Neuronal Interact. 2017, 17, 386. [Google Scholar]
- Francisco, R.; Matias, C.N.; Santos, D.A.; Campa, F.; Minderico, C.S.; Rocha, P.; Heymsfield, S.B.; Lukaski, H.; Sardinha, L.B.; Silva, A.M. The Predictive Role of Raw Bioelectrical Impedance Parameters in Water Compartments and Fluid Distribution Assessed by Dilution Techniques in Athletes. Int. J. Environ. Res. Public Health 2020, 17, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2019, 39, 447–454. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Avelar, A.; Santos, L.D.; Silva, A.M.; Gobbo, L.A.; Schoenfeld, B.J.; Sardinha, E.S.C. Hypertrophy-type Resistance Training Improves Phase Angle in Young Adult Men and Women. Int. J. Sports Med. 2017, 38, 35–40. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Zocher, D.; Bosy-Westphal, A.; Szramek, A.; Scheufele, R.; Smoliner, C.; Pirlich, M. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am. J. Clin. Nutr. 2010, 92, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nescolarde, L.; Yanguas, J.; Lukaski, H.; Alomar, X.; Rosell-Ferrer, J.; Rodas, G. Localized bioimpedance to assess muscle injury. Physiol. Meas. 2013, 34, 237–245. [Google Scholar] [CrossRef]
- Nescolarde, L.; Yanguas, J.; Medina, D.; Rodas, G.; Rosell-Ferrer, J. Assessment and follow-up of muscle injuries in athletes by bioimpedance: Preliminary results. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 1137–1140. [Google Scholar]
- Norman, K.; Wirth, R.; Neubauer, M.; Eckardt, R.; Stobaus, N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J. Am. Med. Dir. Assoc. 2015, 16, 173-e17. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Gatterer, H.; Lukaski, H.; Burtscher, M.; Galanti, G. Changes in hydration, body-cell mass and endurance performance of professional soccer players through a competitive season. J. Sports. Med. Phys. Fit. 2015, 55, 749–755. [Google Scholar]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, 6th ed.; Human Kinetics Books: Champaign, IL, USA, 2015. [Google Scholar]
- Haussinger, D.; Lang, F.; Gerok, W. Regulation of cell function by the cellular hydration state. Am. J. Physiol. Endocrinol. Metab. 1994, 267, E343–E355. [Google Scholar] [CrossRef]
- Haussinger, D.; Roth, E.; Lang, F.; Gerok, W. Cellular hydration state: An important determinant of protein catabolism in health and disease. Lancet 1993, 341, 1330–1332. [Google Scholar] [CrossRef]
- Mara, J.K.; Thompson, K.G.; Pumpa, K.L.; Ball, N.B. Periodization and physical performance in elite female soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 664–669. [Google Scholar] [CrossRef]
- Renfree, A.; Martin, L.; Micklewright, D.; Gibson, A.S.C. Application of decision-making theory to the regulation of muscular work rate during self-paced competitive endurance activity. Sports Med. 2014, 44, 147–158. [Google Scholar] [CrossRef]
- Ferraz, R.; Goncalves, B.; Coutinho, D.; Marinho, D.A.; Sampaio, J.; Marques, M.C. Pacing behaviour of players in team sports: Influence of match status manipulation and task duration knowledge. PLoS ONE 2018, 13, e0192399. [Google Scholar] [CrossRef] [Green Version]
- Julian, R.; Skorski, S.; Hecksteden, A.; Pfeifer, C.; Bradley, P.S.; Schulze, E.; Meyer, T. Menstrual cycle phase and elite female soccer match-play: Influence on various physical performance outputs. Sci. Med. Footb. 2020, 5, 97–104. [Google Scholar] [CrossRef]
Periods | Variables | MD-5 | MD-4 | MD-3 | MD-2 | MD-1 | MD |
---|---|---|---|---|---|---|---|
RPE (au) | 5.5 | 5.4 | X | 4.8 | X | 6.2 | |
Between A1 and A2 | Duration (min) | 87 | 85 | X | 77 | X | 72 |
s-RPE (au) | 478.5 | 459 | X | 396.6 | X | 446.4 | |
RPE (au) | 6.1 | 5.5 | X | 4.1 | X | 6.5 | |
Between A2 and A3 | Duration (min) | 85 | 85 | X | 90 | X | 90 |
s-RPE (au) | 518.5 | 467.5 | X | 369 | X | 585 |
Variables | Goalkeeper n = 1 | Central Defender n = 3 | Wide Defender n = 3 | Central Midfielder n = 3 | Wide Midfielder n = 4 | Striker n = 3 |
---|---|---|---|---|---|---|
Assessment 1 | ||||||
Body weight (kg) | 64.0 | 71.0 ± 2.0 | 54.3 ± 3.8 | 59.3 ±9.2 | 53.5 ± 8.7 | 57 ± 1.0 |
Body fat mass (kg) | 15.3 | 18.7 ± 2.3 | 12.4 ± 1.4 | 14.1 ± 5.4 | 11.1 ± 4.5 | 8.1 ± 2.0 |
Soft lean mass (kg) | 45.9 | 49.1 ± 2.1 | 39.3 ± 2.3 | 42.5 ± 3.6 | 39.9 ± 5.1 | 46.0 ± 2.9 |
Fat free mass (kg) | 48.7 | 52.3 ± 2.2 | 41.9 ± 2.4 | 45.2 ± 3.9 | 42.5 ± 5.4 | 48.9 ± 3.0 |
Intracellular Water (L) | 22.4 | 23.8 ± 0.9 | 19.1 ± 1.3 | 20.6 ± 1.9 | 19.3 ± 2.4 | 22.4 ± 1.3 |
Extracellular Water (L) | 13.2 | 14.4 ± 0.8 | 11.4 ± 0.6 | 12.5 ± 1.0 | 11.7 ± 1.5 | 13.3 ± 1.0 |
Total Body Water (L) | 35.6 | 38.2 ± 1.7 | 35.5 ± 1.8 | 33.1 ± 2.8 | 31.0 ± 4.0 | 35.7 ± 2.3 |
Phase Angle (θ. 50 Khz) | 6.8 | 6.0 ± 0.3 | 6.3 ± 0.6 | 6.3 ± 0.5 | 6.0 ±0.3 | 6.4 ± 0.3 |
Assessment 2 | ||||||
Body weight (kg) | 67.0 | 69.3 ± 1.2 | 53.7 ± 3.2 | 58.0 ± 6.9 | 53.5 ± 7.9 | 57.0 ± 2.0 |
Body fat mass (kg) | 15.8 | 14.1 ± 2.6 | 8.8 ± 4.2 | 10.2 ± 1.9 | 10.9 ± 3.7 | 6.7 ± 1.8 |
Soft lean mass (kg) | 48.1 | 51.7 ± 2.1 | 42.0 ± 6.0 | 44.8 ± 4.9 | 39.9 ± 5.3 | 47.2 ± 3.5 |
Fat free mass (kg) | 51.2 | 55.3 ± 2.3 | 44.9 ± 6.2 | 47.8 ± 5.1 | 42.6 ± 5.6 | 50.3 ± 3.7 |
Intracellular Water (L) | 23.5 | 25.2 ± 1.1 | 20.5 ± 3.0 | 21.8 ± 2.4 | 19.4 ± 2.7 | 23.1 ± 1.7 |
Extracellular Water (L) | 13.9 | 15.0 ± 0.6 | 12.1 ± 1.6 | 13.1 ± 1.3 | 11.6 ± 1.4 | 13.6 ± 1.1 |
Total Body Water (L) | 37.4 | 40.1 ± 1.7 | 32.6 ± 4.6 | 34.8 ± 3.7 | 31.0 ± 4.1 | 36.7 ± 2.8 |
Phase Angle (θ. 50 Khz) | 6.8 | 6.5 ± 0.6 | 7.8 ± 2.6 | 6.6 ± 0.7 | 6.2 ± 0.4 | 6.7 ± 0.2 |
Assessment 3 | ||||||
Body weight (kg) | 67 | 69.0 ± 2.6 | 53 ± 4.4 | 57.0 ± 6.2 | 53.8 ± 7.4 | 59.0 ± 1.7 |
Body fat mass (kg) | 15.4 | 12.1 ± 3.6 | 8.0 ± 2.8 | 12.2 ± 3.6 | 9.4 ± 3.1 | 8.7 ± 1.7 |
Soft lean mass (kg) | 48.4 | 53.3 ± 5.4 | 42.2 ± 2.6 | 42.0 ± 2.6 | 41.5 ± 4.1 | 47.2 ± 2.9 |
Fat free mass (kg) | 51.6 | 56.9 ± 5.6 | 45.0 ± 2.7 | 44.8 ± 2.9 | 44.4 ± 4.5 | 50.3 ± 2.9 |
Intracellular Water (L) | 23.7 | 26.1 ± 2.7 | 20.6 ± 1.4 | 20.4 ± 1.3 | 20.1 ± 2.0 | 23.1 ± 1.4 |
Extracellular Water (L) | 13.9 | 15.4 ± 1.4 | 12.1 ± 0.6 | 12.2 ± 0.7 | 2.3 ± 1.3 | 13.5 ± 0.8 |
Total Body Water (L) | 37.6 | 41.4 ± 4.1 | 32.7 ± 1.9 | 32.6 ± 2.0 | 32.3 ± 3.3 | 33.6 ± 2.2 |
Phase Angle (θ. 50 Khz) | 7.4 | 7.1 ± 0.6 | 7.4 ± 0.5 | 6.9 ± 0.3 | 6.6 ± 0.2 | 6.9 ± 0.3 |
Variables | A1 | A2 | A3 | Change % (A1–A2) | Change % (A2–A3) | Change % (A1–A3) |
---|---|---|---|---|---|---|
Body weight (kg) | 58.74 ± 2.15 | 58.30 ± 1.97 | 58.30 ± 1.94 | −0.8 | 0.0 | −0.8 |
Body fat mass (kg) | 13.11 ± 1.87 a | 10.77 ± 0.94 | 10.38 ± 0.87 | −21.7 | −3.8 | −26.3 |
Soft lean mass (kg) | 42.87 ± 1.20 a | 44.52 ± 1.44 | 44.91 ± 1.42 | 3.7 | 0.9 | 4.5 |
Fat free mass (kg) | 45.63 ± 1.27 a.c | 47.52 ± 1.53 | 47.92 ± 1.51 | 4.0 | 0.8 | 4.8 |
Intracellular Water (L) | 20.79 ± 0.58 a.c | 21.71 ± 0.72 | 21.88 ± 0.71 | 4.2 | 0.8 | 5.0 |
Extracellular Water (L) | 12.53 ± 0.35 | 12.88 ± 0.41 | 13.00 ± 0.39 | 2.7 | 0.9 | 3.6 |
Total Body Water (L) | 33.32 ± 0.93 a | 34.59 ± 1.12 | 34.88 ± 1.09 | 3.7 | 0.8 | 4.5 |
ECW/TBW | 0.38 ± 0.001 a.c | 0.37 ± 0.001 b | 0.37 ± 0.001 | −2.7 | 0.0 | −2.7 |
ECW/ICW | 0.60 ± 0.003 a | 0.59 ± 0.003 | 0.59 ± 0.004 | −1.7 | 0.0 | −1.7 |
Phase Angle (θ. 50 Khz) | 6.26 ± 0.11 c | 6.67 ± 0.31 | 6.99 ± 0.10 | 6.1 | 4.6 | 10.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Francisco, R.; Fernandes, R.; Martins, A.; Nobari, H.; Clemente, F.M.; Brito, J.P. In-Season Body Composition Effects in Professional Women Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 12023. https://doi.org/10.3390/ijerph182212023
Oliveira R, Francisco R, Fernandes R, Martins A, Nobari H, Clemente FM, Brito JP. In-Season Body Composition Effects in Professional Women Soccer Players. International Journal of Environmental Research and Public Health. 2021; 18(22):12023. https://doi.org/10.3390/ijerph182212023
Chicago/Turabian StyleOliveira, Rafael, Ruben Francisco, Renato Fernandes, Alexandre Martins, Hadi Nobari, Filipe Manuel Clemente, and João Paulo Brito. 2021. "In-Season Body Composition Effects in Professional Women Soccer Players" International Journal of Environmental Research and Public Health 18, no. 22: 12023. https://doi.org/10.3390/ijerph182212023
APA StyleOliveira, R., Francisco, R., Fernandes, R., Martins, A., Nobari, H., Clemente, F. M., & Brito, J. P. (2021). In-Season Body Composition Effects in Professional Women Soccer Players. International Journal of Environmental Research and Public Health, 18(22), 12023. https://doi.org/10.3390/ijerph182212023