Anthropometric Measurements, Metabolic Profile and Physical Fitness in a Sample of Spanish Women with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Amount of Daily Physical Activity Performed by the Subjects
2.1.2. Anthropometric Measurements
2.1.3. Laboratory Assessments
2.1.4. Components of Physical Fitness Assessments (Balance, Flexibility, Strength, Endurance)
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gacitua, T.; Karachon, L.; Romero, E.; Parra, P.; Poblete, C.; Russell, J.; Rodrigo, R. Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: A review. Sport Sci. Health 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Colditz, G.A.; Willett, W.C.; Rotnitzky, A.; Manson, J.E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 1995, 122, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Boulé, N.G.; Haddad, E.; Kenny, G.P.; Wells, G.A.; Sigal, R.J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: A meta-analysis of controlled clinical trials. JAMA 2001, 286, 1218–1227. [Google Scholar] [CrossRef]
- Thomas, D.E.; Elliott, E.J.; Naughton, G.A. Exercise for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2006, 3, CD002968. [Google Scholar] [CrossRef] [PubMed]
- Skerrett, P.J.; Manson, J.E. Reduction in risk of coronary heart disease and diabetes. In Handbook of Exercise in Diabetes; Ruderman, N., Devlin., J.T., Schneider, S.H., Kriska, A., Eds.; American Diabetes Association: Alexandria, VA, USA, 2002; pp. 155–182. [Google Scholar]
- Mayer-Davis, E.J.; D’Agostino, R., Jr.; Karter, A.J.; Haffner, S.M.; Rewers, M.J.; Saad, M.; Bergman, R.N.; Investigators, I. Intensity and amount of physical activity in relation to insulin sensitivity: The Insulin Resistance Atherosclerosis Study. JAMA 1998, 279, 669–674. [Google Scholar] [CrossRef]
- Stewart, K.J.; Bacher, A.C.; Turner, K.; Lim, J.G.; Hees, P.S.; Shapiro, E.P.; Tayback, M.; Ouyang, P. Exercise and risk factors associated with metabolic syndrome in older adults. Am. J. Prev. Med. 2005, 28, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement executive summary. Diabetes Care 2010, 33, 2692–2696. [Google Scholar] [CrossRef] [Green Version]
- Garetto, L.P.; Richter, E.A.; Goodman, M.N.; Ruderman, N.B. Enhanced muscle glucose metabolism after exercise in the rat: The two phases. Am. J. Physiol. Metab. 1984, 246, E471–E475. [Google Scholar] [CrossRef]
- Braun, B.; Sharoff, C.; Chipkin, S.R.; Beaudoin, F. Effects of insulin resistance on substrate utilization during exercise in overweight women. J. Appl. Physiol. 2004, 97, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Despres, J.-P.; Moorjani, S.; Lupien, P.J.; Tremblay, A.; Nadeau, A.; Bouchard, C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 1990, 10, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E691–E714. [Google Scholar] [CrossRef]
- Perween, S.; Abidi, M.; Faizy, A.F. Moinuddin Post-translational modifications on glycated plasma fibrinogen: A physicochemical insight. Int. J. Biol. Macromol. 2019, 126, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Onat, A.; Can, G.; Hergenç, G. Serum C-reactive protein is an independent risk factor predicting cardiometabolic risk. Metabolism 2008, 57, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Vrabas, I.S.; Sailer, N.; Kapelouzou, A.; Fotiadis, G.; Noussios, G.; Karayannacos, P.E.; Angelopoulou, N. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab. 2010, 36, 144–151. [Google Scholar] [CrossRef]
- Association, A.D. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37, S14–S80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuff, D.J.; Meneilly, G.S.; Martin, A.; Ignaszewski, A.; Tildesley, H.D.; Frohlich, J.J. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 2003, 26, 2977–2982. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, C.; De Vito, G.; Boreham, C.A.G. Exercise prescription in the treatment of type 2 diabetes mellitus. Sports Med. 2013, 43, 39–49. [Google Scholar] [CrossRef]
- Association, A.D. Standards of medical care in diabetes—2012. Diabetes Care 2012, 35, S11. [Google Scholar]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191. [Google Scholar]
- Washburn, R.A.; Jacobsen, D.J.; Sonko, B.J.; Hill, J.O.; Donnelly, J.E. The validity of the Stanford Seven-Day Physical Activity Recall in young adults. Med. Sci. Sports Exerc. 2003, 35, 1374–1380. [Google Scholar] [CrossRef]
- Norton, K.; Whittingham, N.; Carter, L.; Kerr, D.; Gore, C.; Marfell-Jones, M. Measurement techniques in anthropometry. Anthropometrica 1996, 1, 25–75. [Google Scholar]
- Lam, M.Y.; Ip, M.H.; Lui, P.K.; Koong, M.K. How teachers can assess kindergarten children’s motor performance in Hong Kong. Early Child Dev. Care 2003, 173, 109–118. [Google Scholar] [CrossRef]
- Menéndez-Colino, R.; Sánchez-Castellano, C.; de Tena-Fontaneda, A.; del Nogal, M.L.; Cuesta-Triana, F.; Ribera-Casado, J.M. Utilidad de la estación unipodal en la valoración del riesgo de caídas. Rev. Esp. Geriatr. Gerontol. 2005, 40, 18–23. [Google Scholar] [CrossRef]
- Zaproudina, N.; Ming, Z.; Hänninen, O.O.P. Plantar infrared thermography measurements and low back pain intensity. J. Manip. Physiol. Ther. 2006, 29, 219–223. [Google Scholar] [CrossRef]
- Sekendiz, B.; Cug, M.; Korkusuz, F. Effects of Swiss-ball core strength training on strength, endurance, flexibility, and balance in sedentary women. J. Strength Cond. Res. 2010, 24, 3032–3040. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, B.; Shepherd, J. 101 Performance Evaluation Tests, Peak Performance Special Report Series; Peak Performance Publishing: London, UK, 2005; pp. 1–116. [Google Scholar]
- Okifuji, A.; Donaldson, G.W.; Barck, L.; Fine, P.G. Relationship between fibromyalgia and obesity in pain, function, mood, and sleep. J. Pain 2010, 11, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, T.; Yli-Piipari, S.; Huotari, P.; Watt, A.; Liukkonen, J. Fundamental movement skills and physical fitness as predictors of physical activity: A 6-year follow-up study. Scand. J. Med. Sci. Sports 2016, 26, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Salbach, N.M.; O’Brien, K.K.; Brooks, D.; Irvin, E.; Martino, R.; Takhar, P.; Chan, S.; Howe, J.-A. Reference values for standardized tests of walking speed and distance: A systematic review. Gait Posture 2015, 41, 341–360. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Gaztambide, S.; Soto-Pedre, E. Estudio prospectivo a 10 años sobre la incidencia y factores de riesgo de diabetes mellitus tipo 2. Med. Clin. 2000, 115, 534–539. [Google Scholar] [CrossRef]
- Bassuk, S.S.; Manson, J.E. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J. Appl. Physiol. 2005, 99, 1193–1204. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- Succurro, E.; Fiorentino, T.V.; Miceli, S.; Perticone, M.; Sciacqua, A.; Andreozzi, F.; Sesti, G. Relative Risk of Cardiovascular Disease Is Higher in Women With Type 2 Diabetes, but Not in Those With Prediabetes, as Compared With Men. Diabetes Care 2020, 43, 3070. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas-Melo, F.; Marado, D.; Palavra, F.; Sereno, J.; Coelho, Á.; Pinto, R.; Teixeira-Lemos, E.; Teixeira, F.; Reis, F. Diabetes abrogates sex differences and aggravates cardiometabolic risk in postmenopausal women. Cardiovasc. Diabetol. 2013, 12, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallé, F.; Di Onofrio, V.; Miele, A.; Belfiore, P.; Liguori, G. Effects of a community-based exercise and motivational intervention on physical fitness of subjects with type 2 diabetes. Eur. J. Public Health 2018, 29, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo-Cruz, J.; García-Hermoso, A.; Alfonso-Rosa, R.M.; Alvarez-Barbosa, F.; Owen, N.; Chastin, S.; del Pozo-Cruz, B. Replacing Sedentary Time: Meta-analysis of Objective-Assessment Studies. Am. J. Prev. Med. 2018, 55, 395–402. [Google Scholar] [CrossRef]
- Yang, Z.; Scott, C.A.; Mao, C.; Tang, J.; Farmer, A.J. Resistance exercise versus aerobic exercise for type 2 diabetes: A systematic review and meta-analysis. Sports Med. 2014, 44, 487–499. [Google Scholar] [CrossRef]
- Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycaemia in type 2 diabetes mellitus: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2009, 52, 17–30. [Google Scholar] [CrossRef]
- Agarwal, P.; Mukerji, G.; Desveaux, L.; Ivers, N.M.; Bhattacharyya, O.; Hensel, J.M.; Shaw, J.; Bouck, Z.; Jamieson, T.; Onabajo, N.; et al. Mobile App for Improved Self-Management of Type 2 Diabetes: Multicenter Pragmatic Randomized Controlled Trial. JMIR mHealth uHealth 2019, 7, e10321. [Google Scholar] [CrossRef] [Green Version]
- Bassam, B.A.; Bertorini, T.E. Neuromuscular Manifestations of Acquired Metabolic, Endocrine, and Nutritional Disorders. In Neuromuscular Disorders: Treatment and Management; WB Saunders: Philadelphia, PA, USA, 2011; pp. 373–393. [Google Scholar]
- Morrison, S.; Colberg, S.R.; Mariano, M.; Parson, H.K.; Vinik, A.I. Balance training reduces falls risk in older individuals with type 2 diabetes. Diabetes Care 2010, 33, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’Agostino, R.B. Fibrinogen and risk of cardiovascular disease. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef]
- Howard, B.V.; Cowan, L.D.; Go, O.; Welty, T.K.; Robbins, D.C.; Lee, E.T.; Investigators, S.H.S. Adverse effects of diabetes on multiple cardiovascular disease risk factors in women: The Strong Heart Study. Diabetes Care 1998, 21, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; D’Agostino, R.B.; Wilson, P.W.F.; Belanger, A.J.; Gagnon, D.R. Diabetes, fibrinogen, and risk of cardiovascular disease: The Framingham experience. Am. Heart J. 1990, 120, 672–676. [Google Scholar] [CrossRef]
- Stec, J.J.; Silbershatz, H.; Tofler, G.H.; Matheney, T.H.; Sutherland, P.; Lipinska, I.; Massaro, J.M.; Wilson, P.F.W.; Muller, J.E.; D’Agostino Sr, R.B. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 2000, 102, 1634–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, A.; Mancini, E. Cardiac effects of chronic inflammation in dialysis patients. Nephrol. Dial. Transplant. 2002, 17, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Jarvandi, S.; Davidson, N.O.; Jeffe, D.B.; Schootman, M. Influence of lifestyle factors on inflammation in men and women with type 2 diabetes: Results from the National Health and Nutrition Examination Survey, 1999-2004. Ann. Behav. Med. 2012, 44, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Román-Pintos, L.M.; Villegas-Rivera, G.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. Diabetic Polyneuropathy in Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial Function. J. Diabetes Res. 2016, 2016, 3425617. [Google Scholar] [CrossRef] [Green Version]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Herder, C.; Lankisch, M.; Ziegler, D.; Rathmann, W.; Koenig, W.; Illig, T.; Döring, A.; Thorand, B.; Holle, R.; Giani, G.; et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 2009, 32, 680–682. [Google Scholar] [CrossRef] [Green Version]
All Subjects Mean ± SD (Min–Max) | Reference Values | Percentage Values of the Sample within Reference | Physically Active Subjects Mean ± SD (Min–Max) | Sedentary Subjects Mean ± SD (Min–Max) | p Value | Effect Size d | Power | |
---|---|---|---|---|---|---|---|---|
Age (years) | 58.5 ± 7.8 (46.0–76.0) | 57.7 ± 8.1 (46.0–76.0) | 59.4 ± 7.7 (47.0–76.0) | 0.586 | 0.218 | 0.287 | ||
BMI | 36.2 ± 5.9 (24.9–48.8) | 18.5–24.9 (Salas-Salvado. 2007) | 3.6% | 34.2 ± 5.7 (24.9–43.6) | 38.9 ± 5.1 (29.5–48.8) | 0.033 | 0.797 | 0.989 |
Waist circumference (cm) | 107 ± 12.6 (76.0–128.3) | <88 (Third Report of the National Cholesterol Education Program. 2002) | 7.1% | 103.1 ± 12.6 (76.0–120.8) | 112.3 ± 11.0 (88.6–128.3) | 0.055 | 0.73 | 1.66 |
HbA1c (%) | 6.8 ± 1.4 (4.9–10.9) | <5.7% ref./7% target (ADA. 2012) | 26.9%/53.8% | 6.5 ± 1.3 (4.9–8.7) | 7.2 ± 1.6 (5.2–10.9) | 0.243 | 0.5 | 0.799 |
Fibrinogen (mg/dL) | 407.9 ± 77.1 (249.0–606.0) | 200–400 (Gailani D. 2008) | 50% | 389.4 ± 77.4 (249.0–552.0) | 429.6 ± 74.1 (316.0–606.0) | 0.191 | 0.521 | 0.827 |
hs-CRP (mg/dL) | 6.1 ± 7.6 (0.2–35.9) | <5 (Hayashino. 2014) | 65.4% | 5.3 ± 4.8 (0.2–15.1) | 7.0 ± 10.2 (0.8–35.9) | 0.877 | 0.224 | 0.288 |
Dynamic balance: line test (number of tiptoe steps outside line) | 1.7 ± 3.2 (0.0–13.0) | Not available | 2.1 ± 3.6 (0.0–13.0) | 0.9± 2.0 (0.0–6.0) | 0.179 | 0.375 | 0.569 | |
Static balance: unipodal (s) | 25.5± 18.9 (0.0–60.0) | <5 s high risk of falls (Menendez. 2005) | 80.8% | 26.3 ± 18.5 (1.0–60.0) | 24.1 ± 20.5 (0.0–60.0) | 0.786 | 0.116 | 0.143 |
Flexibility: trunk anterior flexion (cm) | 10.9 ± 8 (−10.0–25.0) | (−) 1 cm (Zaproudina.2006) | 7.4% | 11.2 ± 9.2 (−10.0–25.0) | 10.3 ± 6.3 (−2.5–18.0) | 0.796 | 0.113 | 0.139 |
Abdominal strength resistance (repetitions/minute) | 5.8 ± 10.4 (0.0–32.0) | 18 (Sekendiz. 2010) | 22.2% | 8.3 ± 11.6 (0.0–32.0) | 2.2 ± 7.2 (0.0–24.0) | 0.124 | 0.587 | 0.885 |
Strength resistance of lower limbs (repetitions/minute) | 18.9 ± 5.6 (0.0–31.0) | 29–32 (Mackenzie. 2005) | 3.7% | 20.7 ± 3.8 (17.0–31.0) | 16.1 ± 6.7 (0.0–22.0) | 0.13 | 0.839 | 0.992 |
Strength resistance of upper limbs (repetitions/minute) | 27.0 ± 6.7 (12.0–39.0) | Not available | 28.5 ± 7.1 (17.0–39.0) | 24.7 ± 5.8 (12.0–33.0) | 0.157 | 0.567 | 0.879 | |
Cardiovascular endurance (number of 100 m laps in 12 min) | 12.2 ± 2.9 (3.5–17.5) | 9.5 (Salbach. 2015) | 85.2% | 13.2 ± 2.3 (8.5–17.5) | 10.7 ± 3.2 (3.5–14.5) | 0.025 | 0.862 | 0.996 |
Unstandardized Coefficients | 95% Confidence Interval | |||||
---|---|---|---|---|---|---|
Estimate | Standard Error | t-Statistic | p Value | Lower Bound | Upper Bound | |
Dependent Variable: BMI | ||||||
Effects Size f: 0.910 Power: 0.988 n = 25 | ||||||
Constant | 59.712 | 17.980 | 3.321 | 0.005 | 21.389 | 98.035 |
Dynamic balance: line test (number of tiptoe steps outside line) | −0.015 | 0.434 | −0.034 | 0.973 | −0.940 | 0.910 |
Static balance: unipodal (s) | −0.177 | 0.106 | −1.670 | 0.116 | −0.403 | 0.049 |
Flexibility: trunk anterior flexion (cm) | −0.056 | 0.170 | −0.329 | 0.747 | −0.418 | 0.306 |
Abdominal strength resistance (repetitions/minute) | −0.208 | 0.139 | −1.492 | 0.156 | −0.504 | 0.089 |
Strength resistance of lower limbs (repetitions/minute) | 0.201 | 0.287 | 0.701 | 0.494 | −0.410 | 0.812 |
Strength resistance of upper limbs (repetitions/minute) | 0.007 | 0.204 | 0.034 | 0.973 | −0.427 | 0.441 |
Cardiovascular endurance (number of 100 m laps in 12 min) | −0.076 | 0.673 | −0.112 | 0.912 | −1.511 | 1.360 |
Age | −0.378 | 0.201 | −1.886 | 0.079 | −0.806 | 0.049 |
Physical Activity | 2.977 | 2.970 | 1.002 | 0.332 | −3.353 | 9.308 |
Dependent Variable: Waist circumference (cm) | ||||||
Effects size f: 1.037 Power: 0.998 n = 25 | ||||||
Constant | 126.200 | 37.577 | 3.358 | 0.004 | 46.106 | 206.293 |
Dynamic balance: line test (number of tiptoe steps outside line) | 0.573 | 0.907 | 0.631 | 0.537 | −1.361 | 2.506 |
Static balance: unipodal (s) | −0.424 | 0.221 | −1.915 | 0.075 | −0.896 | 0.048 |
Flexibility: trunk anterior flexion (cm) | −0.057 | 0.355 | −0.162 | 0.874 | −0.813 | 0.699 |
Abdominal strength resistance (repetitions/minute) | −0.612 | 0.291 | −2.104 | 0.053 | −1.232 | 0.008 |
Strength resistance of lower limbs (repetitions/minute) | 0.695 | 0.599 | 1.160 | 0.264 | −0.582 | 1.972 |
Strength resistance of upper limbs (repetitions/minute) | 0.345 | 0.426 | 0.810 | 0.430 | −0.563 | 1.253 |
Cardiovascular endurance (number of 100 m laps in 12 min) | 0.783 | 1.407 | 0.557 | 0.586 | −2.216 | 3.783 |
Age | −0.727 | 0.419 | −1.734 | 0.103 | −1.621 | 0.167 |
Physical Activity | 8.969 | 6.208 | 1.445 | 0.169 | −4.262 | 22.200 |
Dependent Variable: HbA1c (%) | ||||||
Effects size f: 0.883 Power: 0.974 n = 23 | ||||||
Constant | 4.096 | 5.047 | 0.812 | 0.432 | −6.807 | 14.998 |
Dynamic balance: line test (number of tiptoe steps outside line) | 0.222 | 0.095 | 2.336 | 0.036 | 0.017 | 0.427 |
Static balance: unipodal (s) | 0.007 | 0.023 | 0.310 | 0.761 | −0.043 | 0.057 |
Flexibility: trunk anterior flexion (cm) | 0.030 | 0.046 | 0.661 | 0.520 | −0.069 | 0.129 |
Abdominal strength resistance (repetitions/minute) | −0.016 | 0.032 | −0.494 | 0.629 | −0.085 | 0.053 |
Strength resistance of lower limbs (repetitions/minute) | −0.037 | 0.063 | −0.581 | 0.571 | −0.174 | 0.100 |
Strength resistance of upper limbs (repetitions/minute) | 0.057 | 0.046 | 1.220 | 0.244 | −0.044 | 0.157 |
Cardiovascular endurance (number of 100 m laps in 12 min) | 0.038 | 0.144 | 0.266 | 0.794 | −0.273 | 0.349 |
Age | 0.004 | 0.059 | 0.061 | 0.952 | −0.123 | 0.130 |
Physical Activity | 0.432 | 0.654 | 0.662 | 0.520 | −0.979 | 1.844 |
Dependent Variable: Fibrinogen (mg/dL) | ||||||
Effects size f: 1.431 Power: 0.999 n = 23 | ||||||
Constant | 250.022 | 244.670 | 1.022 | 0.325 | −278.554 | 778.599 |
Dynamic balance: line test (number of tiptoe steps outside line) | 15.216 | 4.601 | 3.307 | 0.006 | 5.277 | 25.156 |
Static balance: unipodal (s) | −0.022 | 1.127 | −0.019 | 0.985 | −2.456 | 2.412 |
Flexibility: trunk anterior flexion (cm) | 2.089 | 2.221 | 0.940 | 0.364 | −2.709 | 6.887 |
Abdominal strength resistance (repetitions/minute) | 1.290 | 1.556 | 0.829 | 0.422 | −2.072 | 4.651 |
Strength resistance of lower limbs (repetitions/minute) | −2.054 | 3.077 | −0.668 | 0.516 | −8.702 | 4.594 |
Strength resistance of upper limbs (repetitions/minute) | 4.498 | 2.247 | 2.002 | 0.067 | −0.356 | 9.351 |
Cardiovascular endurance (number of 100 m laps in 12 min) | −4.456 | 6.980 | −0.638 | 0.534 | −19.535 | 10.622 |
Age | 0.787 | 2.843 | 0.277 | 0.786 | −5.355 | 6.928 |
Physical Activity | 46.225 | 31.683 | 1.459 | 0.168 | −22.221 | 114.671 |
Dependent Variable: hs-CRP (mg/dL) | ||||||
Effects size f: 1.094 Power: 0.998 n = 23 | ||||||
Constant | 9.289 | 20.081 | 0.463 | 0.651 | −34.094 | 52.672 |
Dynamic balance: line test (number of tiptoe steps outside line) | 0.912 | 0.378 | 2.415 | 0.031 | 0.096 | 1.728 |
Static balance: unipodal (s) | −0.046 | 0.092 | −0.502 | 0.624 | −0.246 | 0.153 |
Flexibility: trunk anterior flexion (cm) | 0.131 | 0.182 | 0.0718 | 0.485 | −0.263 | 0.525 |
Abdominal strength resistance (repetitions/minute) | −0.160 | 0.128 | −1.256 | 0.231 | −0.436 | 0.115 |
Strength resistance of lower limbs (repetitions/minute) | 0.331 | 0.253 | 1.310 | 0.213 | −0.215 | 0.877 |
Strength resistance of upper limbs (repetitions/minute) | 0.131 | 0.184 | 0.713 | 0.488 | −0.267 | 0.530 |
Cardiovascular endurance (number of 100 m laps in 12 min) | −0.196 | 0.573 | −0.342 | 0.738 | −1.434 | 1.042 |
Age | −0.221 | 0.233 | −0.949 | 0.360 | −0.725 | 0.283 |
Physical Activity | 0.714 | 2.600 | 0.274 | 0.788 | −4.904 | 6.331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucha-López, M.O.; Vidal-Peracho, C.; Hidalgo-García, C.; Rodríguez-Sanz, J.; Tricás-Vidal, H.; Hernández-Secorún, M.; Monti-Ballano, S.; Tricás-Moreno, J.M.; Lucha-López, A.C. Anthropometric Measurements, Metabolic Profile and Physical Fitness in a Sample of Spanish Women with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11955. https://doi.org/10.3390/ijerph182211955
Lucha-López MO, Vidal-Peracho C, Hidalgo-García C, Rodríguez-Sanz J, Tricás-Vidal H, Hernández-Secorún M, Monti-Ballano S, Tricás-Moreno JM, Lucha-López AC. Anthropometric Measurements, Metabolic Profile and Physical Fitness in a Sample of Spanish Women with Type 2 Diabetes. International Journal of Environmental Research and Public Health. 2021; 18(22):11955. https://doi.org/10.3390/ijerph182211955
Chicago/Turabian StyleLucha-López, María Orosia, Concepción Vidal-Peracho, César Hidalgo-García, Jacobo Rodríguez-Sanz, Héctor Tricás-Vidal, Mar Hernández-Secorún, Sofía Monti-Ballano, José Miguel Tricás-Moreno, and Ana Carmen Lucha-López. 2021. "Anthropometric Measurements, Metabolic Profile and Physical Fitness in a Sample of Spanish Women with Type 2 Diabetes" International Journal of Environmental Research and Public Health 18, no. 22: 11955. https://doi.org/10.3390/ijerph182211955