What Is the Optimal Strength Training Load to Improve Swimming Performance? A Randomized Trial of Male Competitive Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
Monitoring
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amara, S.; Chortane, O.G.; Negra, Y.; Hammami, R.; Khalifa, R.; Chortane, S.G.; van den Tillaar, R. Relationship between Swimming Performance, Biomechanical Variables and the Calculated Predicted 1-RM Push-up in Competitive Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 11395. [Google Scholar] [CrossRef]
- Amara, S.; Barbosa, T.M.; Negra, Y.; Hammami, R.; Khalifa, R.; Chortane, S.G. The Effect of Concurrent Resistance Training on Upper Body Strength, Sprint Swimming Performance and Kinematics in Competitive Adolescent Swimmers. A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 10261. [Google Scholar] [CrossRef] [PubMed]
- Born, D.P.; Stöggl, T.; Petrov, A.; Burkhardt, D.; Lüthy, F.; Romann, M. Analysis of freestyle swimming sprint start performance after maximal strength or vertical jump training in competitive female and male junior swimmers. J. Strength Cond. Res. 2020, 34, 323–331. [Google Scholar] [CrossRef]
- Crowley, E.; Harrison, A.J.; Lyons, M. Dry-land resistance training practices of elite swimming strength and conditioning coaches. J. Strength Cond. Res. 2018, 32, 2592–2600. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.; Coyle, E.; Fink, W.; Lesmes, G.; Witzmann, F. Adaptations in skeletal muscle following strength training. J. Appl. Physiol. 1979, 46, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.M.; Hopkins, W.G. Consistency of swimming performance within and between competitions. Med. Sci. Sports Exerc. 2000, 32, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Strass, D. Effects of maximal strength training on sprint performance of competitive swimmers. Swim. Sci. V 1988, 18, 149–156. [Google Scholar]
- Girold, S.; Jalab, C.; Bernard, O.; Carette, P.; Kemoun, G.; Dugué, B. Dry-land strength training vs. electrical stimulation in sprint swimming performance. J. Strength Cond. Res. 2012, 26, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Girold, S.; Maurin, D.; Dugue, B.; Chatard, J.C.; Mille, G. Effects of dry-land vs. resisted-and assisted-sprint exercises on swimming sprint performances. J. Strength Cond. Res. 2007, 21, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Sammoud, S.; Negra, Y.; Chaabene, H.; Bouguezzi, R.; Moran, J.; Granacher, U. The effects of plyometric jump training on jumping and swimming performances in prepubertal male swimmers. J. Sports Sci. Med. 2019, 18, 805–811. [Google Scholar] [PubMed]
- Aspenes, S.; Kjendlie, P.L.; Hoff, J.; Helgerud, J. Combined strength and endurance training in competitive swimmers. J. Sports Sci. Med. 2019, 8, 357. [Google Scholar]
- Batalha, N.; Paixão, C.; Silva, A.J.; Costa, M.J.; Mullen, J.; Barbosa, T.M. The effectiveness of a dry-land shoulder rotators strength training program in injury prevention in competitive swimmers. J. Hum. Kinet. 2020, 1, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Sammoud, S.; Negra, Y.; Bouguezzi, R.; Hachana, Y.; Granacher, U.; Chaabene, H. The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers. J. Exerc. Sci. Fit. 2021, 19, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Keiner, M.; Wirth, K.; Fuhrmann, S.; Kunz, M.; Hartmann, H.; Haff, G.G. The influence of upper- and lower-body maximum strength on swim block start, turn, and overall swim performance in sprint swimming. J. Strength Cond. Res. 2021, 35, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef]
- Morouço, P.G.; Marinho, D.A.; Keskinen, K.L.; Badillo, J.J.; Marques, M.C. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J. Strength Cond. Res. 2014, 28, 3093–3099. [Google Scholar] [CrossRef]
- Lopes, T.J.; Neiva, H.P.; Gonçalves, C.A.; Nunes, C.; Marinho, D.A. The effects of dry-land strength training on competitive sprinter swimmers. J. Exerc. Sci. Fit. 2021, 19, 32–39. [Google Scholar] [CrossRef]
- Van Den Tillaar, R.; Ball, N. Push-ups are able to predict the bench press 1-RM and constitute an alternative for measuring maximum upper body strength based on load-velocity relationships. J. Hum. Kinet. 2020, 73, 7–18. [Google Scholar] [CrossRef]
- Morrison, L.; Peyrebrune, M.; Folland, J. Resisted-swimming training improves 100 m. freestyle performance in elite swimmers. J. Sport Sci. 2005, 23, 11–12. [Google Scholar]
- Hawley, J.; Williams, M. Relationship between upper body anaerobic power and freestyle swimming performance. Int. J. Sports Med. 1991, 12, 1–5. [Google Scholar] [CrossRef]
- Hawley, J.A.; Williams, M.; Vickovic, M.; Handcock, P. Muscle power predicts freestyle swimming performance. Br. J. Sports Med. 1992, 26, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thng, S.; Pearson, S.; Keogh, J.W. Relationships between dry-land resistance training and swim start performance and effects of such training on the swim start: A systematic review. Sports Med. 2019, 49, 1957–1973. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.; Figueiredo, P.; Daly, D. Electromyography in the four competitive swimming strokes: A systematic review. J. Electromyogr. Kinesiol. 2015, 25, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Esco, M.R.; Fedewa, M.V.; Bishop, P.A. Bench Press Load-Velocity Profiles and Strength after Overload and Taper Microcyles in Male Powerlifters. J. Strength Cond. Res. 2020, 34, 3338–3345. [Google Scholar] [CrossRef] [PubMed]
- Collette, R.; Kellmann, M.; Ferrauti, A.; Meyer, T.; Pfeiffer, M. Relation between training load and recovery-stress state in high-performance swimming. Front. Physiol. 2018, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sports Physiol. Perform. 2017, 12, S2-161–S162-170. [Google Scholar] [CrossRef]
- Song, H.S.; Park, D.H.; Jung, D.S. The Effect of Periodized Strength Training Application on the Korea National Team. Int. J. Appl. Sports Sci. 2009, 21, 122–145. [Google Scholar]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhause, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci. 2013, 13, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.; Keogh, J.; Barnes, M.; McGuigan, M. Effects and mechanisms of tapering in maximizing muscular strength. Strength Cond. J. 2015, 37, 72–83. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Negra, Y.; Chaabene, H.; Hammami, M.; Hachana, Y.; Granacher, U. Effects of high-velocity resistance training on athletic performance in prepuberal male soccer athletes. J. Strength Cond. Res. 2016, 30, 3290–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veiga, S.; Cala, A.; Frutos, G.P.; Navarro, E. Comparison of starts and turns of national and regional level swimmers by individualized-distance measurements. Sports Biomech. 2014, 13, 285–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig-Diví, A.; Escalona-Marfil, C.; Padullés-Riu, J.M.; Busquets, A.; Padullés-Chando, X.; Marcos-Ruiz, D. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS ONE 2019, 14, e0216448. [Google Scholar]
- Bishop, D.C.; Smith, R.J.; Smith, M.F.; Rigby, H.E. Effect of plyometric training on swimming block start performance in adolescents. J. Strength Cond. Res. 2009, 23, 2137–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Social Sciences; Erbaum Press: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of 4, 8, and 12 repetition maximum resistance training protocols on muscle volume and strength. J. Strength Cond. Res. 2021, 35, 879–885. [Google Scholar] [CrossRef]
- Slimani, M.; Paravlic, A.; Granacher, U. A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes. Front. Physiol. 2018, 9, 1155. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.D.; Rhea, M.R.; Alvar, B.A. Applications of the dose-response for muscular strength development: Areview of meta-analytic efficacy and reliability for designing training prescription. J. Strength Cond. Res. 2005, 19, 950–958. [Google Scholar] [CrossRef]
- Potdevin, F.J.; Alberty, M.E.; Chevutschi, A.; Pelayo, P.; Sidney, M.C. Effects of a 6-week plyometric training program on performances in pubescent swimmers. J. Strength Cond. Res. 2011, 25, 80–86. [Google Scholar] [CrossRef]
Characteristics | HTVLG (n = 11) | MTVLG (n = 11) | LTVLG (n = 11) |
---|---|---|---|
Age (y) | 16.5 ± 0.30 | 16.1 ± 0.32 | 15.9 ± 0.31 |
Height (cm) | 175 ± 9.80 | 177 ± 9.70 | 177 ± 9.40 |
Body mass (kg) | 72.4 ± 5.3 | 3.3 ± 0.25 | 74.6 ± 5.5 |
Swimming experience (y) | 8.70 ± 0.29 | 8.63 ± 0.27 | 8.43 ± 0.25 |
Resistance experience (y) | 4.2 ± 0.23 | 4.3 ± 0.25 | 4.5 ± 0.24 |
Training Volume Load Group | |||||
---|---|---|---|---|---|
Period | Week (Session) | Exercises | High | Moderate | Low |
Intervention period | W1 (S1/S2/S3) | BP | 5 × (5 × 85% 1RM) | 4 × (4 × 85% 1RM) | 4 × (3 × 85% 1RM) |
LE | 5 × (5 × 85% 1RM) | 4 × (4 × 85% 1RM) | 4 × (3 × 85% 1RM) | ||
W2 (S4/S5/S6) | BP | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | 4 × (3 × 90% 1RM) | |
LE | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | 4 × (3 × 90% 1RM) | ||
W3 (S7/S8/S9) | BP | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | |
LE | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | ||
W4 (S10/S11/S12) | BP | 6 × (3 × 95% 1RM) | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | |
LE | 6 × (3 × 95% 1RM) | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | ||
W5 (S13/S14/S15) | BP | 6 × (4 × 90% 1RM) | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | |
LE | 6 × (4 × 90% 1RM) | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | ||
W6 (S16/S17/S18) | BP | 6 × (5 × 85% 1RM) | 5 × (5 × 85% 1RM) | 4 × (4 × 85% 1RM) | |
LE | 6 × (5 × 85% 1RM) | 5 × (5 × 85% 1RM) | 4 × (4 × 85% 1RM) | ||
Taper period | W7 (S19/S20) | BP | 5 × (5 × 85% 1RM) | 4 × (5 × 85% 1RM) | 4 × (4 × 90% 1RM) |
LE | 5 × (5 × 85% 1RM) | 4 × (5 × 85% 1RM) | 4 × (4 × 90% 1RM) | ||
W8 (S21/S22) | BP | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | 3 × (5 × 85% 1RM) | |
LE | 5 × (4 × 90% 1RM) | 4 × (4 × 90% 1RM) | 3 × (5 × 85% 1RM) | ||
W9 (S23/S24) | BP | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | 3 × (3 × 95% 1RM) | |
LE | 5 × (3 × 95% 1RM) | 4 × (3 × 95% 1RM) | 3 × (3 × 95% 1RM) |
Training Volume-Load Group | ||||||
---|---|---|---|---|---|---|
Period | Training Load | High | Moderate | Low | p-Value (ES) | |
Intervention period | External | Volume Load BP (kg) | 16339 ±1386.48 | 13124 ± 985 | 10474 ± 865.52 | <0.001 (4.57) |
Volume Load LE (kg) | 17816 ± 1725.24 | 14366 ± 1191.35 | 10868 ± 998.14 | <0.001 (4.44) | ||
Total Volume Load (kg) | 34154 ± 3054.23 | 27490 ± 2159.78 | 21342 ± 1837.93 | <0.001 (4.57) | ||
Internal | RPE | 8.64 ± 0.54 | 6.82 ± 0.75 | 4.95 ± 0.69 | <0.001 (4.63) | |
Taper period | External | Volume Load BP (kg) | 4951.2 ± 420.15 | 4031 ± 302.53 | 3297.4 ± 272.4 | <0.001 (4.20) |
Volume Load LE (kg) | 5398.6 ± 522.80 | 4412.3 ± 365.91 | 3602.5 ± 330.8 | <0.001 (3.71) | ||
Total Volume Load (kg) | 10350 ± 925.52 | 8443.3 ± 663.36 | 6899.8 ± 595.0 | <0.001 (3.99) | ||
internal | RPE | 4.34 ± 0.55 | 3.46 ± 0.42 | 2.45 ± 0.48 | <0.001 (3.20) |
Training Volume-Load Group | ||||||||
---|---|---|---|---|---|---|---|---|
Performances | High | Moderate | Low | p-Value (ES) | ||||
Pre-Test | Post-Test | Pre-Test | Post-Test | Pre-Test | Post-Test | Time | Group × Time | |
25 m front crawl (s) | 13.52 ± 0.56 | 12.76 ± 0.54 | 13.55 ± 0.53 | 12.91 ± 0.54 | 13.56 ± 0.51 | 13.02 ± 0.52 | <0.001 (1.27) | 0.785 (0.18) |
50 m front crawl (s) | 26.91 ± 1.29 | 25.20 ± 1.26 | 26.92 ± 1.24 | 25.52 ± 1.24 | 26.94 ± 1.23 | 26.03 ± 1.23 | <0.001 (1.13) | 0.570 (0.28) |
Speed of start (s) | 3.06 ± 0.23 | 3.43 ± 0.21 | 3.06 ± 0.23 | 3.31 ± 0.21 | 3.09 ± 0.23 | 3.29 ± 0.22 | <0.001 (1.30) | 0.420 (0.35) |
Time of start (s) | 0.90 ± 0.04 | 0.84 ± 0.03 | 0.89 ± 0.04 | 0.85 ± 0.03 | 0.89 ± 0.04 | 0.85 ± 0.04 | <0.001 (1.29) | 0.466 (0.33) |
Distance of start (m) | 2.73 ± 0.09 | 2.87 ± 0.09 | 2.73 ± 0.08 | 2.81 ± 0.07 | 2.73 ± 0.08 | 2.80 ± 0.08 | <0.001 (1.28) | 0.378 (0.36) |
Time of turn(s) | 1.99 ± 0.04 | 1.92 ± 0.04 | 2.01 ± 0.04 | 1.96 ± 0.04 | 2.01 ± 0.04 | 1.96 ± 0.04 | <0.001 (1.46) | 0.299 (0.40) |
1RM bench press (kg) | 46.27 ± 3.93 | 52.64 ± 3.91 | 47.09 ± 3.53 | 51.55 ± 3.78 | 46.18 ± 3.82 | 50.00 ± 3.27 | <0.001 (1.38) | 0.501 (0.31) |
1RM leg ext. (kg) | 50.46 ± 4.90 | 60.46 ± 4.57 | 51.55 ± 4.28 | 56.64 ± 4.48 | 50.45 ± 4.63 | 55.55 ± 4.50 | <0.001 (1.55) | 0.128 (0.53) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amara, S.; Crowley, E.; Sammoud, S.; Negra, Y.; Hammami, R.; Chortane, O.G.; Khalifa, R.; Chortane, S.G.; van den Tillaar, R. What Is the Optimal Strength Training Load to Improve Swimming Performance? A Randomized Trial of Male Competitive Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 11770. https://doi.org/10.3390/ijerph182211770
Amara S, Crowley E, Sammoud S, Negra Y, Hammami R, Chortane OG, Khalifa R, Chortane SG, van den Tillaar R. What Is the Optimal Strength Training Load to Improve Swimming Performance? A Randomized Trial of Male Competitive Swimmers. International Journal of Environmental Research and Public Health. 2021; 18(22):11770. https://doi.org/10.3390/ijerph182211770
Chicago/Turabian StyleAmara, Sofiene, Emmet Crowley, Senda Sammoud, Yassine Negra, Raouf Hammami, Oussema Gaied Chortane, Riadh Khalifa, Sabri Gaied Chortane, and Roland van den Tillaar. 2021. "What Is the Optimal Strength Training Load to Improve Swimming Performance? A Randomized Trial of Male Competitive Swimmers" International Journal of Environmental Research and Public Health 18, no. 22: 11770. https://doi.org/10.3390/ijerph182211770