Body Composition and Biological Functioning in Polish Perimenopausal Women with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure of Body Composition Assessment
2.2. Procedure of Laboratory Tests Marking
2.3. Organization and Course of Study
2.4. Statistical Analysis
- |r| ≥ 0.9—very strong relationship,
- 0.7 ≤ |r| < 0.9—strong relationship,
- 0.5 ≤ |r| < 0.7—moderately strong relationship,
- 0.3 ≤ |r| < 0.5—weak relationship,
- |r| < 0.3—very weak (negligible) relationship.
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojar, I.; Owoc, A.; Witczak, M.; Pięta, B. Nasilenie objawów menopauzalnych a funkcje poznawcze oceniane baterią testów CNS-VS. Ginekol. Pol. 2015, 86, 765–773. [Google Scholar] [CrossRef]
- Karvonen-Gutierrez, C.; Kim, C. Association of mid-life changes in body size and obesity status with the menopausal transition. Healthcare 2016, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, J.; Naagar, J.K. Changes in serum lipid profile in postmenopausal women with reference to Body mass index (BMI). Int. J. Med. Res. Rev. 2015, 3, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update 2017, 23, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, E.; Kumahara, H.; Tobina, T.; Matono, S.; Kiyonaga, A.; Kimura, M.; Tsukikawa, H.; Kono, S.; Etou, T.; Irie, S.; et al. Relationships between fat deposition in the liver and skeletal muscle and insulin sensitivity in Japanese individualis: A pilot study. Diabetes Metab. Syndr. Obes. 2011, 4, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malnick, S.D.H.; Knobler, H. The medical complications of obesity. QJM Int. J. Med. 2006, 99, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Prospective Studies Collaboration; Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizildash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar]
- Mauvais-Jarvis, F.; Manson, J.E.; Stevenson, J.C.; Fonseca, V.A. Menopausal hormone therapy and type 2 diabetes prevention: Evidence, mechanisms, and clinical implications. Endocr. Rev. 2017, 38, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Paschou, S.A.; Anagnostis, P.; Pavlou, D.I.; Vryonidou, A.; Goulis, D.G.; Lambrinoudaki, I. Diabetes in menopause: Risk and management. Cirr. Vasc. Pharmacol. 2018, 17, 556–563. [Google Scholar] [CrossRef]
- Lapidus, L. The evaluation of chest pain in women. N. Eng. J. Med. 1996, 334, 1311–1315. [Google Scholar]
- Weber-Rajek, M.; Lubomska, M.; Radzimińska, A.; Lulińska–Kuklik, E.; Goch, A.; Zukow, W. Zachowania zdrowotne kobiet w okresie menopauzalnym = The health behavior of women during menopausal period. J. Educ. Health Sport 2016, 6, 151–162. [Google Scholar]
- Raport Polki 50 Plus. Zdrowie i Jego Zagrożenia. Red; Ostrowska, A., Ed.; Fundacja MSD dla Zdrowia Kobiet: Warszawa, Poland, 2015; pp. 1–116. [Google Scholar]
- Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat mass changes during menopause: A metaanalysis. Am. J. Obstet. Gynecol. 2019, 221, 393–409. [Google Scholar] [CrossRef]
- Stefańska, A.; Bergmann, K.; Sypniewska, G. Metabolic syndrome and menopause: Pathophysiology, clinical and diagnostic significance. Adv. Clin. Chem. 2015, 72, 1–75. [Google Scholar]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Franco, M.; Dobs, A.S.; Ouyang, P.; Vaidya, D.; Bertoni, A.; Gapstur, S.M.; Golden, S.H. The association of endogenous sex hormones, adiposity, and insulin resistance with incydent diabetes in postmenopausal women. J. Clin. Endocrinol. Metab. 2009, 94, 4127–4135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piché, M.E.; Weisnagel, S.J.; Corneau, L.; Nadeau, A.; Bergeron, J.; Lemieux, S. Contribution of abdominal visceral obesity and insulin resistance to the cardiovascular risk profile of postmenopausal women. Diabetes 2005, 54, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Lambrinoudaki, I.; Georgiopoulos, G.A.; Athanasouli, F.; Armeni, E.; Rizos, D.; Augoulea, A.; Chatzidou, S.; Koutli, E.; Makris, N.; Kanakakis, I.; et al. Free androgen index as a determinant of arterial stiffness in menopause: A mediation analysis. Menopause 2017, 24, 635–644. [Google Scholar] [CrossRef]
- Paschou, S.A.; Anagnosis, P.; Goulis, D.G.; Lambrinoudaki, I. Androgen excess and post-reproduktive health. Maturitas 2018, 115, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Shelley, J.M.; Green, A.; Smith, A.M.; Dudley, E.; Dennerstein, L.; Hopper, J.; Burger, H. Relationship of endogenous sex hormones to lipids and blood pressure in mid-aged women. Ann. Epidemiol. 1998, 8, 39–45. [Google Scholar] [CrossRef]
- Stevenson, J.; Crook, D.I.; Godsland, I. Influence of age and menopause on serum lipids and lipoproteins in healthy women. Atherosclerosis 1993, 98, 83–90. [Google Scholar] [CrossRef]
- Matthews, K.A.; Crawford, S.L.; Chae, C.U.; Everson-Rose, S.A.; Sowers, M.F.; Sternfeld, B.; Sutton-Tyrrell, K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition. J. Am. Coll. Cardiol. 2009, 54, 2366–2373. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions. Maturitas 2015, 81, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Statistical Yearbook. Zachodniopomorskie Voivodship 2017; Statistical Office in Szczecin: Szczecin, Poland, 2018. [Google Scholar]
- Zimny, M.; Starczewska, M.; Szkup, M.; Karakiewicz-Krawczyk, K.; Grochans, E.; Sipak-Szmigiel, O. Analysis of the Impact of Type 2 Diabetes on the Psychosocial Functioning and Quality of Life of Perimenopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 4349. [Google Scholar] [CrossRef] [PubMed]
- Mędrela-Kuder, E. Prawidłowa dieta w cukrzycy tupu II jako forma rehabilitacji chorych. Rocz. PZH 2011, 62, 219–223. [Google Scholar]
- Dąbrowska, J.; Naworska, B.; Dąbrowska-Galas, M.; Wodarska, M. Nadwaga i otyłość kobiet w okresie okołomenopauzalnym mierzone metodą bioimpedancji elektrycznej. Menopausal Rev. 2013, 12, 260–264. [Google Scholar] [CrossRef]
- Przech, E.; Cypryk, K. Zaburzenia gospodarki węglowodanowej w okresie menopauzy—Implikacje kliniczne. Diab. Reumat. 2009, 16, 1115–1120. [Google Scholar]
- Ubeda, N.; Basagoiti, M.; Alonso-Aperte, E.; Varela-Moreiras, G. Dietary food habits, nutritional status and lifestyle in menopausal women in Spain. Nurt. Hosp. 2007, 22, 313–321. [Google Scholar]
- Gonçalves, J.T.T.; Silveira, M.F.; Campos, M.C.C.; Costa, L.H.R. Overweight and obesity and factors associated with menopause. Cien. Saude. Colet. 2016, 21, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Kudaj-Kurowska, A.; Turek, I.; Józefowska, M.; Przech, E.; Cypryk, K. Wyrównanie cukrzycy u chorych na cukrzycę typu 2 w świetle wytycznych Polskiego Towarzystwa Diabetologicznego. Diabet. Klin. 2014, 3, 92–99. [Google Scholar]
- Bała, M.M.; Płaczkiewicz-Jankowska, E.; Topór-Mądry, R.; Leśniak, W.; Jaeschke, R.; Sieradzki, J.; Grzeszczak, W.; Banasiak, W.; The ARETAEUS Study Group. Is newly diagnosed type 2 diabetes treated according to the guidelines? Results of the Polish AREATEUS1 study. Pol. Arch. Med. Wewn. 2011, 121, 7–17. [Google Scholar] [PubMed]
- Włodarek, D.; Głąbska, D. Zwyczaje żywieniowe osób chorych na cukrzycę typu 2. Diabetol. Prakt. 2010, 11, 17–23. [Google Scholar]
- Korzeniowska, K.; Jabłecka, A. Cukrzyca (Część III). Dieta w cukrzycy. Farm Współcz. 2009, 2, 110–116. [Google Scholar]
- Abramczyk, A. Sposób żywienia chorych na cukrzycę w świetle badań gólnopolskich. Ann. Univ. Mariae Curie Skłodowska 2007, LXII, 5–9. [Google Scholar]
- Rela-Kuder, E.; Bis, H. Porównanie aktywności fizycznej i diety u kobiet i mężczyzn chorych na cukrzycę typu 2. Med. Ogólna Nauki Zdr. 2014, 20, 31–33. [Google Scholar]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar]
- Toth, M.J.; Tchernof, A.; Sites, C.K.; Poehlman, E.T. Menopauze-related changes in body fat distribution. Ann. N. Y. Acad. Sci. 2000, 904, 502–506. [Google Scholar] [CrossRef]
- Pachocka, L.M. Analiza porównawcza stylu życia otyłych kobiet przed menopauza i w okresie perimenopauzy. Roczn. PZH 2010, 61, 389–393. [Google Scholar]
- Yeung, E.H.; Zhang, C.; Hediger, M.L.; Wactawski-Wende, J.; Schisterman, E.F. Racial differences in the association between sex hormone-binding globulin and adiposity in premenopausal women: The BioCycle study. Diabetes Care 2010, 33, 2274–2276. [Google Scholar] [CrossRef] [Green Version]
- Jenson, M.D. Role of body fat distribution and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008, 93, S57–S63. [Google Scholar] [CrossRef] [Green Version]
- Tchernof, A.; Toth, M.J.; Poehlman, E.T. Sex hormone-binding globulin levels in middle-aged premenopausal women. Associations with visceral obesity and metabolic profile. Diabetes Care 1999, 22, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, K. Greater beneficial effects of visceral fat reduction compared with subcutaneous fat reduction on parameters of metabolic syndrome: A study of weight reduction programmes in subjects with visceral and subcutaneous obesity. Diabet. Med. 2005, 22, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Mohllajee, A.P.; Van Dam, R.M.; Michels, K.B. Breast size and risk of type 2 diabetes mellitus. CMAJ 2008, 178, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Groop, L.; Orho-Melander, M. The dysmetabolic syndrome. J. Intern. Med. 2001, 250, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Banka, C.L.; Benjamin, E.J.; Berra, K.; Bushnell, C.; Dolor, R.J.; Ganiats, T.G.; Gomes, A.S.; Gornik, H.L.; Gracia, C.; et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation 2007, 115, 1481–1501. [Google Scholar] [CrossRef] [PubMed]
- Przysławski, J.; Grygiel-Górniak, B.; Stelmach-Mardas, M.; Grzymisławski, M.; Chuchracki, M. Hipercholesterolemia i jej żywieniowe uwarunkowania w grupie otyłych kobiet po menopauzie z różnym stopniem otyłości. Probl. Hig. Epidemiol. 2011, 92, 545–549. [Google Scholar]
- Saha, K.R.; Rahman, M.M.; Paul, A.R.; Das, S.; Haque, S.; Jafrin, W.; Mia, A.R. Changes in lipid profile of postmenopausal women. Mymensingh. Med. J. 2013, 22, 706–711. [Google Scholar]
- Matthews, K.A.; Kuller, L.H.; Sutton-Tyrrell, K.; Chang, Y.F. Changes in cardiovascular risk during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke 2001, 32, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Franiak-Pietryga, I.; Balcerak, M.; Sikora, J.; Duchnowicz, P.; Koter-Michalak, M.; Stetkiewicz, T.; Broncel, M. Wpływ terapii atorwastatyną na strukturę błony erytrocytarnej i stężenie białka C-reaktywnego u kobiet z zespołem metabolicznym w okresie menopauzy. Prz. Menopauz. 2009, 4, 233–238. [Google Scholar]
- Piskorz, A.; Brzostek, T.; Piórecka, B. Występowanie wybranych czynników ryzyka chorób układu krążenia w grupie kobiet w okresie przed- i pomenopauzalnym—Analiza porównawcza. Hygeia Public Health 2015, 50, 127–135. [Google Scholar]
- Shende, S.S.; Bhimanapalli, M.V.; Apte, I.C.; Mahajan, V.V.; Narkhede, H.P. Study of lipids profile and C reactive protein in pre- and post-menopausal women. J. Clin. Diagn. Res. 2011, 5, 1544–1547. [Google Scholar]
- Gower, B.A.; Nagy, T.R.; Goran, M.I.; Toth, M.J.; Poehlman, E.T. Fat distribution and plasma lipid–lipoprotein concentration in pre-and postmenopausal women. Int. J. Obes. 1998, 22, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milewicz, T.; Kostecka, A.; Rogatko, I.; Sztefko, K.; Kwiatkowska-Panek, E.; Radowicki, S.; Krzysiek, J. Stężenia cholesterolu całkowitego, frakcji LDL cholesterolu i frakcji HDL-cholesterolu w surowicy u kobiet po menopauzie w trakcie 12 miesięcznej doustnej podaży dydrogesteronu lub medroxyprogesteronu łącznie z przezskórną suplementacją 17 beta-estradiolu. Prz. Lek. 2007, 64, 65–69. [Google Scholar]
- Kurowska, K.; Rusińska, D. Rola wsparcia a poziom poczucia koherencji w zmaganiu się z cukrzycą typu 2. Diabet. Prakt. 2011, 12, 216–222. [Google Scholar]
- Dudzińska, M.; Kurowska, M.; Tarach, J.S.; Malicka, J.; Nowakowski, A. Kontrola metaboliczna i realizacja zaleceń PTD przed wdrożeniem i po wdrożeniu insulinoterapii u chorych na cukrzycę typu 2. Diabet. Prakt. 2011, 12, 21–27. [Google Scholar]
- Arsenault, B.J.; Lemieux, I.; Després, J.P.; Wareham, N.J.; Kastelein, J.J.P.; Khaw, K.; Boekholdt, S.M. Thehypertriglyceridemic-waist phenotype and the risk of coronary artery disease: Results from the Epic-Norfolk prospective Population Study. CMAJ 2010, 182, 1427–1432. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.X.; Yang, K.; Liu, X.T.; Cao, K.; Zhu, H.; Luo, Y.; Guo, J.; Wu, L.; Li, X.; Guo, X. Longitudinal associations between triglycerydes and metabolic syndrome components in a Beijing adult population, 2007–2012. Int. J. Med. Sci. 2016, 13, 445–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tankó, L.B.; Bagger, Y.Z.; Qin, G.; Alexandersen, P.; Larsen, P.J.; Christiansen, C. Enlarged waist combined with elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiowascular mortality in menopausal women. Circulation 2005, 111, 1883–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefańska, A.; Odrowąż-Sypniewska, G.; Senterkiewicz, L. Wpływ masy ciała na nasilenie stanu zapalnego u zdrowych kobiet w okresie okołomenopauzalnym i pomenopauzalnym. Endokrynol. Otyłość Zaburzenia Przemiany Mater. 2006, 2, 122–128. [Google Scholar]
- Karolkiewicz, J.; Pilaczyńska-Szcześniak, Ł.; Elegańczyk-Kot, H.; Nowak, A.; Kasprzak, Z.; Lewandowska, M. Wskaźnik masy ciała a insulinooporność oraz parametry stresu oksydacyjnego u kobiet w podeszłym wieku. Gerontol. Pol. 2009, 17, 64–70. [Google Scholar]
- Ridker, P.M.; Buring, J.E.; Cook, N.R.; Rifai, N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8-year follow-up of 14719 initially healthy American women. Circulation 2003, 107, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Gao, P.; Chen, Y.; Xia, Y.; Ke, X.; Shao, X.; Xiong, C.; Chen, H.; Xiao, H.; Ning, J.; et al. High-sensitivity C-Reactive Protein leads to increased incident Metabolic Syndrome in women but not in men: A five-year follow-up study in a chinese population. Diabetes Metab. Syndr. Obes. 2020, 13, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Tworoger, S.S.; Huang, T. Obesity and ovarian cancer. Recent Results Cancer Res. 2016, 208, 155–176. [Google Scholar] [PubMed]
- Amanullah, S.; Jarari, A.; Govindan, M.; Basha, M.I.; Khatheeja, S. Association of hs-CRP with Diabetic and Non-diabetic individuals. Jordan J. Biol. Sci. 2010, 3, 7–12. [Google Scholar]
Parameters | Group | n | M ± SD | Me | Min-Max | Q1–Q3 | p |
---|---|---|---|---|---|---|---|
Total cholesterol [mg/dL] | Study | 68 | 183.3 ± 42.5 | 182 | 94–289 | 152.75–221.5 | <0.001 |
Control | 104 | 207.8 ± 37.9 | 207.8 | 119–311 | 183–233 | ||
HDL [mg/dL] | Study | 68 | 55.4 ± 16.2 | 53 | 5–97 | 45.75–64.3 | <0.001 |
Control | 104 | 67.0 ± 18.4 | 64 | 33–143 | 54.53–78 | ||
LDL [mg/dL] | Study | 67 | 98.3 ± 36.5 | 90.2 | 30.2–190.6 | 66.4–127.6 | <0.001 |
Control | 103 | 121.6 ± 35.5 | 119.8 | 38.2–222.8 | 98.1–140.3 | ||
Triglycerides [mg/dL] | Study | 68 | 149.1 ± 76.5 | 127 | 48–445 | 98–171.6 | <0.001 |
Control | 104 | 98.2 ± 57.8 | 84 | 28–417 | 64.75–120 | ||
Fasting Blood Glucose [mg/dL] | Study | 68 | 138.3 ± 53.4 | 127 | 80–348 | 102.75–150.6 | <0.001 |
Control | 104 | 84.7 ± 19.7 | 82 | 63–254 | 74–92 | ||
CRP [mg/L] | Study | 68 | 5.6 ± 10.3 | 2.6 | 1–76.5 | 1.75–4.9 | <0.001 |
Control | 104 | 2.4 ± 2.9 | 1.3 | 1–20 | 1–2.5 | ||
HbA1c [%] | Study | 67 | 6.8 ± 1.5 | 6.56 | 5–13.15 | 5.92–7.4 | <0.001 |
Control | 104 | 5.3 ± 0.6 | 5.29 | 2.9–10.2 | 5.07–5.5 | ||
Insulin [µIU/mL] | Study | 67 | 20.7 ± 18.6 | 17.3 | 3.5–148.2 | 10.55–26.1 | <0.001 |
Control | 104 | 9.9 ± 5.6 | 8.7 | 2.3–32.2 | 6.38–11.4 |
Parameters | Level of HDL Cholesterol | Level of Triglycerides | ||||||
---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | |||||
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Weight [kg] | −0.284 | 0.019 * | −0.271 | 0.005 ** | 0.34 | 0.005 ** | 0.408 | <0.001 *** |
L.B.M. [kg] | −0.267 | 0.028 * | −0.312 | 0.001 ** | 0.321 | 0.008 ** | 0.362 | <0.001 *** |
M. B. F. [kg] | −0.275 | 0.023 * | −0.282 | 0.004 ** | 0.357 | 0.003 ** | 0.403 | <0.001 *** |
S.L.M. [kg] | −0.275 | 0.023 * | −0.309 | 0.001 ** | 0.332 | 0.006 ** | 0.35 | <0.001 *** |
Mineral [kg] | −0.287 | 0.018 * | −0.302 | 0.002 ** | 0.351 | 0.003 ** | 0.393 | <0.001 *** |
Protein [kg] | −0.243 | 0.046 * | −0.308 | 0.001 ** | 0.293 | 0.015 * | 0.308 | 0.001 ** |
T.B.W. [kg] | −0.254 | 0.036 * | −0.31 | 0.001 ** | 0.302 | 0.012 * | 0.361 | <0.001 *** |
P.B.F. [%] | −0.17 | 0.166 | −0.195 | 0.047 * | 0.297 | 0.014 * | 0.35 | <0.001 *** |
B.M.I. [kg/m2] | −0.239 | 0.05 | −0.229 | 0.019 * | 0.299 | 0.013 * | 0.375 | <0.001 *** |
Fatness [%] | −0.308 | 0.104 | --- | --- | 0.289 | 0.128 | --- | --- |
Level [steps] | −0.172 | 0.162 | −0.187 | 0.057 | 0.275 | 0.023 * | 0.352 | <0.001 *** |
V.F.A. [cm2] | −0.164 | 0.183 | −0.196 | 0.046 * | 0.289 | 0.017 * | 0.36 | <0.001 *** |
A.C. [cm] | −0.276 | 0.023 * | −0.274 | 0.005 ** | 0.358 | 0.003 ** | 0.405 | <0.001 *** |
W.H.R. | −0.159 | 0.195 | −0.193 | 0.049 * | 0.287 | 0.018 * | 0.349 | <0.001 *** |
Std. Mc. [kg] | −0.02 | 0.87 | −0.183 | 0.065 | 0.111 | 0.369 | 0.083 | 0.409 |
L. arm–M.B.F. [kg] | −0.295 | 0.015 * | −0.277 | 0.004 ** | 0.39 | 0.001 ** | 0.417 | <0.001 *** |
L. arm-S.L.M. [kg] | −0.282 | 0.02 * | −0.283 | 0.004 ** | 0.212 | 0.082 | 0.282 | 0.004 ** |
R. arm-M.B.F. [kg] | −0.299 | 0.013 * | −0.28 | 0.004 ** | 0.406 | 0.001 *** | 0.426 | <0.001 *** |
R. arm-S.L.M. [kg] | −0.207 | 0.09 | −0.274 | 0.005 ** | 0.223 | 0.067 | 0.266 | 0.006 ** |
Trunk-M.B.F. [kg] | −0.262 | 0.031 * | −0.27 | 0.006 ** | 0.345 | 0.004 ** | 0.399 | <0.001 *** |
Trunk-S.L.M. [kg] | −0.243 | 0.046 * | −0.309 | 0.001 ** | 0.341 | 0.004 ** | 0.366 | <0.001 *** |
L. leg-M.B.F. [kg] | −0.257 | 0.034 * | −0.274 | 0.005 ** | 0.341 | 0.004 ** | 0.405 | <0.001 *** |
L. leg-S.L.M. [kg] | −0.225 | 0.066 | −0.293 | 0.003 ** | 0.317 | 0.009 ** | 0.325 | 0.001 *** |
R. leg-M.B.F. [kg] | −0.283 | 0.019 * | −0.26 | 0.008 ** | 0.361 | 0.002 ** | 0.375 | <0.001 *** |
R. leg-S.L.M. [kg] | −0.256 | 0.035 * | −0.31 | 0.001 ** | 0.298 | 0.014 * | 0.335 | 0.001 *** |
B.M.R. [kcal] | −0.241 | 0.048 * | −0.304 | 0.002 ** | 0.368 | 0.002 ** | 0.325 | 0.001 *** |
T.E.E. [kcal] | −0.24 | 0.048 * | −0.16 | 0.104 | 0.334 | 0.005 ** | 0.174 | 0.077 |
A.M.B. [years] | −0.08 | 0.517 | 0.008 | 0.939 | −0.047 | 0.703 | 0.111 | 0.26 |
Impedance [Ω] | 0.239 | 0.049 * | 0.146 | 0.139 | −0.148 | 0.229 | −0.213 | 0.03 * |
Target to control [kg] | −0.261 | 0.032 * | −0.209 | 0.034 * | 0.348 | 0.004 ** | 0.375 | <0.001 *** |
Therapy duration [weeks] | −0.261 | 0.032 * | −0.235 | 0.016 * | 0.35 | 0.003 ** | 0.394 | <0.001 *** |
Level of Fasting Blood Glucose | Level of HbA1c | |||||||
---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | |||||
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Weight [kg] | 0.087 | 0.481 | 0.219 | 0.026 * | 0.029 | 0.814 | 0.415 | <0.001 *** |
L.B.M. [kg] | −0.023 | 0.85 | 0.167 | 0.091 | −0.054 | 0.666 | 0.25 | 0.01 * |
M.B.F. [kg] | 0.146 | 0.236 | 0.244 | 0.013 * | 0.097 | 0.436 | 0.451 | <0.001 *** |
S.L.M. [kg] | −0.02 | 0.87 | 0.149 | 0.132 | −0.044 | 0.723 | 0.229 | 0.019 * |
Mineral [kg] | 0.078 | 0.528 | 0.232 | 0.018 * | 0.022 | 0.859 | 0.379 | <0.001 *** |
Protein [kg] | −0.084 | 0.498 | 0.11 | 0.265 | −0.084 | 0.5 | 0.144 | 0.144 |
T.B.W. [kg] | 0.04 | 0.743 | 0.164 | 0.096 | −0.015 | 0.901 | 0.25 | 0.011 * |
P.B.F. [%] | 0.159 | 0.196 | 0.218 | 0.026 * | 0.114 | 0.357 | 0.452 | <0.001 *** |
B.M.I. [kg/m2] | 0.181 | 0.14 | 0.255 | 0.009 ** | 0.125 | 0.314 | 0.437 | <0.001 *** |
Fatness [%] | 0.081 | 0.678 | --- | --- | 0.123 | 0.525 | --- | --- |
Level [steps] | 0.204 | 0.096 | 0.229 | 0.02 * | 0.156 | 0.209 | 0.461 | <0.001 *** |
V.F.A. [steps] | 0.167 | 0.174 | 0.228 | 0.02 * | 0.122 | 0.325 | 0.467 | <0.001 *** |
A.C. [cm] | 0.145 | 0.238 | 0.244 | 0.012 * | 0.096 | 0.439 | 0.45 | <0.001 *** |
W.H.R. | 0.169 | 0.168 | 0.226 | 0.021 * | 0.119 | 0.338 | 0.467 | <0.001 *** |
Std. Mc. [kg] | −0.244 | 0.045 * | −0.078 | 0.437 | −0.205 | 0.096 | −0.092 | 0.358 |
L. arm-M.B.F. [kg] | 0.123 | 0.318 | 0.244 | 0.013 * | 0.034 | 0.784 | 0.454 | <0.001 *** |
L. arm-S.L.M. [kg] | 0.036 | 0.773 | 0.142 | 0.152 | −0.006 | 0.959 | 0.207 | 0.035 * |
R. arm-M.B.F. [kg] | 0.086 | 0.486 | 0.256 | 0.009 ** | 0.001 | 0.992 | 0.454 | <0.001 *** |
R. arm-S.L.M. [kg] | 0.064 | 0.605 | 0.124 | 0.21 | 0.071 | 0.567 | 0.19 | 0.053 |
Trunk-M.B.F. [kg] | 0.147 | 0.231 | 0.238 | 0.015 * | 0.101 | 0.414 | 0.439 | <0.001 *** |
Trunk-S.L.M. [kg] | −0.086 | 0.488 | 0.129 | 0.19 | −0.088 | 0.477 | 0.213 | 0.03 * |
L. leg-M.B.F. [kg] | 0.14 | 0.254 | 0.244 | 0.012 * | 0.126 | 0.31 | 0.444 | <0.001 *** |
L. leg-S.L.M. [kg] | 0.027 | 0.829 | 0.142 | 0.15 | −0.004 | 0.977 | 0.225 | 0.022 * |
R. leg-M.B.F. [kg] | 0.148 | 0.229 | 0.226 | 0.021 * | 0.091 | 0.463 | 0.432 | <0.001 *** |
R. leg-S.L.M. [kg] | 0.026 | 0.832 | 0.176 | 0.073 | 0.019 | 0.881 | 0.252 | 0.01 ** |
B.M.R. [kcal] | −0.099 | 0.42 | 0.063 | 0.528 | −0.097 | 0.433 | 0.097 | 0.329 |
T.E.E. [kcal] | −0.068 | 0.584 | 0.057 | 0.566 | −0.02 | 0.872 | 0.075 | 0.446 |
A.M.B. [years] | 0.256 | 0.035 * | 0.231 | 0.018 * | 0.145 | 0.241 | 0.465 | <0.001 *** |
Impedance [Ω] | −0.177 | 0.148 | −0.217 | 0.027 * | −0.157 | 0.205 | −0.251 | 0.01 * |
Target to control [kg] | 0.179 | 0.143 | 0.247 | 0.011 * | 0.125 | 0.314 | 0.474 | <0.001 *** |
Therapy duration [weeks] | 0.178 | 0.145 | 0.272 | 0.005 ** | 0.126 | 0.308 | 0.454 | <0.001 *** |
Parameters | Level of Insulin | Level of CRP | ||||||
---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | |||||
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Weight [kg] | 0.393 | 0.001 *** | 0.456 | <0.001 *** | 0.283 | 0.019 * | 0.507 | <0.001 *** |
L.B.M. [kg] | 0.267 | 0.029 * | 0.369 | <0.001 *** | 0.205 | 0.094 | 0.377 | <0.001 *** |
M.B.F. [kg] | 0.419 | <0.001 *** | 0.518 | <0.001 *** | 0.303 | 0.012 * | 0.518 | <0.001 *** |
S.L.M. [kg] | 0.26 | 0.034 * | 0.349 | <0.001 *** | 0.209 | 0.088 | 0.357 | <0.001 *** |
Mineral [kg] | 0.372 | 0.002 ** | 0.482 | <0.001 *** | 0.268 | 0.027 * | 0.48 | <0.001 *** |
Protein [kg] | 0.172 | 0.164 | 0.281 | 0.004 ** | 0.151 | 0.22 | 0.29 | 0.003 ** |
T.B.W. [kg] | 0.297 | 0.015 * | 0.369 | <0.001 *** | 0.227 | 0.063 | 0.377 | <0.001 *** |
P.B.F. [%] | 0.472 | <0.001 *** | 0.51 | <0.001 *** | 0.274 | 0.024 * | 0.498 | <0.001 *** |
B.M.I. [kg/m2] | 0.413 | 0.001 *** | 0.533 | <0.001 *** | 0.301 | 0.013 * | 0.487 | <0.001 *** |
Fatness [%] | 0.311 | 0.107 | --- | --- | 0.308 | 0.104 | --- | --- |
Level [steps] | 0.45 | <0.001 *** | 0.526 | <0.001 *** | 0.291 | 0.016 * | 0.505 | <0.001 *** |
V.F.A. [cm2] | 0.469 | <0.001 *** | 0.519 | <0.001 *** | 0.271 | 0.025 * | 0.501 | <0.001 *** |
A.C. [cm] | 0.42 | <0.001 *** | 0.529 | <0.001 *** | 0.303 | 0.012 * | 0.522 | <0.001 *** |
W.H.R. | 0.459 | <0.001 *** | 0.522 | <0.001 *** | 0.258 | 0.034 * | 0.489 | <0.001 *** |
Std. Mc. [kg] | −0.101 | 0.414 | −0.046 | 0.644 | −0.033 | 0.79 | 0.01 | 0.919 |
L. arm-M.B.F. [kg] | 0.427 | <0.001 *** | 0.528 | <0.001 *** | 0.309 | 0.01 * | 0.51 | <0.001 *** |
L. arm-S.L.M. [kg] | 0.245 | 0.046 * | 0.357 | <0.001 *** | 0.175 | 0.153 | 0.373 | <0.001 *** |
R. arm-M.B.F. [kg] | 0.429 | <0.001 *** | 0.523 | <0.001 *** | 0.318 | 0.008 ** | 0.501 | <0.001 *** |
R. arm-S.L.M. [kg] | 0.243 | 0.048 * | 0.363 | <0.001 *** | 0.177 | 0.148 | 0.371 | <0.001 *** |
Trunk-M.B.F. [kg] | 0.405 | 0.001 *** | 0.527 | <0.001 *** | 0.309 | 0.01 * | 0.524 | <0.001 *** |
Trunk-S.L.M. [kg] | 0.233 | 0.058 | 0.353 | <0.001 *** | 0.188 | 0.125 | 0.355 | <0.001 *** |
L. leg-M.B.F. [kg] | 0.409 | 0.001 *** | 0.528 | <0.001 *** | 0.281 | 0.02 * | 0.522 | <0.001 *** |
L. leg-S.L.M. [kg] | 0.234 | 0.056 | 0.365 | <0.001 *** | 0.24 | 0.049 * | 0.377 | <0.001 *** |
R. leg-M.B.F. [kg] | 0.42 | <0.001 *** | 0.529 | <0.001 *** | 0.306 | 0.011 * | 0.534 | <0.001 *** |
R. leg-S.L.M. [kg] | 0.269 | 0.027 * | 0.357 | <0.001 *** | 0.219 | 0.073 | 0.349 | <0.001 *** |
B.M.R. [kcal] | 0.247 | 0.044 * | 0.31 | 0.001 ** | 0.18 | 0.142 | 0.313 | 0.001 ** |
T.E.E. [kcal] | 0.204 | 0.098 | 0.187 | 0.058 | 0.155 | 0.206 | 0.105 | 0.287 |
A.M.B. [lata] | 0.111 | 0.372 | 0.263 | 0.007 ** | 0.126 | 0.306 | 0.232 | 0.018 * |
Impedance [Ω] | −0.178 | 0.149 | −0.318 | 0.001 *** | −0.186 | 0.129 | −0.242 | 0.013 * |
Target to control [kg] | 0.418 | <0.001 *** | 0.552 | <0.001 *** | 0.296 | 0.014 * | 0.485 | <0.001 *** |
Therapy duration [weeks] | 0.421 | <0.001 *** | 0.542 | <0.001 *** | 0.295 | 0.014 * | 0.533 | <0.001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimny, M.; Starczewska, M.; Szkup, M.; Cybulska, A.; Grochans, E. Body Composition and Biological Functioning in Polish Perimenopausal Women with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11422. https://doi.org/10.3390/ijerph182111422
Zimny M, Starczewska M, Szkup M, Cybulska A, Grochans E. Body Composition and Biological Functioning in Polish Perimenopausal Women with Type 2 Diabetes. International Journal of Environmental Research and Public Health. 2021; 18(21):11422. https://doi.org/10.3390/ijerph182111422
Chicago/Turabian StyleZimny, Małgorzata, Małgorzata Starczewska, Małgorzata Szkup, Anna Cybulska, and Elżbieta Grochans. 2021. "Body Composition and Biological Functioning in Polish Perimenopausal Women with Type 2 Diabetes" International Journal of Environmental Research and Public Health 18, no. 21: 11422. https://doi.org/10.3390/ijerph182111422