Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women
Abstract
:1. Background
2. Methods
2.1. Design, Participants, Recruitment and Experimental Process
2.1.1. Study Design
2.1.2. Exclusion Criteria
2.1.3. Experimental Process
2.1.4. Experimental Approval
2.2. Questionnaires—Background Characteristics
2.3. Measurements of Anthropometric Characteristics
2.4. Measurements of Bone Quality
2.5. Aerobic Gymnastics Protocol
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Changes in Anthropometrics
3.3. Changes in Bone Quality
4. Discussion
4.1. Main Findings
4.2. Implications for the Treatment of Opioid Dependence
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Ding, Z.; Chen, Y.; Wang, X.; Zhou, X.; Xu, Y.; Ma, Z.; Sun, Y.; Jiang, M. A comparison of bone quality and its determinants in young opioid-dependent women with healthy control group. Drug Alcohol Depend. 2017, 175, 232. [Google Scholar] [CrossRef]
- Gotthardt, F.; Huber, C.; Thierfelder, C.; Grize, L.; E Kraenzlin, M.; Scheidegger, C.; Meier, C. Bone mineral density and its determinants in men with opioid dependence. J. Bone Miner. Metab. 2016, 35, 1–9. [Google Scholar] [CrossRef]
- Harvey, N.; Dennison, E.; Cooper, C. Osteoporosis: A Lifecourse Approach. J. Bone Miner. Res. 2014, 29, 1917–1925. [Google Scholar] [CrossRef] [Green Version]
- Nordström, P.; Sievänen, H.; Gustafson, Y.; Pedersen, N.L.; Nordström, A. High physical fitness in young adulthood reduces the risk of fractures later in life in men: A nationwide cohort study. J. Bone Miner. Res. 2013, 28, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Taylor, T.E.; Barthwell, A.G.; Wichelecki, J.; Leopold, V. Substance Use and Women’s Health. J. Addict. Dis. 2010, 29, 139–163. [Google Scholar] [CrossRef] [PubMed]
- Iolascon, G.; Moretti, A.; Toro, G.; Gimigliano, F.; Liguori, S.; Paoletta, M. Pharmacological Therapy of Osteoporosis: What’s New? Clin. Interv. Aging 2020, 15, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.A.; Brooke-Wavell, K. Exercise for optimising peak bone mass in women. Proc. Nutr. Soc. 2008, 67, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellon, S.J.; Tanner, K.E. Bone and its adaptation to mechanical loading: A review. Int. Mater. Rev. 2012, 57, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Tveit, M.; Rosengren, B.E.; Nilsson, J.Å.; Karlsson, M.K. Exercise in youth: High bone mass, large bone size, and low fracture risk in old age. Scand J. Med. Sci Spor. 2015, 25, 453. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.I.; Hinton, P.S. Physical activity and bone health. Mo. Med. 2014, 111, 59–64. [Google Scholar] [PubMed]
- Senderovich, H.; Kosmopoulos, A. An Insight into the Effect of Exercises on the Prevention of Osteoporosis and Associated Fractures in High-risk Individuals. Rambam Maimonides Med. J. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, H.J.; Huang, T.H.; Li, T.L.; Chong, P.N.; Ang, B.S. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis Int. 2016, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ayudthaya, W.C.N.; Kritpet, T. Effects of Low Impact Aerobic Dance and Fitball Training on Bone Resorption and Health-Related Physical Fitness in Thai Working Women. J. Med. Assoc. Thail. 2015, 98 (Suppl. 8), S52–S57. [Google Scholar]
- Ding, Z.; Chen, Y.; Xu, Y.; Zhou, X.; Xu, Y.; Ma, Z.; Sun, Y. Impact of Age, Gender, and Body Composition on Bone Quality in an Adult Population From the Middle Areas of China. J. Clin. Densitom. 2016, 21, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Bachrach, L.K.; Van Loan, M.; Hudes, M.; Flegal, K.M.; Crawford, P.B. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 2005, 37, 474–481. [Google Scholar] [CrossRef]
- Bakker, I.; Twisk, J.W.R.; van Mechelen, W.; Kemper, H.C.G. Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J. Clin. Endocrinol. Metab. 2003, 88, 2607–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ana, T.C.; Dimitris, V.; Esther, U.G.; Asuncion, F.M.; Ivan, C.R.; Vicente, M.V.; Luis, G.M. Agreement Between Dual-Energy X-Ray Absorptiometry and Quantitative Ultrasound to Evaluate Bone Health in Adolescents: The PRO-BONE Study. Pediatric Exerc. 2018, 30, 1–8. [Google Scholar]
- Kurosaka, S.; Ueda, T.; Deguchi, T.; Okihara, K.; Yuzaki, Y. Effects of the Building Osteo Neatly Exercise (BONE) program on quantitative ultrasound parameters and plantar pressure distribution in college-aged women. J. Ence Med. Sport 2019, 22, S92. [Google Scholar] [CrossRef]
- Njeh, C.F.; Boivin, C.M.; Langton, C.M. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporosis Int. 1997, 7, 7–22. [Google Scholar] [CrossRef]
- Lejla, K.; Stephanie, Z.; Matthias, N.; Henry, V.; Nele, F.; Anke, H. Associations Between Plasma Chemerin Concentrations and Bone Quality in Adults From the General Population. Endocrinology 2018, 6, 2378–2385. [Google Scholar]
- Liu, J.-M.; Ma, L.-Y.; Bi, Y.-F.; Xu, Y.; Huang, Y.; Xu, M.; Zhao, H.-Y.; Sun, L.-H.; Tao, B.; Li, X.-Y.; et al. A Population-Based Study Examining Calcaneus Quantitative Ultrasound and Its Optimal Cut-Points to Discriminate Osteoporotic Fractures among 9352 Chinese Women and Men. J. Clin. Endocrinol. Metab. 2012, 97, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.J.; Huang, T.H.; Li, T.L.; Chong, P.N.; Ang, B.S. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis Int. 2017, 28, 539. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; Karma, M.O.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporosis Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Milos, G.; Gallo, L.M.; Sosic, B.; Uebelhart, D.; Goerres, G.; Haeuselmann, H.J.; Eich, D. Bone Mineral Density in Young Women on Methadone Substitution. Calcif. Tissue Int. 2011, 89, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, A.; Sievänen, H.; Kannus, P.; Oja, P.; Pasanen, M.; Vuori, I. High-Impact Exercise and Bones of Growing Girls: A 9-Month Controlled Trial. Osteoporosis Int. 2000, 11, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.L.; Genant, H.K.; Sadowsky, S.; Byl, N.N.; Glüer, C.C. A two-year program of aerobics and weight training enhances bone mineral density of young women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1995, 10, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Bone “mass” and the “mechanostat”. A Proposal Anat Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. Part. A Discov. Mol. Cell. Evol. Biol. 2003, 275, 1081. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.J.; Lanyon, L.E. Mechanical strain and bone cell function: A review. Osteoporosis Int. 2002, 13, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Rodan, G.A. Bone mass homeostasis and bisphosphonate action. Bone 1997, 20, 1–4. [Google Scholar] [CrossRef]
- Codrea, C.I.; Croitoru, A.-M.; Baciu, C.C.; Melinescu, A.; Ficai, D.; Fruth, V.; Ficai, A. Advances in Osteoporotic Bone Tissue Engineering. J. Clin. Med. 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Ljunghall, S.; Joborn, H.; Roxin, L.-E.; Rastad, J.; Wide, L.; Åkerström, G. Prolonged low-intensity exercise raises the serum parathyroid hormone levels. Clin. Endocrinol. 2010, 25, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, P.B.; Protas, E.J.; Leblanc, A.D.; Schneider, V.S.; Evans, H.J. Effects of weight lifting on bone mineral density in premenopausal women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1990, 5, 153. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Haneda, M.; Lee, C.; Katsukawa, F.; Onishi, S.; Yamazaki, H. Effects of 3 months of non-weight-bearing cycle ergometric exercise on bone metabolism. J. Bone Miner. Metab. 1996, 14, 21–25. [Google Scholar] [CrossRef]
- Kemmler, W.; Von, S.S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician Sportsmed. 2011, 39, 142. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Zhang, Y.Q.; Hannan, M.T.; Anderson, J.J. Effects Of Weight And Body-Mass Index On Bone-Mineral Density In Men And Women—The Framingham-Study. J. Bone Miner. Res. 1993, 8, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Schiessl, H.; Frost, H.M.; Jee, W.S.S. Estrogen and bone-muscle strength and mass relationships. Bone 1998, 22, 1–6. [Google Scholar] [CrossRef]
- Smith, M.A.; Schmidt, K.T.; Iordanou, J.C.; Mustroph, M.L. Aerobic exercise decreases the positive-reinforcing effects of cocaine. Drug Alcohol Depend. 2008, 98, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev. 2013, 37, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Questions | Data Type |
---|---|
Medical History: | |
1. Individuals with history of fractures in previous 24 months | 0 = No 1 = Yes |
2. Pregnancy | 0 = No 1 = Yes |
3. Type 1 diabetes | 0 = No 1 = Yes |
4.Significantly impaired renal or hepatic function, or chronic kidney disease | 0 = No 1 = Yes |
History of Drug Use (Patients only): | |
1.Type of drug use: (1) heroin, opium, morphine, and other opiates (2) cocaine (3) marijuana (4) amphetamines (5) hallucinogens (6) other drugs | Multi-selection |
2. Age at onset of drug intake (year) | Quantitative |
3. Duration of drug intake (years) | Quantitative |
4. Frequency of drug use: (1) 3–7/week or more (3) 1–2/week (4) 1–2/month (5) seldom | Single-selection |
5. Method of drug use: (1) injection (2) non-injection | Single-selection |
6. Duration of methadone intake (weeks) | Quantitative |
7. Daily methadone dose (mg) | Quantitative |
8. Duration of drug intake (years) | Quantitative |
Smoking History: | |
(1) often (2) occasionally (3) seldom | Single-selection |
Nutritional Calcium Intake During the Training Period: | |
1.Diet: (1) well-balanced diet, regular intake of calcium-rich foods (2) occasional intake of calcium-rich foods (3) low nutritional calcium intake, rare intake of calcium-rich foods | Single-selection |
Variable | Experiment Group (n = 55) | Observation Group (n = 47) | p |
---|---|---|---|
Age(years) | 30.3 ± 6.1 | 29.0 ± 5.3 | 0.332 |
Anthropometrics | |||
Body height (cm) | 162 ± 4.9 | 162 ± 5.1 | 0.726 |
Body weight (kg) | 62.7 ± 6.8 | 62.6 ± 6.4 | 0.993 |
Body mass index (kg/m2) | 24.1 ± 2.4 | 24.0 ± 2.4 | 0.520 |
Fat Free mass (kg) | 44.0 ± 2.9 | 42.5 ± 3.1 | 0.126 |
Fat mass (kg) | 19.6 ± 3.7 | 20.0 ± 4.4 | 0.840 |
Drug history | |||
Heroin, opium, morphine, and other opiates (% of n) | 87% | 86% | 0.482 |
Cocaine and other drugs (% of n) | 73% | 66% | 0.115 |
Multiple substances (% of n) | 53% | 61% | 0.183 |
High frequency of drug use a | 88% | 89% | 0.365 |
Age at onset of drug intake (year) | 21.7 ± 5.4 | 21.5 ± 4.4 | 0.578 |
Injecting drug users (% of n) | 17% | 19% | 0.135 |
Duration of drug intake (years) | 8.6 ± 3.7 | 8.9±3.1 | 0.563 |
Smoking (% of n) | 96% | 94% | 0.854 |
Bone quality | |||
SI b | 82 ± 6 | 79 ± 12 | 0.096 |
T-Score | −1.3 ± 0.3 | −1.4 ± 0.8 | 0.121 |
Nutrient intake status during the training period | |||
Well-balanced diet, regular intake of calcium-rich foods. (% of n) | 93.6% | 95.2% | 0.256 |
Physical activity per day | |||
Aerobic gymnastics time (min) | 80 | —— | —— |
Characteristic | Experiment Group (n = 55) | Observed Control Group (n = 47) | p-value | ||||
---|---|---|---|---|---|---|---|
Before | After | p1 | Before | After | p1 | p2 | |
Anthropometrics | |||||||
Body weight (kg) | 62.7 ± 6.8 | 60.9 ± 6.5 *,† | 0.025 | 62.6 ± 6.4 | 62.5 ± 6.1 | 0.521 | 0.000 |
Fat-free mass (kg) | 42.0 ± 2.9 | 42.2 ± 3.2 | 0.352 | 42.5 ± 3.1 | 42.9 ± 3.2 | 0.235 | 0.223 |
Fat mass (kg) | 19.6 ± 3.7 | 18.8 ± 4.0 *,† | 0.011 | 20.0 ± 4.4 | 19.8 ± 4.3 | 0.175 | 0.012 |
BMI (kg/m2) | 24.1 ± 2.4 | 23.4 ± 2.3 * | 0.016 | 24.0 ± 2.4 | 23.9 ± 2.3 | 0.156 | 0.071 |
FFMI (kg/m2) | 16.9 ± 1.5 | 16.1 ± 0.7 | 0.265 | 16.3 ± 0.7 | 16.5 ± 0.7 | 0.235 | 0.131 |
FMI (kg/m2) | 7.5 ± 1.4 | 7.2 ± 1.5 *,† | 0.002 | 7.7 ± 1.8 | 7.4 ± 1.7 | 0.095 | 0.015 |
%FM | 31.6 ± 6.3 | 29.7 ± 3.7 * | 0.003 | 31.7 ± 4.4 | 30.8 ± 4.5 | 0.087 | 0.089 |
Bone quality | |||||||
SI | 82 ± 6 | 108 ± 14 *,† | 0.000 | 79 ± 10 | 77 ± 13 | 0.156 | 0.000 |
T-Score | −1.3 ± 0.3 | 0.2 ± 0.7 *,† | 0.000 | −1.4 ± 0.5 | −1.5 ± 0.7 | 0.113 | 0.000 |
Z-Score | −1.3 ± 0.4 | 0.4 ± 0.9 *,† | 0.000 | −1.5 ± 0.5 | −1.5 ± 0.8 | 0.189 | 0.000 |
Dependent Variable | Independent Variable | Standard β | p |
---|---|---|---|
Low Bone Quality Intervention Experimental Group | |||
SI | |||
Model | Body weight | −4.390 | 0.077 |
Fat-free mass | 5.275 | 0.010 | |
Fat mass | 0.765 | 0.562 | |
%Fat mass | 0.103 | 0.936 | |
SI | −0.126 | 0.016 | |
Body weight | −0.992 | 0.020 | |
Fat-free mass | 2.446 | 0.004 | |
Fat mass | 0.800 | 0.314 | |
R = 0.744 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Ma, Z.; Yang, X.; Sun, Y. Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women. Int. J. Environ. Res. Public Health 2021, 18, 11336. https://doi.org/10.3390/ijerph182111336
Ding Z, Ma Z, Yang X, Sun Y. Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women. International Journal of Environmental Research and Public Health. 2021; 18(21):11336. https://doi.org/10.3390/ijerph182111336
Chicago/Turabian StyleDing, Zenghui, Zuchang Ma, Xianjun Yang, and Yining Sun. 2021. "Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women" International Journal of Environmental Research and Public Health 18, no. 21: 11336. https://doi.org/10.3390/ijerph182111336
APA StyleDing, Z., Ma, Z., Yang, X., & Sun, Y. (2021). Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women. International Journal of Environmental Research and Public Health, 18(21), 11336. https://doi.org/10.3390/ijerph182111336