Mental Health Consequences of the COVID-19 Pandemic Long-Term Exposure in Italian Dermatologists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.3. Statistics
3. Results
3.1. Descriptive Analysis of Sociodemographic, Workload and Clinical Characteristics
3.2. The Relation between the Participants’ Characteristics, the Clinical and the Psychological Variables
3.3. The Relation between Workload Characteristics, the Clinical and the Psychological Variables
3.4. Prediction Models for Clinical Variables: Depression, Anxiety, and COVID-19 PTSD
4. Discussions
4.1. The Impact of the Long-Term Exposure of COVID-19 Distress on the Psychopathological Symptomatology
4.2. The Influence of the Participant’s Characteristics on the Psychopathological Symptomatology
4.3. The Influence of the Workload Characteristics on the Clinical and Psychological Variables
4.4. The Influence of the Personal Resources on the Psychopathological Symptomatology
4.5. Limits and Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casagrande, M.; Favieri, F.; Tambelli, R.; Forte, G. The enemy who sealed the world: Effects quarantine due to the COVID-19 on sleep quality, anxiety, and psychological distress in the Italian population. Sleep Med. 2020, 75, 12–20. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on college stu-dents in China. Psychiatry Res. 2020, 20, 112934. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 epidemic in Chi-na: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Z.; Wu, L.; Zhu, Z.; Zhang, F.; Shang, Z.; Jia, Y.; Gu, J.; Zhou, Y.; Wang, Y.; et al. Prevalence and Risk Factors of Acute Post-traumatic Stress Symptoms during the COVID-19 Outbreak in Wuhan, China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Hawryluk, L.; Gold, W.L.; Robinson, S.; Pogorski, S.; Galea, S.; Styra, R. SARS control and psychological effects of quarantine, To-ronto, Canada. Emerg. Infect. Dis. 2004, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Di Crosta, A.; Palumbo, R.; Marchetti, D.; Ceccato, I.; La Malva, P.; Maiella, R.; Cipi, M.; Roma, P.; Mammarella, N.; Verrocchio, M.C.; et al. Individual Differences, Economic Stability, and Fear of Contagion as Risk Factors for PTSD Symptoms in the COVID-19 Emergency. Front. Psychol. 2020, 11, 567367. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Conti, C.; Fontanesi, L.; Lanzara, R.; Rosa, I.; Porcelli, P. Fragile heroes. The psychological impact of the COVID-19 pandem-ic on health-care workers in Italy. PLoS ONE 2020, 15, e0242538. [Google Scholar] [CrossRef]
- Hall, H. The effect of the COVID-19 pandemic on healthcare workers’ mental health. J. Am. Acad. Physician Assist. 2020, 33, 45–48. [Google Scholar] [CrossRef]
- De Sio, S.; Buomprisco, G.; La Torre, G.; Lapteva, E.; Perri, R.; Greco, E.; Mucci, N.; Cedrone, F. The impact of COVID-19 on doctors’ well-being: Results of a web survey during the lockdown in Italy. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7869–7879. [Google Scholar] [PubMed]
- Lai, J.; Ma, S.; Wang, Y.; Cai, Z.; Hu, J.; Wei, N.; Wu, J.; Du, H.; Chen, T.; Li, R.; et al. Factors associated with mental healthoutcomes among health care workers exposed to corona-virusdisease 2019. JAMA Netw. Open 2020, 3, e203976. [Google Scholar] [CrossRef]
- Bhargava, S.; Sarkar, R.; Kroumpouzos, G. Mental distress in dermatologists during COVID-19 pandemic: Assessment and risk factors in a global, cross-sectional study. Dermatol. Ther. 2020, 33, e14161. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P.; Piaserico, S.; Conti, A.; Naldi, L. Dermatologists and SARS-CoV2: The impact of the pandemic on daily practice. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1196–1201. [Google Scholar] [CrossRef]
- Talamonti, M.; Galluzzo, M.; Chiricozzi, A.; Quaglino, P.; Fabbrocini, G.; Gisondi, P.; Marzano, A.V.; Potenza, C.; Conti, A.; Parodi, A.; et al. Management of biologi-cal therapies for chronic plaque psoriasis during COVID-19 emergency in Italy. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e770–e772. [Google Scholar] [CrossRef]
- Amerio, P.; Prignano, F.; Giuliani, F.; Gualdi, G. COVID -19 and psoriasis: Should we fear for patients treated with biologics? Dermatol. Ther. 2020, 33, e13434. [Google Scholar] [CrossRef] [Green Version]
- Chiricozzi, A.; Talamonti, M.; De Simone, C.; Galluzzo, M.; Gori, N.; Fabbrocini, G.; Marzano, A.V.; Girolomoni, G.; Offidani, A.; Rossi, M.T.; et al. Management of patients with atopic dermatitis undergoing systemic therapy during COVID-19 pandemic in Italy: Data from the DA-COVID-19 registry. Allergy 2021, 76, 1813–1824. [Google Scholar] [CrossRef]
- Gualdi, G.; Porreca, A.; Amoruso, G.F.; Atzori, L.; Calzavara-Pinton, P.; De Tursi, M.; Di Buduo, A.; Di Marino, P.; Fabroncini, G.; Fantini, F.; et al. The Effect of the COVID-19 Lockdown on Melanoma Diagnosis in Italy. Clin. Dermatol. 2021. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Levis, B.; Benedetti, A.; Thombs, B.D. Depression Screening Data (DEPRESSD) Collaboration. Accuracy of Patient Health Ques-tionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. Br. Med. J. 2019, 365, l1476. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and Standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the General Population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef]
- Kroenke, K.; Wu, J.; Yu, Z.; Bair, M.J.; Kean, J.; Stump, T.; Monahan, P.O. Patient Health Questionnaire Anxiety and Depression Scale: Initial Validation in Three Clinical Trials. Psychosom. Med. 2016, 78, 716–727. [Google Scholar] [CrossRef] [Green Version]
- Forte, G.; Favieri, F.; Tambelli, R.; Casagrande, M. COVID-19 Pandemic in the Italian Population: Validation of a Post-Traumatic Stress Disorder Questionnaire and Prevalence of PTSD Symptomatology. Int. J. Environ. Res. Public Health 2020, 17, 4151. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, A.R.; Houle, S.A.; Herbert, C.; El-Hage, W.; Brunet, A. Psychometric Validation of the English and French Versions of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5). PLoS ONE 2016, 11, e0161645. [Google Scholar] [CrossRef]
- Neill, J.T.; Dias, K.L. Adventure education and resilience: The double-edged sword. J. Adventure Educ. Outdoor Learn. 2001, 1, 35–42. [Google Scholar] [CrossRef]
- Callegari, C.; Bertù, L.; Lucano, M.; Ielmini, M.; Braggio, E.; Vender, S. Reliability and validity of the Italian version of the 14-item Resilience Scale. Psychol. Res. Behav. Manag. 2016, 9, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Stuijfzand, S.; Deforges, C.; Sandoz, V.; Sajin, C.-T.; Jaques, C.; Elmers, J.; Horsch, A. Psychological impact of an epidemic/pandemic on the mental health of healthcare professionals: A rapid review. BMC Public Health 2020, 20, 1230. [Google Scholar] [CrossRef] [PubMed]
- Olff, M. Sex and gender differences in post-traumatic stress disorder: An update. Eur. J. Psychotraumatol. 2017, 8, 1351204. [Google Scholar] [CrossRef]
- D’Ettorre, G.; Ceccarelli, G.; Santinelli, L.; Vassalini, P.; Innocenti, G.P.; Alessandri, F.; Koukopoulos, A.E.; Russo, A.; d’Ettorre, G.; Tarsi-tani, L. Post-Traumatic Stress Symptoms in Healthcare Workers Dealing with the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 601. [Google Scholar] [CrossRef]
- Hoffart, A.; Johnson, S.U.; Ebrahimi, O.V. Loneliness and Social Distancing During the COVID-19 Pandemic: Risk Factors and Associations with Psychopathology. Front. Psychiatry 2020, 11, 589127. [Google Scholar] [CrossRef]
- Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, L.P.G.; Arriaga, R.J.M.; Hernández-Gonzalez, M.A.; De la Roca-Chiapas, J.M. Psychological Distress and Signs of Post-Traumatic Stress in Response to the COVID-19 Health Emergency in a Mexican Sample. Psychol. Res. Behav. Manag. 2020, 13, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Ismael, F.; Bizario, J.C.; Battagin, T.; Zaramella, B.; Leal, F.E.; Torales, J.; Ventriglio, A.; Marziali, M.E.; Martins, S.S.; Castaldelli-Maia, J.M. Post-infection depressive, anxiety and post-traumatic stress symptoms: A prospective cohort study in patients with mild COVID-19. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 111, 110341. [Google Scholar] [CrossRef]
- Ying, L.; Wu, X.; Lin, C.; Jiang, L. Traumatic severity, and trait resilience as predictors of posttraumatic stress disorder and de-pressive symptoms among adolescent survivors of the Wenchuan earthquake. PLoS ONE 2014, 9, e89401. [Google Scholar] [CrossRef]
- Hoge, E.A.; Austin, E.D.; Pollack, M.H. Resilience: Research evidence and conceptual considerations for posttraumatic stress dis-order. Depress. Anxiety 2007, 24, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Nolen-Hoeksema, S.; Watkins, E.R. A Heuristic for Developing Transdiagnostic Models of Psychopathology: Explaining Mul-tifinality and Divergent Trajectories. Perspect. Psychol. Sci. 2011, 6, 589–609. [Google Scholar] [CrossRef]
Factors | Factor Loading | |
---|---|---|
First Factor/Beliefs on COVID-19 Contagion | ||
1. | I often thought I was infected with the virus. | 0.724 |
2. | I think I could be infected with the virus in the future. | 0.804 |
3. | I think that a dear or close person to me could potentially be infected with the virus. | 0.709 |
4. | I think that a dear or close person to me could potentially be infected with the virus in the future. | 0.813 |
Second Factor/Consequences of COVID-19 contagion | ||
5. | I think that a person infected with the virus could recover. | 0.741 |
6. | I think that a person infected with the virus could die. | 0.730 |
7. | I think it is probable that I would recover after being infected with the virus | 0.702 |
8. | I think that being infected with the virus could be lethal for me. | 0.687 |
Factors | Factor Loading | |
---|---|---|
First Factor/COVID-19 Emotional Working Risk | ||
1. | The fear of getting the infection and infecting your loved ones | 0.734 |
2. | Separation often prolonged by one’s family | 0.710 |
3. | Suffering from the loss of patients and colleagues | 0.742 |
Second Factor/COVID-19 Working Difficulties | ||
4. | Changes in work procedures and relationships with patients | 0.791 |
5. | Physical fatigue related to working hours and the use of protective devices | 0.712 |
6. | Communication difficulties and the need to provide greater emotional support to patients with COVID-19 | 0.701 |
Total Sample; n (%) | 425 (100%) |
Gender; n (%) | |
Men | 183 (43.1%) |
Women | 243 (56.9%) |
Age | |
<40; n (%) | 192 (45.2%) |
≥40; n (%) | 133 (54.8%) |
Men’s Age; Mean (SD) | 46.02 (14.28) |
Women’s Age; Mean (SD) | 41.24 (10.58) |
Civil Status; n (%) | |
Unmarried/Widower | 148 (34.8%) |
Married/Cohabitant | 249 (58.5%) |
Separate/Divorced | 28 (6.6%) |
Preexisting Medical Conditions; n (%) | |
None | 327 (76.9%) |
Cardiac | 14 (3.2%) |
Respiratory | 16 (3.9%) |
Dermatologic | 4 (0.9%) |
Oncologic | 10 (2.3%) |
Psychiatric | 3 (0.7%) |
Other Diseases | 56 (13%) |
Italy Regions; n (%) | |
North | 221 (52%) |
Center | 97 (22.8) |
South | 106 (24.9) |
Home Conditions; n (%) | |
Alone | 117 (28.2%) |
Together with family, close friends | 308 (72.4%) |
Workplace; n (%) | |
University Hospital | 48 (11.3%) |
Clinical Hospital | 111 (26.1%) |
Public Health Territorial Office | 26 (6.15%) |
Private Health Office | 117 (26.5%) |
Combined | 123 (28.3%) |
COVID-19 Working Positions; n (%) | |
Directly involved in the COVID-19 patients care | 173 (40.7%) |
Directly involved in the COVID-19 patients care that lose their lives | 94 (21.3%) |
Directly involved in the COVID-19 patients care in IT | 11 (2.4%) |
Not Directly involved in the COVID-19 patients care | 252 (59.3%) |
Previously Infected with SARS-CoV2; n (%) | |
Yes | 47 (15%) |
No | 378 (88.9%) |
Family Member or Friend Infected with SARS-CoV2; n (%) | |
Yes | 299 (70.6%) |
No | 126 (29.6%) |
Groups | Depression Mean (SD) | Anxiety Mean (SD) | COVID-19-PTSD Mean (SD) | Intrusion Mean (SD) | Avoidance Mean (SD) | Negative Affect Mean (SD) | Anhedonia Mean (SD) | Dysphoric Arousal Mean (SD) | Anxious Arousal Mean (SD) | External Behavior Mean (SD) |
---|---|---|---|---|---|---|---|---|---|---|
Total Sample | 5.66 (4.71) | 4.41 (4.33) | 20.26 (14.20) | 4.34 (3.75) | 2.49 (1.89) | 2.61 (2.63) | 3.70 (2.85) | 1.72 (1.72) | 2.66 (1.99) | 2.74 (3.03) |
Gender | ||||||||||
Men | 4.79 (4.73) | 3.50 (4.04) | 17.29 (13.06) | 3.57 (3.35) | 2.19 (1.80) | 2.06 (2.30) | 3.17 (2.64) | 1.62 (1.52) | 2.13 (1.69) | 2.55 (2.87) |
Women | 6.32 (4.60) | 5.10 (4.43) | 22.50 (15.81) | 4.92 (3.93) | 2.71 (1.93) | 3.03 (2.79) | 4.10 (2.95) | 1.79 (1.85) | 3.06 (2.10) | 2.89 (3.14) |
t | −3.355 | −3.866 | −3.715 | −3.820 | −2.846 | −3.913 | −3.428 | −1.014 | −5.019 | −1.166 |
p | 0.001 ** | 0.000 *** | 0.000 *** | 0.000 *** | 0.005 ** | 0.000 *** | 0.001 ** | 0.311 | 0.000 *** | 0.244 |
d | 0.567 | 0.538 | 577 | 0.482 | 0.377 | 0.439 | 0.432 | 0.101 | 0.587 | 0.111 |
Age | ||||||||||
<40 | 6.30 (4.65) | 5.17 (4.35) | 22.44 (15.50) | 4.58 (3.85) | 2.57 (1.92) | 3.12 (2.73) | 4.34 (2.94) | 1.95 (1.81) | 2.82 (2.08) | 3.06 (3.10) |
≥40 | 5.13 (4.71) | 3.79 (4.22) | 18.46 (14.17) | 4.14 (3.66) | 2.42 (1.87) | 2.19 (2.47) | 3.18 (2.68) | 1.53 (1.61) | 2.53 (1.90) | 2.48 (2.95) |
t | 2.552 | 3.319 | 2.760 | 1.220 | 0.795 | 3.660 | 4.257 | 2.519 | 1.494 | 1.989 |
p | 0.011 * | 0.001 ** | 0.006 ** | 0.223 | 0.427 | 0.000 *** | 0.000 *** | 0.012 * | 0.136 | 0.047 * |
d | 0.351 | 0.522 | 0.367 | 0.117 | 0.078 | 0.357 | 0.513 | 0.245 | 0.145 | 0.264 |
Workplace Setting | ||||||||||
Hospital | 5.67 (4.57) | 4.33 (4.31) | 19.65 (14.54) | 4.13 (3.74) | 2.35 (1.85) | 2.52 (2.49) | 3.76 (2.78) | 1.74 (1.72) | 2.53 (1.88) | 2.61 (2.96) |
Ambulatorial | 5.64 (4.91) | 4.52 (4.38) | 21.09 (15.38) | 4.62 (3.76) | 2.68 (1.94) | 2.74 (2.82) | 3.62 (2.96) | 1.68 (1.72) | 2.83 (2.12) | 2.92 (3.12) |
t | 0.061 | −0.436 | −0.989 | −1.319 | −1.755 | −0.876 | 0.498 | 0.368 | −1.534 | −1.047 |
p | 0.951 | 0.663 | 0.323 | 0.188 | 0.080 | 0.382 | 0.618 | 0.713 | 0.126 | 0.296 |
d | 0.007 | 0.043 | 0.097 | 0.130 | 0.174 | 0.083 | 0.048 | 0.034 | 0.150 | 0.115 |
COVID-19 Working Positions | ||||||||||
Directly involved | 6.05 (4.73) | 4.43 (4.12) | 21.55 (15.06) | 4.67 (3.67) | 2.64 (1.91) | 2.78 (2.59) | 3.75 (2.82) | 1.95 (1.81) | 2.68 (2.05) | 3.08 (3.17) |
Not directly involved | 5.51 (4.70) | 4.42 (4.43) | 19.75 (14.82) | 4.20 (3.74) | 2.43 (1.88) | 2.55 (2.65) | 3.68 (2.88) | 1.62 (1.67) | 2.65 (1.96) | 2.60 (2.96) |
t | 1.088 | .039 | 1.148 | 1.189 | 1.025 | 0.820 | 0.224 | 10.839 | 0.133 | 1.482 |
p | 0.277 | 0.969 | 0.252 | 0.235 | 0.306 | 0.413 | 0.823 | 0.067 | 0.895 | 0.139 |
d | 0.114 | 0.002 | 0.120 | 0.126 | 0.110 | 0.087 | 0.024 | 0.191 | 0.015 | 0.158 |
Previous Infection with SARS-CoV2 | ||||||||||
Yes | 7.83 (5.63) | 5.17 (4.45) | 22.06 (15.20) | 4.77 (4.04) | 2.70 (2.10) | 2.72 (2.45) | 3.55 (2.88) | 2.17 (1.68) | 2.60 (2.21) | 3.55 (3.25) |
No | 5.39 (4.52) | 4.32 (4.31) | 20.03 (14.87) | 4.29 (3.71) | 2.46 (1.87) | 2.60 (2.66) | 3.72 (2.85) | 1.66 (1.71) | 2.67 (1.96) | 2.64 (2.99) |
t | 3.388 | 1.272 | 0.866 | 0.827 | 0.824 | 0.327 | −0.346 | 1.948 | −0.230 | 1.952 |
p | 0.001 ** | 0.204 | 0.390 | 409 | 0.411 | 0.745 | 0.707 | 0.056 * | 0.818 | 0.052 * |
d | 0.479 | 0.171 | 0.135 | 0.123 | 0.121 | 0.047 | 0.059 | 0.339 | 0.034 | 0.321 |
SARS-CoV2 infection of at least one Family Member or Friend | ||||||||||
Yes | 5.55 (4.62) | 4.41 (4.25) | 20.78 (15.05) | 4.55 (3.83) | 2.58 (1.96) | 2.74 (2.65) | 3.68 (2.78) | 1.69 (1.71) | 2.73 (1.97) | 2.81 (3.04) |
No | 5.92 (4.93) | 4.42 (4.55) | 19.02 (14.53) | 3.83 (3.50) | 2.26 (1.71) | 2.31 (2.58) | 3.76 (3.03) | 1.79 (1.73) | 2.49 (2.02) | 2.59 (3.02) |
t | −0.743 | −0.027 | 1.123 | 1.874 | 1.683 | 1.554 | −0.274 | −0.529 | 1.174 | 0.680 |
p | 0.458 | 0.978 | 0.263 | 0.062 | 0.094 | 0.121 | 0.784 | 0.597 | 0.241 | 0.497 |
d | 0.077 | 0.002 | 0.120 | 0.196 | 0.173 | 0.164 | 0.027 | 0.058 | 0.125 | 0.072 |
Preexisting medical conditions | ||||||||||
Yes | 6.02 (5.25) | 4.79 (5.11) | 20.15 (16.15) | 4.41 (4.19) | 2.54 (1.95) | 2.45 (2.78) | 3.48 (2.82) | 1.63 (1.65) | 2.80 (2.18) | 2.85 (3.33) |
No | 5.55 (4.54) | 4.30 (4.07) | 20.29 (14.53) | 4.32 (3.61) | 2.47 (1.88) | 2.66 (2.59) | 3.77 (2.86) | 1.74 (1.74) | 2.62 (1.93) | 2.71 (2.94) |
t | −0.867 | −0.973 | 0.078 | −0.208 | −0.319 | 0.697 | 0.882 | 0.573 | −0.776 | −0.393 |
p | 0.387 | 0.331 | 0.938 | 0.835 | 0.750 | 0.486 | 0.379 | 0.567 | 0.438 | 0.695 |
d | 0.096 | 0.106 | 0.009 | 0.022 | 0.035 | 0.078 | 0.102 | 0.065 | 0.087 | 0.058 |
Italy Regions | ||||||||||
North | 5.71 (4.72) | 4.42 (4.32) | 20.05 (14.99) | 3.87 (3.83) | 2.41 (1.89) | 2.64 (2.67) | 2.77 (2.89) | 1.61 (1.63) | 2.54 (2.07) | 2.69 (2.94) |
Center | 5.53 (4.94) | 4.51 (4.42) | 20.44 (15.82) | 4.41 (3.95) | 2.67 (1.96) | 2.58 (2.77) | 2.62 (2.97) | 1.75 (1.89) | 2.59 (1.90) | 2.82 (3.11) |
South | 5.66 (4.53) | 4.34 (4.20) | 20.39 (13.97) | 4.15 (3.41) | 2.46 (1.84) | 2.55 (2.42) | 2.62 (2.69) | 1.90 (1.74) | 2.95 (1.88) | 2.75 (3.18) |
f | 0.049 | 0.037 | 0.031 | 0.163 | 0.632 | 0.053 | 0.151 | 10.014 | 10.591 | 0.066 |
p | 0.952 | 0.964 | 0.969 | 0.850 | 0.532 | 0.948 | 0.860 | 0.364 | 0.205 | 0.963 |
Home Conditions | ||||||||||
Lonely | 7.95 (5.54) | 5.71 (4.97) | 23.40 (14.94) | 4.67 (3.85) | 2.60 (1.95) | 3.17 (2.60) | 4.86 (3.03) | 1.85 (1.78) | 2.64 (2.00) | 3.62 (2.94) |
In company | 5.16 (4.35) | 4.13 (4.13) | 19.61 (14.80) | 4.28 (3.73) | 2.47 (1.88) | 2.49 (2.63) | 3.45 (3.75) | 1.69 (1.70) | 2.67 (1.99) | 2.55 (3.02) |
t | 4.847 | 2.918 | 2.039 | 0.827 | 0.565 | 2.058 | 4.003 | 0.707 | −0.118 | 2.869 |
p | 0.000 *** | 0.004 ** | 0.042 * | 0.409 | 0.572 | 0.042 * | 0.000 *** | 0.480 | 0.906 | 0.005 ** |
d | 0.609 | 0.468 | 0.456 | 0.103 | 0.069 | 0.260 | 0.513 | 0.110 | 0.015 | 0.528 |
Groups | n (%) | Resilience Mean (SD) | COVID-19 Emotional Risk Mean (SD) | COVID-19 Working Difficulties Mean (SD) | COVID-19 Beliefs Mean (SD) | COVID-19 Consequences Mean (SD) |
---|---|---|---|---|---|---|
Total Sample | 425(100%) | 55.45(8.32) | 10.23(3.01) | 12.28(1.86) | ||
Gender | ||||||
Men | 183 (44.1) | 55.48 (8.35) | 6.24 (2.35) | 6.40 (2.32) | 5.80 (2.80) | 5.67 (2.29) |
Women | 242 (55.9) | 55.42 (8.32) | 7.22 (2.42) | 7.13 (2.45) | 6.56 (3.13) | 6.10 (2.25) |
t | - | 0.073 | −4.203 | −3.116 | −2.646 | −1.898 |
p | - | 00.942 | 0.000 *** | 0.002 ** | 0.008 *** | 00.058 |
d | - | 0.007 | 0.513 | 0.305 | 0.371 | 0.190 |
AGE | ||||||
<40 | 192 (45.2) | 54.27 (8.90) | 6.87 (2.55) | 6.70 (2.54) | 6.51 (2.96) | 5.48 (2.01) |
≥40 | 233 (54.8) | 56.42 (7.70) | 6.74 (2.34) | 6.91 (2.32) | 6.01 (3.04) | 6.27 (2.42) |
t | - | −2.764 | 0.534 | −0.892 | 1.698 | −3.563 |
p | - | 0.008 ** | 0.593 | 0.377 | 0.090 | 0.000 *** |
d | - | 0.358 | 0.052 | 0.086 | 00.167 | 0.428 |
Workplace Setting | ||||||
Hospital | 246 (57.9) | 55.48 (8.36) | 6.78 (2.37) | 6.60 (2.45) | 6.12 (2.88) | 5.87 (2.30) |
Ambulatorial | 179 (42.1) | 55.41 (8.30) | 6.82 (2.57) | 7.12 (2.35) | 6.39 (3.18) | 5.97 (2.25) |
t | - | 0.083 | −0.153 | −2.229 | −0.908 | −0.457 |
p | - | 0.934 | 0.879 | 0.026 * | 0.364 | 0.648 |
d | - | 0.008 | 0.042 | 0.304 | 0.093 | 0.044 |
COVID-19 Working Positions | ||||||
Directly involved | 129 (30.4) | 54.63 (8.53) | 7.17 (2.58) | 7.06 (2.37) | 6.78 (3.11) | 5.99 (2.08) |
Not directly involved | 295 (69.6) | 55.69 (8.23) | 6.64 (2.36) | 6.72 (2.45) | 6.00 (2.94) | 5.86 (2.35) |
t | - | −1.326 | 2.601 | 1.370 | 2.448 | 0.558 |
p | - | 0.186 | 0.041 * | 0.172 | 0.015 * | 0.577 |
d | - | 0.127 | 0.277 | 0.140 | 0.260 | 0.058 |
Previous Infection with SARS-CoV2 | ||||||
Yes | 57 (15.1) | 54.40 (8.47) | 7.23 (2.83) | 6.36 (2.70) | 6.68 (3.25) | 5.51 (2.43) |
No | 368 (84.9) | 55.58 (8.31) | 6.75 (2.38) | 6.88 (2.39) | 6.18 (2.98) | 5.96 (2.26) |
t | - | −0.910 | 1.293 | −1.371 | 1.010 | −1.283 |
p | - | 0.363 | 0.197 | 0.171 | 0.317 | 0.200 |
d | - | 0.140 | 0.183 | 0.204 | 0.166 | 0.198 |
SARS-CoV2 infection of at least one Family Member or Friend | ||||||
Yes | 299 (70.4) | 55.35 (8.19) | 6.89 (2.45) | 6.82 (2.39) | 6.35 (2.89) | 5.83 (2.17) |
No | 126 (29.6) | 55.678.75 () | 6.59 (2.41) | 6.62 (2.50) | 5.94 (3.28) | 6.11 (2.50) |
t | - | −0.353 | 1.174 | 0.008 | 1.282 | −1.163 |
p | - | 0.725 | 0.241 | 0.994 | 0.201 | 0.246 |
d | - | 0.037 | 0.123 | 0.011 | 0.137 | 0.123 |
Preexisting Medical Conditions | ||||||
Yes | 98 (23.1) | 55.56 (8.79) | 7.12 (2.25) | 6.99 (2.54) | 6.04 (3.31) | 6.51 (2.71) |
No | 327 (76.9) | 55.41 (8.19) | 6.70 (2.49) | 6.77 (2.39) | 6.29 (2.92) | 5.73 (2.10) |
t | - | −0.155 | −1.575 | −0.795 | 0.719 | −2.983 |
p | - | 0.877 | 0.117 | 0.444 | 0.473 | 0.003 ** |
d | - | 0.017 | 0.177 | 0.092 | 0.083 | 0.345 |
Italy Regions | ||||||
North | 221 (52.0) | 55.40 (8.58) | 6.86 (2.48) | 6.57 | 6.41 (3.10) | 5.86 (2.40) |
Center | 97 (22.8) | 56.36 (7.18) | 6.80 (2.39) | 6.95 | 6.16 (2.80) | 5.74 (1.99) |
South | 106 (24.9) | 54.74 (8.78) | 6.66 (2.32) | 7.24 | 5.92 (3.02) | 6.15 (2.27) |
f | - | 0.972 | 0.248 | 20.927 | 0.981 | 0.896 |
p | - | 0.379 | 0.780 | 0.037 * | 0.376 | 0.409 |
Home Conditions | ||||||
Lonely | 78 (18.4) | 52.24 (9.27) | 6.74 (2.47) | 6.42 (2.35) | 6.41 (2.78) | 5.72 (2.20) |
In company | 346 (81.4) | 56.15 (7.24) | 6.81 (2.44) | 6.92 (2.43) | 6.21 (3.05) | 5.96 (2.30) |
t | - | −3.801 | −0.223 | −1.670 | 0.560 | −0.867 |
p | - | 0.000 *** | 0.823 | 0.094 | 0.577 | 0.387 |
d | - | 0.579 | 0.029 | 0.209 | 0.067 | 0.106 |
Prediction Models | R2 | Adj. R2 | SE | R2 Change | F Change | P F Change | F | p |
---|---|---|---|---|---|---|---|---|
Model A Predicted Variable—Depression | ||||||||
Step 1 | 0.055 | 0.046 | 4.606 | 0.055 | 6.134 | 0.000 *** | 6.134 | 0.000 *** |
Step2 | 0.281 | 0.264 | 4.047 | 0.226 | 21.580 | 0.000 *** | 16.127 | 0.000 *** |
Step3 | 0.313 | 0.290 | 3.975 | 0.032 | 4.768 | 0.001 ** | 13.303 | 0.000 *** |
Step4 | 0.462 | 0.442 | 3.523 | 0.149 | 112.479 | 0.000 *** | 23.307 | 0.000 *** |
Model B Predicted Variable—Anxiety | ||||||||
Step 1 | 0.070 | 0.061 | 4.203 | 0.070 | 7.870 | 0.000 *** | 7.870 | 0.000 *** |
Step 2 | 0.250 | 0.231 | 3.803 | 0.180 | 16.434 | 0.000 *** | 13.706 | 0.000 *** |
Step 3 | 0.286 | 0.261 | 3.729 | 0.036 | 5.154 | 0.000 *** | 11.657 | 0.000 *** |
Step 4 | 0.398 | 0.376 | 3.428 | 0.112 | 75.758 | 0.000 *** | 17.924 | 0.000 *** |
Model C Predicted Variable—COVID-19 PTSD | ||||||||
Step 1 | 0.058 | 0.049 | 14.526 | 0.058 | 6.426 | 0.000 *** | 6.426 | 0.000 *** |
Step 2 | 0.350 | 0.334 | 12.154 | 0.292 | 30.849 | 0.000 *** | 22.181 | 0.000 *** |
Step3 | 0.416 | 0.396 | 11.574 | 0.066 | 11.584 | 0.000 *** | 20.781 | 0.000 *** |
Step4 | 0.474 | 0.455 | 10.996 | 0.058 | 44.971 | 0.000 *** | 24.484 | 0.000 *** |
b | SE | β | t | p | |
---|---|---|---|---|---|
Model A—Depression (Dependent Variable) | |||||
Predictors | |||||
Age | −0.040 | 0.017 | −0.107 | −2.413 | 0.016 * |
Gender | 0.875 | 0.369 | 0.092 | 2.373 | 0.018 * |
Civile Status | −0.353 | 0.422 | −0.037 | −0.835 | 0.404 |
Preexistent Medical Conditions | 0.730 | 0.423 | 0.065 | 1.726 | 0.085 |
Home Conditions | −1.615 | 0.501 | −0.132 | −3.221 | 0.001 *** |
COVID-19 Highly Impacted Region | 0.031 | 0.362 | 0.003 | 0.084 | 0.933 |
Previous Infection with SARS-CoV2 | −2.052 | 0.575 | −0.137 | −3.568 | 0.000 *** |
SARS-CoV2 Infection of at least one Family Member or Friend | 0.587 | 0.388 | 0.057 | 1.513 | 0.131 |
Beliefs on COVID-19 Contagion | 0.331 | 0.070 | 0.211 | 4.718 | 0.000 *** |
Consequences of COVID-19 Contagion | 0.134 | 0.085 | 0.065 | 1.572 | 0.117 |
COVID-19 Emotional Risk | 0.100 | 0.088 | 0.052 | 1.136 | 0.256 |
COVID-19 Working Difficulties | 0.306 | 0.084 | 0.157 | 3.626 | 0.000 *** |
COVID-19 Working Position | 0.319 | 0.386 | 0.031 | 0.827 | 0.409 |
Workplace Setting | 0.360 | 0.378 | 0.038 | 0.953 | 0.341 |
Resilience | −0.233 | 0.022 | −0.411 | −10.606 | 0.000 *** |
Model B—Anxiety (Dependent Variable) | |||||
Predictors | |||||
Age | −0.061 | 0.016 | −0.176 | −3.729 | 0.000 *** |
Gender | 0.750 | 0.359 | 0.086 | 2.092 | 0.037 * |
Civil Status | −0.087 | 0.411 | −0.010 | −0.213 | 0.832 |
Preexistent Medical Conditions | 0.728 | 0.412 | 0.071 | 1.769 | 0.078 |
Home Conditions | −0.933 | 0.488 | −0.083 | −1.912 | 0.057 |
COVID-19 Highly Impacted Region | −0.055 | 0.352 | −0.006 | −0.155 | 0.877 |
Previous Infection with SARS-CoV2 | −0.593 | 0.560 | −0.043 | −1.060 | 0.290 |
SARS-CoV2 Infection of at least one Family Member or Friend | 0.137 | 0.377 | 0.014 | 0.364 | 0.716 |
Beliefs on COVID-19 Contagion | 0.274 | 0.068 | 0.190 | 4.014 | 0.000 *** |
Consequences of COVID-19 Contagion | 0.181 | 0.083 | 0.096 | 2.186 | 0.029 * |
COVID-19 Emotional Risk | 0.146 | 0.086 | 0.082 | 1.699 | 0.090 |
COVID-19 Working Difficulties | 0.257 | 0.082 | 0.144 | 3.136 | 0.002 ** |
COVID-19 Working Position | 0.477 | 0.375 | 0.051 | 1.270 | 0.205 |
Workplace Setting | 0.578 | 0.368 | 0.066 | 1.572 | 0.117 |
Resilience | −0.186 | 0.021 | −0.357 | −8.704 | 0.000 *** |
Model C—COVID-19 PTSD (Dependent variable) | |||||
Predictor | |||||
Age | −0.200 | 0.052 | −0.168 | −3.821 | 0.000 *** |
Gender | 1.407 | 1.151 | 0.047 | 1.223 | 0.222 |
Civile Status | −0.252 | 1.318 | −0.008 | −0.191 | 0.849 |
Preexistent Medical Conditions | 0.302 | 1.321 | 0.009 | 0.229 | 0.819 |
Home Conditions | −2.068 | 1.565 | −0.054 | −1.321 | 0.187 |
COVID-19 Highly Impacted Region | 0.172 | 1.131 | 0.006 | 0.152 | 0.879 |
Previous Infection with SARS-CoV2 | −1.327 | 1.795 | −0.028 | −0.739 | 0.460 |
SARS-CoV2 Infection of at least one Family Member or Friend | −1.283 | 1.211 | −0.039 | −1.059 | 0.290 |
Beliefs on COVID-19 Contagion | 1.391 | 0.219 | 0.281 | 6.349 | 0.000 *** |
Consequences of COVID-19 Contagion | 1.033 | 0.266 | 0.158 | 3.879 | 0.000 *** |
COVID-19 Emotional Risk | 0.499 | 0.275 | 0.082 | 1.813 | 0.071 |
COVID-19 Working Difficulties | 1.413 | 0.263 | 0.230 | 5.371 | 0.000 *** |
COVID-19 Working Position | 0.387 | 1.204 | 0.012 | 0.321 | 0.748 |
Workplace Setting | 1.991 | 1.180 | 0.066 | 1.687 | 0.092 |
Resilience | −0.459 | .068 | −0.257 | −6.706 | 0.000 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciuluvica, C.; Gualdi, G.; Dal Canton, M.; Fantini, F.; Paradisi, A.; Sbano, P.; Simonacci, M.; Dusi, D.; Vezzoni, G.M.; D’Acunto, C.; et al. Mental Health Consequences of the COVID-19 Pandemic Long-Term Exposure in Italian Dermatologists. Int. J. Environ. Res. Public Health 2021, 18, 11239. https://doi.org/10.3390/ijerph182111239
Ciuluvica C, Gualdi G, Dal Canton M, Fantini F, Paradisi A, Sbano P, Simonacci M, Dusi D, Vezzoni GM, D’Acunto C, et al. Mental Health Consequences of the COVID-19 Pandemic Long-Term Exposure in Italian Dermatologists. International Journal of Environmental Research and Public Health. 2021; 18(21):11239. https://doi.org/10.3390/ijerph182111239
Chicago/Turabian StyleCiuluvica (Neagu), Cristina, Giulio Gualdi, Marco Dal Canton, Fabrizio Fantini, Andrea Paradisi, Paolo Sbano, Marco Simonacci, Daniele Dusi, Gian Marco Vezzoni, Carmine D’Acunto, and et al. 2021. "Mental Health Consequences of the COVID-19 Pandemic Long-Term Exposure in Italian Dermatologists" International Journal of Environmental Research and Public Health 18, no. 21: 11239. https://doi.org/10.3390/ijerph182111239