Limonene Emissions: Do Different Types Have Different Biological Effects?
Abstract
:1. Introduction
2. Materials and Methods
2.1. R- and S-Limonene Reagents
2.2. Natural Orange Oil Extraction
2.3. Mosquito Strains and Colony Maintenance
2.4. Repellency Experiments
3. Results and Discussion
3.1. Orange Oil, R-Limonene and S-Limonene Compounds
3.2. Repellency Experiments
3.3. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, N.B.; Steinemann, A.; Wheeler, A.J.; Paevere, P.J.; Cheng, M.; Brown, S.K. Volatile organic compounds within indoor environments in Australia. Build. Environ. 2017, 122, 116–125. [Google Scholar] [CrossRef]
- Cheng, M.; Galbally, I.E.; Molloy, S.B.; Selleck, P.W.; Keywood, M.D.; Lawson, S.J.; Powell, J.C.; Gillett, R.W.; Dunne, E. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia. Indoor Air 2016, 26, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Bartsch, J.; Ayoko, G.A.; Salthammer, T.; Morawska, L. Volatile organic compounds: Characteristics, distribution and sources in urban schools. Atmos. Environ. 2015, 106, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Su, F.C.; Batterman, S. Volatile organic compounds (VOCs) in conventional and high performance school buildings in the US. Int. J. Environ. Res. Health 2017, 14, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinemann, A. Volatile emissions from common consumer products. Air Qual. Atmos. Health 2015, 8, 273–281. [Google Scholar] [CrossRef]
- Steinemann, A.; Nematollahi, N.; Rismanchi, B.; Goodman, N.; Kolev, S.D. Pandemic products and volatile chemical emissions. Air Qual. Atmos. Health 2020, 27, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, N.; Doronila, A.; Mornane, P.; Duan, A.; Kolev, S.D.; Steinemann, A. Volatile Chemical Emissions from Fragranced Baby Products. Air Qual. Atmos. Health 2018, 11, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nematollahi, N.; Kolev, S.; Steinemann, A. Volatile Chemical Emissions from 134 Common Consumer Products. Air Qual. Atmos. Health 2019, 12, 1259–1265. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ. 2004, 38, 2841–2865. [Google Scholar] [CrossRef]
- McDonald, B.C.; De Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinemann, A. International prevalence of fragrance sensitivity. Air Qual. Atmos. Health 2019, 12, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D. Overview of flavor and fragrance materials. Pract. Anal. Flavor Fragr. Mater. 2011, 9, 1. [Google Scholar]
- Weiss, E.R.; Braddock, R.J.; Goodrich, R.M., III; Pika, J. Occurrence and preclusion of terpene chlorohydrins in citrus essential oils. J. Food Sci. 2003, 68, 2146–2149. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Chapter 1: Essential oils. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Spinger: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Laissue, P.P.; Vosshall, L.B. Chapter 7: The olfactory sensory map in drosophila. In Brain Development in Drosophila Melanogaster; Technau, G.M., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zhu, J.; Zeng, X. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J. Am. Mosq. Control Assoc. 2006, 22, 515–522. [Google Scholar] [CrossRef] [Green Version]
- McCall, P.J.; Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 2001, 15, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, C.R.; Fitzgerald, W.F. Methylmercury in arctic Alaskan mosquitoes: Implications for impact of atmospheric mercury depletion events. Environ. Chem. 2008, 5, 127–130. [Google Scholar] [CrossRef]
- Farah, M.A.; Ateeq, B.; Ali, M.N.; Sabir, R.; Ahmad, W. Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere 2004, 55, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kitvatanachai, S.; Apiwathnasorn, C.; Leemingsawat, S.; Wongwit, W.; Overgaard, H.J. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory. Asian Pac. J. Trop. Biomed. 2011, 1, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Dorvillé, L.F. Mosquitoes as bioindicators of forest degradation in southeastern Brazil, a statistical evaluation of published data in the literature. Stud. Neotrop. Fauna Environ. 1996, 31, 68–78. [Google Scholar] [CrossRef]
- Berger, J. Preclinical testing on insects predicts human haematotoxic potentials. Lab. Anim. 2009, 43, 328–332. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Pesticide Evaluation Scheme. In Guidelines for Efficacy Testing of Spatial Repellents; World Health Organization: Geneva, Switzerland, 2013; Available online: https://apps.who.int/iris/handle/10665/78142 (accessed on 12 June 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nematollahi, N.; Ross, P.A.; Hoffmann, A.A.; Kolev, S.D.; Steinemann, A. Limonene Emissions: Do Different Types Have Different Biological Effects? Int. J. Environ. Res. Public Health 2021, 18, 10505. https://doi.org/10.3390/ijerph181910505
Nematollahi N, Ross PA, Hoffmann AA, Kolev SD, Steinemann A. Limonene Emissions: Do Different Types Have Different Biological Effects? International Journal of Environmental Research and Public Health. 2021; 18(19):10505. https://doi.org/10.3390/ijerph181910505
Chicago/Turabian StyleNematollahi, Neda, Perran A. Ross, Ary A. Hoffmann, Spas D. Kolev, and Anne Steinemann. 2021. "Limonene Emissions: Do Different Types Have Different Biological Effects?" International Journal of Environmental Research and Public Health 18, no. 19: 10505. https://doi.org/10.3390/ijerph181910505